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ABSTRACT: 
 
In geographic object-based image analysis (GEOBIA) segmentation plays a key role since all consequent classification steps depend 
on its quality. For evaluating the quality empirical discrepancy and goodness methods are available. However, when optimizing 
parameter settings certain criteria have to be fulfilled, this in order to effectively facilitate the first step in GEOBIA. Besides being 
objective by making use of statistical methods the approach applied should optimize per class or group of classes, account for all 
degrees of freedom, use small parameter increments, and be preferably automated. The study presented in this paper combines a 
newly introduced ‘area fitness rate’ as a discrepancy method with an ‘objective function’ as a goodness method. By fulfilling the 
above criteria it is, amongst others, possible to follow the multilevel approach. Very similar results obtained for five different study 
sites demonstrate that the parameter settings found are indeed optimized. A visual check strengthens this finding further. 
 
 

1. INTRODUCTION1 

Over the last decade geographic object-based image analysis 
(GEOBIA) has significantly gained importance due to the 
increasing availability of very high resolution (VHR) earth 
imagery like Ikonos and QuickBird (Jacobsen, 2004) and of 
highly sophisticated software such as Definiens eCognition/ 
Developer (Neubert et al., 2008a). The first key step in 
GEOBIA is the segmentation of imagery into meaningful 
objects. Since all consequent classification steps depend on the 
segmentation result achieving a high quality is a prerequisite 
(Hofmann et al., 2008; Singh et al., 2005). However, the 
optimal choice of parameters is a difficult task due to the high 
number of options available. The region-based ‘multiresolution’ 
segmentation as implemented in the Definiens Developer 
software incorporates five degrees of freedom: 1) the choice of 
input layers (including additionally derived image products) and 
2) their weighting, 3) the setting of the scale parameter as well 
as the homogeneity criteria 4) shape factor and 5) compactness. 
The choice of additional input layers such as a derived 
vegetation index or an edge image as well as a weighting among 
the layers are often neglected in the segmentation step. These 
should nevertheless be considered during segmentation because 
ancillary data is often successfully used for classification, too 
(e.g. Neubert et al., 2008b; Förster and Kleinschmit, 2008). 
 
In order to determine parameter settings that are considered 
optimal for a specific type of imagery recorded under particular 
conditions, for a certain landscape and task, trial-and-error 
methods are commonly applied (Costa et al., 2008; for an 
example see Im et al., 2008). They are subjective or even 
misleading and can be very time-consuming. Therefore, there is 
a demand for more objective and reliable methods determining 
best-suited parameter settings. Here, empirical statistical 
approaches are available which can be grouped into ‘goodness 
methods’ and ‘discrepancy methods’ (Zhang, 2001). The 
discrepancy methods evaluate the matching of a candidate 
segmentation with a reference data set and can be based on an 
evaluation of the a) number and b) position of mis-segmented 
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pixels, c) the number of objects, d) certain objects 
characteristics, and e) miscellaneous quantities (e.g. the 
influence of Gaussian and transmission noise). Goodness 
methods assess segments regarding how well they achieve 
specific desired properties like a) intra-segment homogeneity, b) 
inner-segment heterogeneity, and c) shape characteristics.  
 
Studies aiming at an optimization of parameter settings based 
on these empirical methods should fulfil certain criteria in order 
to effectively facilitate the first step of GEOBIA. They need to: 

1. be objective by using statistical methods, 
2. find optimized settings for each class or group of 

classes separately, 
3. cover a representative number of objects per class in 

preferably more than one test area,  
4. account for all degrees of freedom (i.e. five degrees in 

the case of the multiresolution algorithm),  
5. test parameter settings in small increments, and 
6. be preferably automated to a large extent. 

