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ABSTRACT:  
Synthetic aperture radar (SAR) imagery has proven to be a promising data source for the surveillance of maritime activity, and its 
application for automatic ship detection has been the focus of many research studies. Apart from the well-known CFAR detector, 
there has emerged a novel method for automatic ship detection, based on the wavelet transform. Since the underlying principles for 
both methods are fundamentally different, their advantages and disadvantages concerning various image features also differ.  
Within this paper we will present a prototype ship detection system that attempts to combine the benefits yielded by the two 
aforementioned techniques, thus gaining both sensitivity for weak targets and robustness against false alarms in inhomogeneous 
areas. For this, a wavelet-based prescreening stage is applied, which is followed by an object analysis, and a final adaptive-threshold 
test. The prototype has been tested and assessed on ALOS PALSAR and RADARSAT-1 data, especially with respect to the behavior 
toward sea-ice areas and irregularities such as beam seams in ScanSAR imagery. The results indicate a compensation of the intrinsic 
drawbacks held by the individual detection methods, producing a reliable and versatile detection system.  
 
 

1. INTRODUCTION 

The observation of maritime activity has been a field of 
research ever since synthetic aperture radar (SAR) imagery of 
the ocean surface became available for the first time. However 
the large amounts of image data modern SAR systems generate 
are capable of quickly overburdening a human observer. This 
creates an obvious need for automated detection systems, 
guaranteeing both reliability and predictability for the detection 
result.  
For the purpose of an operational ship surveillance system, it is 
crucial to maximize the spatial coverage. The use of ScanSAR 
data can help to achieve this goal, however, it comes along with 
a sacrifice of image resolution. This means that the typical input 
imagery for an automatic ship detection system for surveillance 
purposes is expected to have a resolution range from 25 to 
100m, causing some ships to be represented only by very few 
pixels, as illustrated by Figure 1. The task of ship detection 
under these circumstances can equally be described as spot 
detection in a noisy environment. 
The reminder of this paper is organized as follows: Section 2 
introduces the procedure for ship detection on a conceptual 
basis, while Section 3 outlines important implementation issues. 
A performance evaluation and discussion of the system is 
provided in Section 4, including an assessment of challenges 
and potential of ship detection in the new class of high-
resolution spaceborne SAR data provided by TerraSAR-X, 
CosmoSkyMed, etc.  
 

2. DETECTION STRATEGY 

The detection of ships relies on three individual modules that 
are run independently, and whose results are combined in a 
subsequent fusion step. Initial ship detection is based on 
wavelet-analysis (Section 2.1), which is combined with a 
modified and enhanced Constant False Alarm Rate (CFAR) 
spot detector (Section 2.2). As the information provided by the 
raw SAR signal is rather limited due to the relatively coarse 
resolution of the used PALSAR and RADARSAT-1 imagery, 
we include automatically delineated context information in 
form of land-/watermasks, which are derived by texture-based 
classification. The focus is put on properties that are relevant 

for the performance of the prototype. For a more general 
overview we refer to the respective technical literature. 

 

 
 

Figure 1: Group of ships in ALOS WB1 scene near Dutch 
Harbor, Alaska (100m spatial resolution).  
 
2.1 Wavelet Analysis 

The discrete Wavelet transformation has numerous applications 
in the field of SAR data, be it general processing, compression 
or pattern identification (Chan 1993, DeGrandi 2007). Recently, 
there also has been published extensive and promising research 
on its applicability on the detection of ships in artificial and real 
imagery (Tello et al. 2005). The first stage of the prototype ship 
detection system presented here is heavily inspired by the 
findings published in these papers.  
The behavior of any transformation is determined by the choice 
of the appropriate transformation kernel, in case of the wavelet 
transformation simply referred to as “the wavelet”. For the 
purpose of ship detection, it has been shown that the utilization 
of the so-called Haar wavelet (Figure 2) provides good results. 
This setup has several basic properties which make it very 
suitable for ship detection (Tello et al. 2006): 
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• Edge detection 
The Haar wavelet enhances steps in contrast of a signal, 
very much like an edge-detection filter. Ships can be 
regarded as singular structures in a noisy background, 
therefore generating conspicuous response to an edge-
detection method. 

