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ABSTRACT: 
 
In the field of GIS, it is frequently required to carry out projection transformation of massive raster maps or remote sensing images. 
In this paper, a method named multi-rank method is presented. It is able to achieve projection transformation with adjustable 
accuracy and speed. All the points in a map or image are divided into four ranks. Rank-4 points, which scatter in the map, are 
transformed by analytical solution. Rank-3 points are transformed by third-order polynomials, which employ rank-4 points as 
control points. Rank-2 points are transformed by second-order polynomials, which employ rank-3 points as control points. Rank-1 
points are transformed by first-order polynomials, which employ rank-2 points as control points. Accuracy and speed of 
transformation can be adjusted flexibly by choosing parameters of ranking. Experimental results show that the proposed method is 
able to get high accuracy with high speed. 
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1. INTRODUCTION 

 
In the past decades, the technologies of GIS and remote sensing 
developed rapidly. As a result, massive raster maps or image 
need to be managed and processed. For historical reasons, there 
are many kinds of coordinate systems of map projection, e.g. 
the Mercator projection, UTM projection and Gauss-Kruger 
projection. Different applications need different kinds of 
projection. Therefore, it’s frequently required to re-project 
massive raster data from one system to another, i.e. performing 
projection transformations. 
 
Presently, the most popular methods for projection 
transformation are analytical solution, numerical solution and 
analytical-numerical solution (Jiayao Wang, 2006). In 
analytical solution, the analytical equation between two systems 
must be known, and transformation is performed analytically. 
Numerical solution is usually employed when analytical 
equations are unknown; only very few common points should 
be known as control points, and polynomials are used to 
approximate analytical equations (Xiaohua Lu, 2002). 
Analytical-numerical solution is the simple combination of 
analytical solution and numerical solution; transformation 
between one planar system and geographical coordinate system 
is performed analytically, while that between the other planar 
system and geographical coordinate system is performed 
numerically. Usery et al. studied the extent of map projection 
and resampling effects on the tabulation of categorical areas by 
comparing the results of three datasets for seven common 
projections, and found significant problems in the 
implementation of global projection transformations in 
commercial software, as well as differences in areal accuracy 
across projections (Usery et al., 2003). El-Naghi Sayed et al. 
studied transformation from Lambert Conformal projection to 
Transverse Mercator projection and vice versa, without 
referring to a spheroid (El-Naghi and Habib, 2000). Ipbuker C. 

proposed an iterative approach for the inverse solution of the 
Winkel Tripel projection using partial derivatives (Ipbuker, 
2002). He and Bildirici, I. Oztug also presented an iteration 
algorithm to derive the inverse equations of the Winkel tripel 
projection, using the Newton-Raphson iteration method 
(Ipbuker and Bildirici, 2005). Qi Zhao et al. proposed an 
algorithm based on dual transformation; the algorithm not only 
gets good accuracy, but also improves transformation speed 
greatly (Qi et al., 2002). Bildirici, I. Oztug discussed two 
numerical methods for inverse transformation, in case the 
projection or projection parameters of the digitized paper map 
are not exactly known (Bildirici, 2003). 
 
The above methods solve the common issues of projection 
transformation, but there are still some problems. Analytical 
solution consumes too much time because analytical equations 
are usually complicated. Numerical solution also consumes 
much time when using high-order polynomials, and gets low 
accuracy when using low-order ones. Presently, there are 
usually massive raster data in GIS systems. Therefore, it’s a 
very important issue how to improve speed of transformation 
with acceptable accuracy. 
 
In order to solve the above problems, we propose the multi-rank 
method which combines analytical solution and numerical 
solution. In the method, all the points in a map or image are 
divided into four ranks by several parameters. Rank-4 points, 
which scatter in the map, are transformed by analytical solution. 
Points of rank-3, rank-2 and rank-1 are transformed using 
polynomials of third-order, second-order and first-order 
respectively; these polynomials are determined by control 
points from rank-4, rank-3 and rank-2 respectively. The 
proposed method provides different solutions for different ranks. 
Therefore, accuracy and speed of transformation can be 
adjusted flexibly by several parameters. 
 