Given that the first request is fulfilled, requests two and three 
are the most fundamental: Only with studies that follow the 
second criterion it is possible to apply the multilevel principal 
(see Lang, 2008), i.e. consider different scales for different 
classes or group of classes instead of one single segmentation 
for the entire classification. Furthermore, an optimization based 
on only few objects might lead to rather random results. More 
than one test area should be used in particular for heterogeneous 
areas under investigation in order to cover the diversity of the 
landscape and as it is at the same time useful for estimating the 
reliability of the results. Studies not covering all possible 
degrees of freedom can be considered incomplete while too 
large intervals between tested parameter combinations might 
miss relevant settings. And finally, in order to make an 
optimization approach of use to others it should be as far as 
possible automated. In recent publications, various approaches 
evaluating the quality of segmentation results are presented (e.g. 
Wang et al., 2004; Weidner, 2008). However, none could be 
found that fulfils all of the above stated criteria. The 
development of a methodology as presented in this paper tries to 
close this gap. 



 

 
Figure 1. Kakamega Forest and surrounding farmland, western 
Kenya; coverage of QuickBird imagery (polygon), location of 
study sites (rectangles) and focus study sites (filled rectangles). 

 
 

2. MATERIALS AND METHODS 

2.1 Study site and image data 

An optimization of parameter settings has been performed for 
QuickBird imagery covering the farmland surrounding 
Kakamega Forest in western Kenya (Fig. 1). The forest is 
considered the easternmost remnant of the Guineo-Congolian 
rain forest belt (Wagner et al., 2008) and known for its botanical 
uniqueness (Althof, 2005). The adjacent farmland is 
characterised by small-scale subsistence agriculture and exhibits 
one of Kenya’s highest rural population densities with an 
average of 643 people / km² (determined in a 2 km buffer 
around the forest; Lung and Schaab, 2009). As part of the 
BIOTA East Africa research activities (see www.biota-
africa.de) funded by the German Federal Ministry of Education 
and Research (BMBF), spatially explicit planning scenarios for 
the agricultural matrix will be modelled based on the QuickBird 
image analysis results. Taking population growth rates into 
account scenarios can help to determine the potential for 
additional uses and alternative income options thus minimizing 
the pressure on the forest, e.g. caused by firewood collection. 
 
The VHR QuickBird imagery was recorded on February 21st 
and March 6th 2005 during two overflights due to the large 
extent of the area in east-west direction. Imagery for a total of 
717 km² was acquired of which the farmland covers 484 km². 
Thorough pre-processing was carried out including a correction 
of atmospheric and orographic influences, a special mosaicing 
procedure, and a testing of different pan-sharpening algorithms 
(Lübker and Schaab, 2008b). As image derivates the Soil 
Adjusted Vegetation Index (SAVI; Huete, 1988) has been 
calculated based on the pan-sharpened imagery, and an edge 
image has been generated based on the Canny Algorithm 
(Canny, 1986) using the panchromatic image band. 
 
2.2 Reference data and classes used  

During a field trip in 2007 ground truth information was 
collected for 12 study sites sized 2 or 2.25 km² (Fig. 1) that have 
been chosen in a way that they are spatially distributed and 
reflect the heterogeneity of the area under investigation well. 
Based on 411 beforehand selected locations that seemed to be 

either interesting, unclear or characteristic for the area, 636 
samples in total were collected of which about 2/3 refer to land 
use information and 1/3 to structural elements (Lübker and 
Schaab, 2008a). 
 
Out of the 12 study sites 5 have been chosen as focus study sites 
(Fig. 1) for which a visual interpretation covering the complete 
extent has been performed based on the information obtained 
during the field verification. The on-screen digitizing was 
achieved at a resolution of approx. 1 : 1 000 with the pan-
sharpened QuickBird imagery and the SAVI image alternatingly 
displayed having the cubic convolution resampling method 
enabled, thus allowing for a delineation accuracy of only a few 
pixels. In order to keep the work efforts at a still feasible level, 
objects no larger than approx. 20-25 m² as well as shadows of 
trees and shrubs have not been separately delineated due to their 
small size. Like this 16,409 polygons have been created thus 
presenting a solid base for an evaluation of the segmentation 
quality using a discrepancy method.  
 