 
• Spatial locality 

Unlike the kernels of other common transformations like 
trigonometric functions, wavelets are highly localized in 
both the spatial and frequency domain. Since in the 
application of ship detection not only their mere 
occurrence, but also their position is of prior interest, this 
property is of vital function. 

 
• Multi-resolution 

Wavelets can be applied in different scales, in each case 
emphasizing only structures corresponding to the current 
scale. By varying the decomposition level, or respectively 
the number of iterations, a selective multi-scale analysis 
can be performed. 
 

 
 

Figure 2: 1st order Haar wavelet. Higher order Haar wavelets
are spatially scaled versions of the 1st order kernel, thus only
extracting details which resemble their respective size. 
 
The wavelet decomposition of a two-dimensional image creates 
sets of sub-band coefficients, which contain the extracted 
information with respect to the different directions 
H (horizontal), V (vertical) and D (diagonal). Ships show up as 
deterministic signals in all of the sub-bands, while noise effects 
decorrelate due to the orthogonality between the different 
dimensional channels. For ship detection, after the 
decomposition a spatial correlation is applied to the several sub-
bands, by which only spot-like deterministic features become 
enhanced, while noise and arbitrarily-shaped irregularities are 
suppressed (Figure 3). 
It is obvious that not only ships display as roughly spot-like 
objects in SAR imagery. Heavily inhomogeneous structures like 
sea-ice borders or very irregularly-shaped beam seams still can 
cause similar deterministic features, causing a significant 
number of false alarms (Figure 4). To address this problem by 
raising the threshold would only shift the problem to a loss of 
valid targets, thus increasing the false negative errors. 
Also, the method’s intrinsic property of edge detection implies 
that its success partly relies on a sharp-cut edge of the feature 
that is to be extracted. This can impose severe problems 
especially for lower resolution (>50m) imagery, since here 
targets often appear diluted and do not show a clean edge, 
resulting in false negative decisions.  
A simple adaption of the decision threshold at this stage would 
preserve these targets, but at the same time cause a dramatic 
increase of false alarms for other structures found in 
inhomogeneous regions. 

 
(a)    (b) 

Figure 3: a) Detail crop (100x100 pixels) of ALOS PALSAR 
WB1 scene with one easily detectable target. The spatial 
resolution is 100m. b) Spatial correlation of the reconstructed
horizontal, vertical and diagonal single-level sub-bands. The 
clutter is diminished, while the target as the only deterministic 
feature remains. 
 
 
2.2 Spot-Detection 

The most common approach to ship detection in SAR images 
certainly is the adaptive-threshold or CFAR detector, on which 
several current operational systems rely. These algorithms are 
designed to find pixels of unusual brightness by comparing the 
encountered intensity with the statistical properties of the local 
background, obtaining a significance value S for each pixel or 
pixel cluster analyzed (Crisp 2004 p.27ff). 
 
To accurately set the threshold and to achieve a constant false 
alarm rate, these systems in fact have to know the background 
statistics or apply local distribution fits. In practice it has turned 
out that it is a more feasible approach is to model the 
background distribution parametrically, adjusting it with local 
data samples. 
 

Figure 4: Radarsat1 SWB image fragment of a sea-ice border 
northern of Dutch Harbor, Alaska. The scene shows a 
predominant beam seam and a field of scattered ice, characteristic 
for the border region of an ice shelf.  



 

For this, the most established setup consists of three concentric 
windows (Figure 5). A target window extracts the current 
pixel(s) under test, and a bigger background window defines the 
area that is considered to contain the associated background 
information. Between these windows, a guard region is 
assigned to prevent the target from leaking into the background 
area, which would distort the estimation of the underlying 
statistic properties. An important limitation to such a system is 
the window size, which can hardly be varied for the reason of 
computational efficiency, but has to satisfy all expected targets 
sizes (Crisp 2004 ibid.). 
 
 
 

Figure 5: Typical setup for an adaptive-threshold detector: a 
target area consisting of one or more pixels (1) is separated by a 
guard area (2) from the background ring (light gray).  
The comparison of the target area intensity with the data
cropped by the background area supplies a significance degree
on which the detection decision is based. 
 