 



 

2. THE PROPOSED METHOD 

 
The essential of projection transformation is to determine the 
functional relationship between two planar fields, i.e. convert 
coordinates from one projection system to another. An 
analytical equation can be presented as follows: 
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To begin with, we will provide a brief introduction on 
analytical solution and numerical solution, which are related to 
the proposed method. 
 
2.1 Analytical Solution 

Analytical solution is to perform transformation by analytical 
equations, which includes indirect solution and direct solution. 
Indirect solution uses geographical coordinate system as a 
bridge. Firstly, the geographical coordinate of a point is 
calculated from one of its planar coordinate. Then, the other 
planar coordinate is calculated from the geographical 
coordinate. That is: 
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Direct solution skips geographical coordinate; transformation is 
performed directly between one planar coordinate system and 
the other. That is: 
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2.2 Numerical Solution 

Numerical solution is usually employed in case analytical 
equations are unknown. Firstly, certain kind of polynomial is 
selected as the approximation of analytical equations between 
two systems. Then, a group of common points, ),( ii yx  and 

),( ii YX , are chosen from the two systems. Using these points 
as control points, necessary coefficients of the polynomial are 
figured out. The resulting polynomial is near to the analytical 
equation to some extent, although not exactly the same. 
 
The most popular polynomial in numerical solution is the nth-
order polynomial. That is: 
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Where, ijp  and ijq  is the coefficients, and nji ≤+ . 
 

2.3 Multi-rank Method 

Analytical solution can get high accuracy, but it usually needs 
large calculation effort because of complicated equations. 
Numerical solution has high speed, especially when using low-
order polynomials, but it gets greater errors than analytical 
solution. 
 
The proposed method divides all the points into four ranks. 
Rank-4 points, which scatter in the map, are transformed by 
analytical solution. Rank-3 points are transformed using third-
order polynomials, which are determined by control points from 
rank-4. Rank-2 points are transformed using second-order 
polynomials, which are determined by control points from rank-
3. Rank-1 points are transformed using first-order polynomials, 
which are determined by control points from rank-2. 
 
The detailed procedure of the method is as follows: 
 
1. Divide the total map into blocks of 44 4*4 SS , which are 
called rank-4 blocks. Choose 16 points from every block as 
rank-4 points, and transform them by analytical solution. After 
that, use these points to determine the third-order polynomial 
corresponding to each rank-4 block. 
 
2. Divide the total map into blocks of 33 3*3 SS , which are 
called rank-3 blocks. Choose 9 points from every block as rank-
3 points, and transform each of them using a third-order 
polynomial; the polynomial is corresponding to the rank-4 
block that covers the rank-3 point. If a rank-3 point is also a 
higher rank point, i.e. rank-4 point, it should not be transform 
again. After that, use these points to determine the second-order 
polynomial corresponding to each rank-3 block. 
 
3. Divide the total map into blocks of 22 2*2 SS , which are 
called rank-2 blocks. Choose 4 points from every block as rank-
2 points, and transform each of them using a second-order 
polynomial; the polynomial is corresponding to the rank-3 
block that covers the rank-2 point. If a rank-2 point is also a 
higher rank point, i.e. rank-4 point or rank-3 point, it should not 
be transform again. After that, use these points to determine the 
first-order polynomial corresponding to each rank-2 block. 
 
4. All the rest of the points are called rank-1 points. Transform 
each of them using a first-order polynomial; the polynomial is 
corresponding to the rank-2 block that covers the rank-1 point. 
If a rank-1 point is also a higher rank point, i.e. rank-4 point, 
rank-3 point or rank-2 point, it should not be transform again. 
 
Choose suitable parameters that fulfill 1234 >>> SSS . If 
higher rank blocks cover lower ones exactly, implementation 
will be easier. In that case, 34 34 SIS ⋅=  and 23 23 SJS ⋅=  
where NJI ∈, . 
 