The 28 classes of land use and structural elements assigned 
during the field verification have been transformed into 27 
classes for the visual interpretation (Tab. 1). Classes like 
‘ground nuts’, ‘passion fruits’, and ‘avocados’ had to be omitted 
because only very few examples could be found in the field. 
Further, these could not be distinguished in the imagery. The 
class ‘burnt area’, on the other hand, has been introduced newly 
while the class ‘fallow’ could be further subdivided. The class 
‘bananas’ was appended to the class ‘vegetables’ because they  
 
Table 1. Classes used during ground truthing (left), adjusted for 
visual interpretation (middle), and finally applied in GEOBIA 

(right). 
 

Ground truthing Visual
interpretation Classification group

forest patch forest forest n.a.*
river river river A
path or track road road A

road, tarmac road, tarmac A
house/hut house house A
tree lot trees and shadows tree and shrub veg. Bbush/shrubs shrubs

shadows of treesingle tree single tree and shrub veg. B
tree line/group tree line/group
homestead homestead homestead C
vegetables vegetables vegetables C
rock rock rock C
bare soil bare soil bare soil C
maize (& beans) maize (& beans) maize (& beans) D
tea (young/old) tea tea D
sugar cane tea zone

(young/old) sugar cane sugar cane
napier napier napier, sweet

D

sweet potatoes sweet potatoes potatoes

fallow fallow, grass/ fallow, grass/

D

grass grazing grazing

Dfish pond

fallow/grass by

burnt area

D

bananas
the river

fish pond

D

ground nuts
fallow/grass nextpassion fruits

to roadavocados
burnt areacoffee

fish pond

mangos
pinapples

others
other crops

rest / unclassifiedothers
unknown

* not applicable; the forest area is excluded via a mask prior to the classification.  



 

are usually planted in mix. The defined classes have been again 
slightly modified for the actual classification where e.g. the 
class ‘shadow of tree and shrub vegetation’ has been introduced 
and other classes like ‘napier’ and ‘sweet potatoes’ had to be 
merged since they appear almost identical in the imagery and 
therefore are likely to be undistinguishable in an automatic 
classification. Furthermore, the classes have been transferred 
into four groups (A to D) representing levels in the multilevel 
image segmentation. The grouping has been arranged theme-
wise and in accordance to similarities in expected segment 
sizes. During the optimization this grouping is to be verified. 
 
2.3 Parameter combinations tested 

The selection of parameter combinations has been made in 
accordance with the fourth (account for all degrees of freedom) 
and fifth request (small parameter increments) made earlier in 
this paper and is described in the following. The first and 
second degree of freedom in multiresolution segmentation have 
been treated together by defining layer combinations in which 
the influence of a single layer has been set to 100%, 50% or 0%. 
Out of 27 (3 * 32) possible combinations the 12 most 
meaningful (e.g. not doing without the multi-spectral bands) 
have been selected: 

Layers and their weightings: {100; 150; 110; 105; 101; 
510; 501; 155; 115; 151; 111; 511} 
1st digit: weighting of the four QuickBird bands,  
2nd digit: weighting of SAVI layer,  
3rd digit: weighting of edge layer;  
1: 100%, 5: 50%, 0: 0% 

As scale parameter (third degree of freedom) ten values ranging 
between 20 and 250 have been chosen thus covering commonly 
used values (Hofmann et al., 2008). In the upper region 
increments have been enlarged in order to decrease the total 
number of combinations: 

Scale parameters: {20; 40; 60; 80; 100; 120; 140; 170; 200; 
250} 

For the influence of the shape factor four values between 0.1 
and 0.7 have been applied at an interval of 0.2. The value of 0.9 
has been excluded since no feasible results are expected: 

Shape factors: {0.1; 0.3; 0.5; 0.7} 
For the degree of compactness, the same settings have been 
chosen, this time including the value 0.9: 

Compactness values: {0.1; 0.3; 0.5; 0.7; 0.9} 
 

2.4 Combined approach in two steps 

The study is split into two parts because if evaluated in one 
single step 2,400 parameter combinations would have been 
needed to be evaluated at once resulting in 48,000 segmentation 
runs carried out for the five focus study sites and four groups of 
classes. Further, with the subdivision, both discrepancy and 
goodness methods can be applied each at a time. However, 
when optimizing the choice of input layers and their weighting 
goodness methods evaluating multi-spectral characteristics (see 
chapter 1) must not be used in order to avoid dependencies. 
 