Another general problem of the CFAR method as such is that 
the characterization of the background distribution despite 
extensive research is always a factor of uncertainty. It displays 
large fluctuations within even the same image, caused by 
imhomogeneities such as sea-clutter, beam-seams, or further 
non-stationary effects (Figure 6). It is worth mentioning that the 
term CFAR for this kind of detector can be misleading, since 
the constancy of the false-alarm rate is entirely dependent on 
the correct statistical estimation of the background distribution 
of the data. Furthermore, the prototype system described in this 
paper applies its adaptive threshold detection on an extremely 
limited non-random selection of samples from the original data, 
hence violating the statistical frame for which a calculated 
constant false alarm rate is meaningful. Therefore, without loss 
of generality the application of CFAR-like techniques in the 
following will be referred to as “adaptive-threshold (AT)” 
rather than “CFAR” detector. 
 
2.3 Land- and watermask classification  

While the aforementioned detection schemes perform 
reasonably well in open water areas, their quality decreases 
significantly when applied to coastal areas, within river deltas. 
Image structure along rugged coastlines, on undulated land 
surfaces, or urban areas may appear as small, ship-like blobs 
when observed only locally, i.e. in a small neighbourhood like 
shown in Figure 5. Hence the above procedures tend to over-
segment coastal regions and land surfaces.  
To overcome this problem, we perform an image segmentation 
of land and water areas in the detection scheme, which is based 
on context information derived from the SAR image itself. The 
most important step of this procedure is the correct selection of 
representative and distinctive features: 
 

 
Figure 6: Heterogeneous ocean surface in Radarsat1 SNB mode 
image (resolution 25m).  
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• Brightness 

For calm weather conditions, the scattering off water 
surfaces is dominated by specular reflection, directing 
most of the incident energy away from the sensor. Thus, 
for these conditions, radar brightness estimated in a local 
neighbourhood (see e.g. Figure 4) can be used to identify 
water areas in SAR scenes. We utilize a rank-filter to 
estimate the local brightness robustly even in the case of 
heavy speckle-noise. 

 
• Grayvalue variance  

The same physical argument as above holds also for the 
grayvalue variance. According to the speckle statistic, the 
tail of the probability density function of image intensity 
scales with the radar cross section. Hence the grayvalue 
variance, again estimated in a local neighbourhood, is an 
additional feature to separate land from water.  

 
• Grayvalue structure 

As can be seen from Figure 6, also water regions can be 
characterized by strong backscatter and heavy noise. Such 
situations appear in dependence of the wave 
characteristics of the ocean, especially in case of the well-
known Bragg-scattering effect. The first and second order 
statistical moments are thus no more distinctive enough 
for land and water classification. However, the local 
grayvalue structure is still different. While the grayvalues 
of ocean surface are more or less randomly organized, 
significant edge or line structures can be identified for 
land regions (see Figure 7). To capture these features, 
gradient orientation histograms weighted by the edge-
amplitude are calculated in local neighbourhoods. In 
these, ocean surface appears as uniform distribution of the 
orientations while land is characterized by significant 
modes of the orientation histogram.  

 
The mentioned features are fed into a supervised classification, 
whose output (after some standard morphological cleaning) is 
regions for ocean and land.  
 



 

 
Figure 7: Similar grayvalue moments but different grayvalue
structure of land and ocean surface in Radarsat1 SWB mode
image (resolution 50m).  

 
3. IMPLEMENTATION ISSUES 

3.1 Wavelet pre-screening 

In order to avoid the aforementioned vulnerabilities of a 
detector exclusively based on wavelet transformed data, the 
wavelet analysis as described in the previous section is only the 
first stage of the presented prototype. Its foremost task is to 
extract the entirety of possible targets. This step will sometimes 
be referred to as “prescreening” in the following. The existence 
of a consecutive analysis stage allows the discrimination 
thresholds for the cumulated sub-band image to be set rather 
low, hence not eliminating targets with a mediocre response in 
the wavelet domain.  
The prescreening system presented in this paper uses the two-
dimensional stationary wavelet transform as described in 
(Nason et al. 1997). After the decomposition the sub-bands are 
filtered to concentrate the signal energy spatially, leading to 
more distinctive responses in the cumulated result (Figure 8). 
For optimal performance, this result is formed out of several 
decomposition levels, hence encompassing the desired size 
range of ships. This also prevents oblong or elliptical targets, 
which show in imagery of 50m or higher resolution, from being 
unnecessarily suppressed. 
 