 

3. EXPERIMENT AND ANALYSIS 

 
In order to test the accuracy and speed of the proposed method, 
we implement it using Matlab7.0. As the task is to transform all 
the points from one coordinate system to another, no actual 
coordinates are needed; what must be done is to step through 
the total map. Our concern is mainly on massive raster image, 
therefore, it was assumed that the global image is GG×  in 



 

pixel, where G  equals 4000000; that is about 10 meters per 
pixel. It takes too much time to transform so many points. 
Therefore, we chose five representative areas, which are shown 
in Figure 1. Where, the white square represents the global 
image. The gray small squares represent the chosen area. Each 
square is of size RR× , where R  equals 1152. 
 

 
Figure 1. Locations of five representative areas. 

 
Transformation is performed from planar coordinate system to 
UTM  coordinate system. Firstly, the analytical equation from 
planar coordinate ( )vu,  to geographical coordinate ( )bl,  is: 
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Given that the origin latitude is 0 and the origin longitude is 0l . 
So that the analytical equation from geographical coordinate 
( )bl,  to UTM  coordinate ( )YX ,  is: 
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Where, FE  equals 500000, in meter; FN  is 0 in the Northern 
Hemisphere and 10000000 in the Southern Hemisphere, in 
meter; 0k  equals 0.9996. The rest are: 
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Where, α , β , e , 'e  are the parameters of Earth ellipsoid. 
That is: 
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We chose the parameters as: kS ⋅= 364 , kS ⋅=123 , kS ⋅= 62 ; 

8,4,2,1=k , so that the performance of the proposed method can 
be tested under four different configurations. Points of all ranks 
are chosen by the following formulas, so that they scatter in 
their area and are not too regular. 
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Where, ( )44 ,vu , ( )33,vu  and ( )22 ,vu  are the coordinates of 
points of rank-4, rank-3 and rank-2, respectively. 
 
Analytical solution and numerical solution (using first-order 
polynomial) are taken as comparison. The former transforms all 
the points by analytical equations. The latter chooses the four 



 

corner points of each area as control points; after a first-order 
polynomial is determined, all the other points in the image are 
transformed by it. Experimental results of area 1 to 5 are shown 
in Table 1-5, where time consumption (denoted as TC, in 
second) is of all the points in an area. The definition of error is: 
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Where, ),( jif  is the result of analytical solution, ),( jig  is the 
result of multi-rank method or numerical solution. 
 
 

Table 1. Result of area 1 
error of multi-rank method error of numerical methodk TC of 

analytical 
solution 

TC of 
multi-rank 

method 

TC of 
numerical 
solution 

u v u v 

1 87.5156 22.0469 16.9219 1.18×10-6 9.56×10-5 0.0011 0.6546 
2 87.5000 20.0000 16.7031 2.52×10-6 3.95×10-4 0.0011 0.6546 
4 87.6406 19.4063 16.7969 4.07×10-6 0.0016 0.0011 0.6546 

8 87.5469 19.2656 16.8125 1.53×10-5 0.0064 0.0011 0.6546 
 

Table 2. Result of area 2 
error of multi-rank method error of numerical methodk TC of 

analytical 
solution 

TC of 
multi-rank 

method 

TC of 
numerical 
solution 

u v u v 

1 88.0781 21.9844 16.7188 0.1982 0.7334 22.9536 30.3602 
2 88.4531 20.0938 16.7969 0.2011 0.7345 22.9536 30.3602 
4 89.0000 19.4063 16.8281 0.2190 0.7451 22.9536 30.3602 

8 88.4219 19.2500 16.7813 0.3271 0.8284 22.9536 30.3602 
 

Table 3. Result of area 3 
error of multi-rank method error of numerical methodk TC of 

analytical 
solution 

TC of 
multi-rank 

method 

TC of 
numerical 
solution 

u v u v 

1 88.9375 22.0156 16.7500 0.0207 0.0050 19.1116 44.8892 
2 89.1719 20.0469 16.7500 0.0257 0.0188 19.1116 44.8892 
4 88.9219 19.4375 16.7813 0.0538 0.0763 19.1116 44.8892 