In the first step, the first three degrees of freedom are 
determined keeping the values for shape and compactness 
constant at 0.3 and 0.5 respectively leading to 120 parameter 
combinations and resulting in 600 candidate segmentations. In 
the second step, the three determined values are adopted and 
tests are carried out for shape and compactness. Since they have 
influence on the ‘size’ of the resulting segments two additional 
scale parameter are considered, one being 5 or 10 lower and one 
being 5 or 10 higher than the earlier determined scale 
parameter. Here, 60 parameter combinations are tested resulting 

in 1,200 segmentations since the optimization is carried out for 
four different classes (having different optimized scale 
parameters and layer weightings) in the five focus study sites. 
The candidate segmentations are generated in Definiens 
Developer within the Process Tree by making use of variables 
and then exported as shape files in which parameter settings are 
included in the file names. 
 
2.5 First step of optimization using an empirical 
discrepancy method 

For the evaluation in the first step of optimization we introduce 
here a discrepancy method based on the ‘area fitness rate’ 
(AFR) calculating the degree of overlap between each reference 
polygon and the associated candidate segments. For each pair of 
reference polygon and overlapping segment the area of overlap 
in relation to the area of the polygon or the segment are 
calculated and multiplied (Fig. 2) as defined by equation (1): 
 
 AFR = 

S
SR

R
SR II
∗  ,    {0,…,1} (1) 

where R = area of reference polygon 
 S = area of associated segment 
 
Like this the ‘error of omission’ and ‘error of commission’ are 
combined within one formula representing a robust statistical 
measure. An ideally fitting segment leads to a value of 1 while a 
none-overlapping segment results in a value of 0. 
 

R

S

R   S

AFR = *

 
Figure 2. Illustration of the ‘area fitness rate’ (AFR). 

 
Due to of the high number of comparisons to be carried out a 
largely automated procedure is elaborated in the ArcGIS 
software making use of the Model Builder in combination with 
Visual Basic (VB) script language. In the model, after repairing 
possible topological errors, assigning unique IDs, and 
calculating area sizes, reference data set and candidate 
segmentation are combined using the ‘union’ operation keeping 
all attributes. A tolerance of 0.6 m (i.e. 1 pixel) is applied in 
order to account for small geometrical inaccuracies in the visual 
interpretation. After computing the sizes of the areas of overlap 
the AFR is calculated in each occurrence of an overlap. In most 
cases more than one segment is overlapping with the reference 
polygon. The statistical ‘summary’ function using ‘group by 
reference polygons’ determines the value of the highest fitness 
rate. The AFR for each reference polygon is then exported as a 
table which is finally joined to the reference data set. The model 
was exported as a VB script in order to allow for batch 
processing. For creating the batch file, file names of the created 
segmentations are read from the file system via the Windows 
command line and transferred to Excel. Here, parameter settings 
used during the segmentation are extracted from the file names 
serving as input parameters for the model variables needed. 
Executing the batch file, the calculation can be carried out for a 
complete study site in one single run which is at an average 
accomplished in 4.5 hours using a PC with modern hardware 

∈



 

configuration. The results are summarised per class as well as 
per group of classes for each of the focus study sites by making 
use of the median value (i.e. the 50% quantile). 
 
2.6 Second step of optimization using empirical goodness 
methods 

For the second step of optimization two indices with opposing 
gradients are combined in an ‘objective function’ (Espindola et 
al., 2006). The first index expresses inner-segment homogeneity 
based on the mean weighted variance (MWV) that is defined as 
the sum of all products of variance and area divided by the sum 
of all areas, as defined by equation (2) (Espindola et al., 2006, 
p. 3037):  
 

 MWV = 
∑
∑

=

=
∗

n

i i

n

i ii

a

va

1

1  (2) 

where  ai = area of a segment 
 vi = variance within a segment 
 
The second index expresses inter-segment heterogeneity based 
on Moran’s I test for spatial autocorrelation (for definition see 
Moran, 1950; Espindola et al., 2006). In general, values for 
MWV are lower for larger segments while values for Moran’s I 
test are higher. An optimal segmentation is found when balance 
is established between inner-segment homogeneity and inter-
segment heterogeneity. In the ‘objective function’ the two 
measures are added after normalising them to a range of 0 to 1 
thus holding possible values between 0 and 2. As Goa et al. 
(2007) showed the classification accuracy can be significantly 
enhanced by using this ‘objective function’.  
 