3.2 Ship Candidate selection 

The cumulative wavelet image assigns large pixel values to 
ship like features and suppresses objects that don’t correspond 
to the used object model. In this dataset, an object 
discrimination has to be performed that identifies the ship 
candidates that will progress to the next processing steps. At 
this stage, a preliminary general threshold is applied to the 
cumulated wavelet image, cleaning out the heavily suppressed 
clutter. Although a relaxed threshold setting is used to 
guarantee a low number of missed hits, it still successfully 
isolates compact pixel groups in a mostly zero matrix. These 
groups are henceforth considered objects, each representing a 
potential ship.  

 
Figure 8: Cumulated wavelet result of the same image. The 
manifold sea-ice structures create numerous rather strong 
responses in the wavelet domain, likely to cause a high number 
of false alarms. Here the shape-selectivity of the wavelet 
approach is noticeable: even though the beam seam is the 
brightest structure, it is suppressed in the wavelet result 

 
In the process of labeling the objects, the object size in pixels is 
determined. Careful comparison of the object signatures in the 
cumulated wavelet domain and the original image show that 
when treated correctly, the estimated sizes match very closely. 
This information allows several considerations: 
Knowledge of the estimated object size considerably 
contributes to the performance of an adaptive-threshold 
detector. The crucial sample window sizes can be automatically 
adjusted to each object, significantly decreasing the probability 
of a false decision.  
Since the underlying physical size of each pixel as well as the 
pixel spacing are known, a relation between the apparent object 
size and the corresponding physical object can be easily 
formulated.  By this, size limits for ship candidates can be 
determined and utilized to purge unwanted objects from the list. 
To this end, ellipses are fitted to the boundaries of candidate 
regions and thresholded based on geometrical parameters such 
as absolute and relative length of major and minor axis, area, 
and eccentricity. In practice, this test can reduce the number of 
objects under test by more than 90%. 
Since the subsequent processing steps are no longer dependent 
on the total image size in pixels, but on the number of objects to 
be analyzed, early identification of the majority of invalid 
objects results in a considerable speed gain. At the same time, 
this allows for higher complexity in the following parts of the 
object analysis, such as advances shape and area examination 
for the remaining objects. 
 
3.3  Adaptive-threshold detector 

For the sake of demonstrating the general benefit of an AT 
detector following a wavelet pre-screener, the rather 
uncomplicated and ubiquitous two-parameter detector has been 
chosen. This detector obtains the target intensity  and 
assumes a Gaussian background distribution, which can be fully 
parameterized by the local estimation of the first two moments 
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bμ  and bσ . The obtained significance value S then is 
compared with an empirically determined threshold value t: 
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Even though the correctness of the Gaussian decision is based 
on the central-limit theorem and therefore only of asymptotic 
nature with respect to the number of looks, it still proves to be a 
useful and simple method to distinguish significant features 
from their surroundings. 
The implementation of the AT detection step for the prototype 
system is different from conventional setups in many ways, 
since the detector has been developed to benefit from the 
previous object discrimination. Nonetheless, the currently 
included two-parameter detector can easily be switched with a 
more sophisticated statistical detection mechanism.  
Knowledge about the spatial extent of the pixel group under test 
allows assigning a dynamically tailored target window for every 
object. This is of great importance for the confidence of the 
adaptive threshold decision, since the pixel group can now be 
tested as a whole, following the basic principle of the moving-
average (MA) CFAR detector. Hence, the target significance 
term   
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can be extended for averaging over the list of target pixels, and 
has to take into account the number n of grouped pixels within a 
target. This is achieved by weighting the background standard 
deviation with the multi-looking factor n1 , yielding 
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This procedure greatly improves the robustness of the AT 
detection performance especially for larger targets in 
inhomogeneous areas of the image. 
 