8 88.8906 19.2813 16.7344 0.1890 0.3103 19.1116 44.8892 
 

Table 4. Result of area 4 
error of multi-rank method error of numerical methodk TC of 

analytical 
solution 

TC of 
multi-rank 

method 

TC of 
numerical 
solution 

u v u v 

1 89.0469 22.1094 16.8594 1.25×10-6 9.54×10-5 0.0011 0.6546 
2 89.3906 19.9844 16.8281 2.17×10-6 3.95×10-4 0.0011 0.6546 
4 89.4063 19.3906 16.9063 3.99×10-6 0.0016 0.0011 0.6546 

8 88.1563 19.2969 16.7813 1.53×10-5 0.0064 0.0011 0.6546 
 

Table 5. Result of area 5 
error of multi-rank method error of numerical methodk TC of 

analytical 
solution 

TC of 
multi-rank 

method 

TC of 
numerical 
solution 

u v u v 

1 90.2813 21.9844 16.8594 0.1982 0.7335 22.9536 30.3602 
2 90.0000 20.0469 16.7188 0.2011 0.7345 22.9536 30.3602 
4 90.2813 19.5000 16.8750 0.2191 0.7453 22.9536 30.3602 

8 89.8438 19.2500 16.8125 0.3277 0.8299 22.9536 30.3602 
 
As shown by the results, the errors of the proposed method are 
far less than those of numerical solution; its time consumption 
is also much less than that of analytical solution, and them are 
near to those of numerical solution; furthermore, the greater the 
value of k , the less the time consumption. By choosing k  (or 

234 ,, SSS ) properly, accuracy and speed of transformation can 
be adjusted flexibly, so as to meet the needs of various 
applications. In fact, analytical solution and numerical solution 
can be treated as special cases of multi-rank method. 
 



 

 
4. CONCLUSION AND DISCUSSION 

 
In this paper, a method, named multi-rank method, is presented 
for projection transformation of massive maps or images. The 
method has adjustable accuracy and speed of processing. It 
combines existing analytical solution and numerical solution. 
Points in a map are divided into four ranks, and different 
approaches are adopted for them. By choosing suitable 
parameters, accuracy and speed can be adjusted flexibly. 
Experimental results show that the proposed method can 
achieve rather high accuracy with little time consumption. The 
method can be applied in many fields such as GIS, remote 
sensing, etc. 
 
The distribution of control points affects the accuracy of 
polynomial coefficients to some extent. What was adopted in 
this study is not necessarily the optimal distribution. In the 
future, some work should be done to study how accuracy 
changes with the distribution of control points, and then find the 
optimal strategy to choose control points, so as to further 
improve accuracy. 
 
 

ACKNOWLEDGEMENTS 

The authors thank Dr. Tao Pei for his kind help on preparation 
of manuscript. 
 
 

REFERENCES 

 
Jiayao Wang, Qun Sun, Guangxia Wang, Nan Jiang, Xiaohua 
Lu, 2006. Principles and Methods in Cartology. Science 
Publishing House, Beijing. 
 
Xiaohua Lu and Honglin Liu, 2002. A Comprehensive 
Appraisal of Numerical Transformation Method for Map 
Projection. Journal of Institute of Surveying and Mapping, 19 
(2), pp. 150-153. 
 
Usery, E. L., et al., 2003. Projecting global datasets to achieve 
equal areas. Cartography and Geographic Information Science, 
30, pp. 69-79. 
 
El-Naghi, S., and M. I. Habib, 2000. On the transformation of 
Lambert and Transverse Mercator projections. AEJ - 
Alexandria Engineering Journal, 39 (1), pp. 177-184. 
 
Ipbuker, C., 2002. An inverse solution to the Winkel Tripel 
projection using partial derivatives. Cartography and 
Geographic Information Science, 29 (1), pp. 6. 
 
Ipbuker, C., and I. O. Bildirici, 2005. Computer program for the 
inverse transformation of the Winkel projection. Journal of 
Surveying Engineering, 131 (4), pp. 125-129. 
 
Qi, Z., D. Miyi, Y. Chang, and Q. Changgui, 2002. Study on 
the rapid algorithm of raster map projection transformation. 
Proceedings of SPIE, 4875, pp. 154-159. 
 
Bildirici, I. O., 2003. Numerical inverse transformation for map 
projections. Computers and Geosciences, 29 (8), pp. 1003-1011. 
 

 