The values for MWV are calculated when creating the candidate 
segmentations in Definiens Developer. Only the NIR-band is 
used since it has the highest contrast. For the calculation of the 
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Figure 3. Results of the discrepancy evaluation based on the 

‘area fitness rate’ (AFR) for the classes ‘road’ in Shirakalu (a) 
and ‘house’ in Lubao Market (b); evaluation summarised for 

class group A in the two sites (c: Shirakalu; d: Lubao Market). 

MWV a ‘customised scene feature’ is created that is defined by 
the two ‘scene variables’ ‘sum of all products of variance and 
area’ and ‘sum of all areas’ which are being updated in each 
segmentation process. Since ‘variance’ is not a default object 
feature it has to be customized via an ‘object feature’. The 
Moran’s I index is calculated with ArcGIS because the function 
is already implemented there. However, the Python script has to 
be adjusted so that the result is not only displayed visually but 
written to a text file together with the file name. The adjusted 
script is then loaded into the Model Builder and exported as a 
VB script. Analogue to the proceeding in the case of the AFR 
Excel is used to create the batch files. While the calculation of 
variance requires only fractions of a second per segmentation 
the calculation of Moran’s I indices requires an average of 8 
hours for the class groups B to D but is not feasible for group A. 
Here, due to the high number of polygons per focus study site 
(up to 163,000) the calculation of one single segmentation takes 
approx. 14 hours. Therefore, the discrepancy method is again 
applied for optimizing scale parameter, shape factor and 
compactness for class group A, too.  
 
 

3.  RESULTS 

Per-class results obtained with the discrepancy method based on 
AFR applied in the first step typically lie between 0.5 and 0.7 
for the best rating segmentation. Looking at the results for the 
classes ‘road’ and ‘house’ (both in class group A) for the focus 
study site of Lubao Market and Shirakalu, respectively (Fig. 3a 
and b) it can be concluded that scale parameters of 20 and 40 
reveal the best results. Results for the different layer 
combinations are less distinct but generally those with a greater 
weighting of the edge layer score highest. When summarizing 
the results per group of classes the differences become less 
strong (Fig. 3c and d). In order to make a decision for a certain 
layer combination easier and to compare the results for the 
different focus study sites a ranking has been introduced where 
the four best results per focus study site are given scores from 1 
to 4. In the case of class group A nearly half of the scores are 
achieved with the overall best layer combination.  
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Figure 4. Results of the goodness evaluation for class group D 
in the focus study site Virhembe: normalised ‘mean weighted 

variance’ (MVW, top) and Moran’s I index (bottom). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Exemplarily chosen objects for visual checking of class groups  
A, B, C, and D; visual interpretation (dark coloured lines, objects relevant to 

the class only), and optimised segmentation (light-coloured lines). 

Results obtained with the goodness methods in the second step 
range between 4,300 (scale parameter 20, group A) and 66,000 
(scale parameter 100, group D) in the case of MWV, and 
between 0.098 (scale parameter 100) and 0.371 (scale parameter 
20) in the case of Moran’s I index. For the focus study site of 
Virhembe the normalised results of class group D are displayed 
in Fig. 4. It can be seen that variances are lower for higher scale 
parameters as well as for higher shape factors while an 
increasing compactness value leads to almost equal or slightly 
better results for low shape factors (0.1 and 0.3) but 
considerable lower results for higher shape factors (0.5 and 0.7). 
Values for Moran’s I index are also generally lower for lower 
scale parameters. Even though further trends are not as clear as 
in the case of variance it can be seen that mid shape factors 
mostly lead to better results and segmentations with a high 
influence of compactness and a higher shape factor generally 
score lower. 
 