3.4 Selection criteria 

To keep the effects of the different methods distinguishable and 
to maximize the transparency of the detection decision for 
development and assessment the final selection criterion merely 
combines the magnitude of the object’s response in the wavelet 
domain  and the significance return value S from the AT 
detector: 

HVDM

ship validthreshold ⇒>⋅ HVDMS  
Although this criterion is rather simplistic, it still maintains the 
influence of both processing steps on the final detection 
decision.  
Improved selection criteria could of course better exploit the 
wealth of information available in the detection system. These 
criteria will include more complex object parameters, such as 
homogeneity of the object or more advanced shape criteria, to 
support and strengthen the decision making process. More 
sophisticated evaluation frameworks, e.g. the application of a 
fuzzy logic mechanism, will be applied to facilitate the 
incorporation of heterogeneous information types and to fuse 
different information channels. 
 
3.5 Land and water classification 

The Image parameters described in Section 2.3 are used to train 
a supervised classification scheme for land masking, which 
currently is set up as a maximum a-posteriori classifier. The 
benefit of using other classifiers, e.g. Support Vector Machines, 
has not been investigated and will be subject of future research. 
Figure 9 illustrates a typical example of a classification result 
for a segment of an ALOS-PALSAR FBS scene. 

 
Figure 9: Automatically delineated shoreline by land and water 
classification for an ALOS PALSAR FBS scene.  

 
4. RESULTS AND DISCUSSION 

A set of images has been selected to conduct a first assessment 
of the system. As high spatial coverage is essential for an 
operational ship detection system, the testing objective was to 
cover the typical resolution range of currently available SAR 
imagery with swath widths of 60km or more. Therefore, the 
experiments include resolutions between approx. 6.5m for 
ALOS-PALSAR data and 50-100m for Radarsat-1 SWB. 
Special focus was put on evaluating the detection performance 
with respect to 
- spatial resolution of different SAR products 
- image artifacts (e.g. nadir echoes or beam seams) 
- heterogeneous image content (e.g. sea-ice border areas). 
After the application of the prototype algorithm, the images also 
were inspected manually for potential false negative detections. 
Furthermore, the intermediate products of the detection process 
were analyzed and compared. A reference ship mask was 
generated manually from the available SAR imagery and used 
for evaluating the performance of the different methods applied. 
For the numerous evaluated test scenes, typical performance 
characteristics are:  
 
Completeness  (71.8%): 23 of 32 ships detected 
Correctness  (80.0%): 29 total with 23 correct detection 
 
The system shows great robustness with respect to sea-ice 
features, a consistent problem for ship detection algorithms. 
This robustness is especially significant in ALOS-PALSAR 
data, which show lower clutter magnitude compared to the 
tested Radarsat-1 imagery. Especially beam seams or nadir 
echoes, whose sometimes spot-like pattern resemble the 
signature expected from ships, generate strong responses and 
false detections in the wavelet based detectors (Figures 10a, b). 
The example in Figure 10 shows that the subsequent object-AT 
detector is able to remove the spots caused by the beam seams 
by taking their spatial extent and their statistical significance 
into account (Figure 10c). Similar behavior can be observed for 
high-clutter features, as demonstrated by the example case in 
Figure 11, a Radarsat1 SNB-mode scene. Due to the 
comparatively high resolution of 25m and the lack of different 



 

looks, the clutter manifests in a coarse pattern. This creates 
blob-like features which do not become sufficiently suppressed 
by the wavelet pre-screener, what again makes the additional 
information provided by the object/AT analysis necessary for a 
confident decision In an entire WB1 image (100m resolution) of 
which more than 50% were covered with sea-ice, the system 
generated a mere of six non-land false alarms. All of these were 
not on the ice border, but on the main ice body itself.  
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Figure 10a Figure 10b Figure 10c 
Figure 10a: Single ship close to strong beam seam in Radarsat1 SWB mode image with resolution of 50m. 
Figure 10b: Wavelet pre-screening result of the scene, no threshold applied. The bright spots at the edge of the seam are strong enough
to generate responses comparable to the real ship both in amplitude and shape. 
Figure 10c: Remaining valid objects after the object-discrimination and AT detection. All beam seam responses have been correctly
classified as invalid targets. 
 

Figure 11a Figure 11b Figure 11c 
Figure 11a: Radarsat1 SNB mode image, 25m resolution. A group of ships in a coarse-clutter region. 
Figure 11b: Output of the pre-screener. The ships are enhanced, but also numerous smaller objects emerge from the clutter. 
Figure 11c: After the AT-stage has been applied to all objects, the final detection decision only only the ships remain in the binarized 
image. 
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