The results combined by the ‘objective function’ have been 
visualised in, again, set of diagrams (not shown here). Based on 
them one optimal parameter combination has been visually 
determined for each of the five focus study sites and four class 
groups. In ambiguous cases marginally less good results have 
been noted in addition. In case of class group D the determined 
values for scale parameter and shape factor are very similar 
among the focus study sites while for compactness 
contradictory results are obtained. For class group B the 
determined values for all three parameters are very similar 
among the focus study sites, for group C they coincide slightly 
less well. For class group A that had to be evaluated by the 
discrepancy method alone (see chapter 2.6), again a ranking has 
been carried out showing that 44% of the scores have been 
assigned to 7 out of 60 combinations, the 7 being very similar. 
 
 

4. CONCLUSIONS 

The relatively low mean results for the AFR can be explained 
by the fact that e.g. neighbouring parcels of same cultivations 
are often separated by very thin, non-contrastive lines only and 
adjoining houses can only be identified as such by the shape of 
their roofs and hence are very hard to detect by the region-
growing algorithm. From the combined results of 
the second step of optimization it can be 
concluded that the determinability of optimal 
parameter settings depends on the classes or 
groups of classes under examination, i.e. for some 
classes the optimal settings are clearer than for 
others. Although the procedure applied in the case 
of class group A in the second step presents a 
break in procedure it does not mean a drawback 
since meaningful results could be obtained with 
just applying the discrepancy method again. 
 
In order to examine the usefulness for an actual 
classification the segmentations with the 
determined optimal settings have been visually 
checked for each of the classes with exemplary 
chosen objects. Fig. 5 shows that for class group 
A (top-left) some very small segments are created 
but generally the delineation of the visual 
interpretation is matched well in case of the 
houses; exept for a strongly illuminated tinned 
roof that is segmented on its own. Other objects 
that are not part of class group A and hence not of 
relevance here are highly over-segmented. Due to 
the high weighting of the edge layer in the 

segmentation thin polygons reminding of buffers are generated 
along house margins. Since this could not be avoided it must be 
accounted for in the subsequent classification. In class group B 
(top-right) shrubs on a parcel are matched very well. The 
delineation in some parts seems to be even slightly more 
accurate than in the reference data set due to the limitations set 
earlier (for explanation see chapter 2.2). Here, a shrub that is 
neglected in the visual interpretation because of its small size of 
less than 25 m² gets correctly segmented. In this example 
shadows are small enough that they can be jointly segmented 
together with the shrubs. In the example for class group C 
(bottom-left) a homestead is over-segmented into two main 
segments but otherwise the delineation follows the visual 
interpretation well. Again, two small shrubs are additionally 
delineated as well as an area east-south-east of the house that 
exhibits very little vegetation cover. Also for the class group D 
(bottom-right) the result is promising. A number of parcels are 
segmented in one segment following the visual interpretation 
very well; only few parcels are over-segmented, e.g. the large 
heterogeneous sugar cane parcel in the image centre. Objects 
like houses and roads that are not relevant for this group are, as 
expected, not matching well. 
 
By evaluating five test areas with distinct characteristics it is 
possible on the one hand to account for the heterogeneity of the 
area under investigation and on the other hand to cross-check if 
the results are reliable. The fact that in most cases very similar 
results are obtained for the five focus study sites demonstrates 
that the results are indeed reliable. Since the sites have been 
chosen to meet the area’s heterogeneity it can be expected that 
the determined parameter settings are also suitable for the 
complete imagery. The initially formulated requests for a study 
of parameter optimization are all met by the presented method. 
While it has been assured from the very beginning that the focus 
study sites represent the heterogeneity of the area under 
investigation well, it has been shown that groups of classes (A 
to D) have been optimized individually, all degrees of freedom 
of the multiresolution segmentation have been covered, and 
parameter settings have been selected in adequately small 
increments. Further, the procedure could be automated to a 
large extent. However, the automation should be further refined 
so that the method can be easily applied also by others.   

A B

C D
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