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ABSTRACT: 
The usefulness and acceptance of geoinformation systems (GIS) mainly depend on the quality of the underlying geodata. The aim of 
this paper is to introduce an approach for the verification of cropland and grassland objects in a GIS. The approach compares the 
GIS objects with data derived from high resolution remote sensing imagery using image analysis techniques. Textural, structural, 
and radiometric features are assessed in order to check whether a cropland or grassland object in the GIS is correct or not. The 
approach is presented in detail, and examples are given for various stages of the method. Both the potential and the limitations of the 
system are also discussed. 
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1. INTRODUCTION 

As a consequence of the wide-spread application of digital geo-
data in GeoInformation Systems (GIS), quality control has 
become increasingly important. A high degree of automation is 
required in order to make quality control efficient enough for 
practical application. This goal can be achieved by automatic 
image analysis techniques. An example for how this can be 
achieved in the context of quality control of GIS objects 
corresponding to cropland and grassland is given in this paper. 
 
The basic methodology to represent the real world in a 
geoinformation system (GIS) is to define objects using a data 
model (e.g. a feature type catalogue) which defines objects to 
be contained, as well as their properties and structure. In DIN 
EN ISO 8402 (1995) Quality is defined as the “Totality of 
characteristics of an entity that bear on its ability to satisfy 
stated and implied needs”. Hence, firstly the data model must 
represent the real world with sufficient detail and without any 
contradictions (quality of the model). Secondly, the data must 
conform to their specification (quality of the data). This paper 
will focus on the quality of the data, especially the verification 
as a part of quality management and as a basis for updates. 
There are four important quality measures for the quality 
control of geodata: consistency, completeness, correctness, and 
accuracy. Only the consistency can be checked without any 
comparison of the data to the real world. All the other quality 
measures can be derived by comparing the GIS data to the real 
world as it is represented in remotely sensed data, specifically 
in aerial or satellite images. This paper is focused on the quality 
measures that can be derived from 1 m pan-sharpened 
multispectral IKONOS images. These images are used to check 
the quality of cropland and grassland objects in the German 
Authoritative Topographic Cartographic Information System 
(Amtlich-topographisch-kartographisches Informationssystem; 
ATKIS). In Section 2, related work is presented. Afterwards, 
our approach is introduced in Section 3. First results are 
presented in Section 4. The paper concludes with a discussion 
about the potential and the limits of this approach.  
 

2. RELATED WORK 

In this section we briefly review approaches for extracting 
different vegetation types based on textural, radiometric and 

structural features using high resolution imagery. Papers 
dealing with the extraction of agricultural areas by means of 
structural features are mostly focused on the extraction of 
vineyards, orchards, or plantations. However, the structural 
characteristics exploited for the extraction of these objects also 
occur in cropland, namely straight parallel lines. In the case of 
cropland, these lines are visible structures caused by tilling. The 
spectrum of the techniques used in this context is wide and 
includes Hough (Ruiz et al., 2007), Fourier (Chanussot et al., 
2005; Ruiz et al., 2007 and Wassenaar et al., 2002) and Radon 
transforms (Chanussot et al., 2005), Gabor filtering (Delenne et 
al., 2008), variograms (Trias-Sanz, 2006 and Ruiz et al., 2007), 
and autocorrelation (Warner and Steinmaus, 2005). 
 

Autocorrelation is used by Warner and Steinmaus (2005), who 
identify orchards and vineyards in IKONOS panchromatic 
imagery. After the definition of a square kernel and the 
radiometric normalization of each pixel of this kernel the 
autocorrelation for the cardinal directions and both diagonals is 
determined, which results in one autocorrelogram per direction. 
An orchard pixel is detected if an orchard pattern is identified in 
more than one autocorrelogram centred on that pixel. For this 
method to work, the rows of plants have to be approximately 
equally spaced. A similar assumption is made in (Chanussot et 
al., 2005), who estimate the orientation of vineyard rows 
automatically from aerial images by using the Fourier spectrum 
of a pre-processed image and its Radon transform. This 
assumption is usually satisfied for vineyards, but not 
necessarily for cropland. In cropland the distance between 
furrows can vary from one field to the next, depending on the 
type of crop planted in the field, on the kind of machine used 
for tilling, and on the visibility of the structures in the image of 
one field.  
 
Another method for the classification of various types of 
vegetation distinguished by their spatial patterns in aerial 
images is presented by Delenne et al. (2008). They use a 
frequency analysis to estimate the row width and orientation 
and to detect the boundaries of vineyards. After preprocessing, 
which includes the calculation of the Normalised Difference 
Vegetation Index (NDVI) and a normalization of the images, 
Gabor filtering is used to detect the orientation parameters 
iteratively. Limitations of this approach are that the number of 
iterations is not predictable, the image size is limited to 
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500 x 500 pixels (tiling is necessary). The method only gives 
reliable results for fields larger than 200 m2. As mentioned 
above, the assumption of approximately equally spaced rows is 
usually satisfied for vineyards, but not necessarily for cropland. 
 

The idea to use structural features is also pursued in (Trias-
Sanz, 2006), who uses structural properties to discriminate 
objects with similar radiometric and textural properties (e.g. 
forest and plantation). These object classes can be distinguished 
only by orientation characteristics. For instance, forest and 
untilled fields have no main structure direction, whereas tilled 
fields have one, and orchards and vineyard have two. All 
computations are carried out within a pre-selected window 
called texton, whose shape and size can be arbitrary. The 
starting point is the calculation of a variogram, which is similar 
to autocorrelation. After the transformation of the variogram 
into a parameter space similar to a Hough space, a histogram 
which shows the occurrence of a direction in this space is 
derived. The maximum of this histogram corresponds to the 
primary direction in image space. A disadvantage of this 
approach is that the appearance of the structural features such as 
cultivation structures and field crop has to be homogeneous. 
Therefore, LeBris and Boldo (2007) first use a segmentation to 
extract homogenous regions before applying the algorithm of 
Trias-Sanz (2006). However, the approach of Trias-Sanz (2006) 
can be used to discriminate a large number of object classes by 
properly choosing the texton, but can give wrong results if the 
texton parameters are selected inappropriately. In contrast, we 
focus on the discrimination of only two object classes using 
structural information (grassland and cropland). 
 
Ruiz et al. (2007) carry out a combined analysis of a semi-
variogram, a Hough transformation, a histogram of distances, 
and a Fourier transformation to detect olive trees, citrus 
orchards, forest and shrubs using images of 0.50 m spatial 
resolution. As with (Trias-Sanz, 2006), the result of the semi-
variogram strongly depends on the choice of the texton. In 
addition, spectral and textural features are used for the final 
assessment. The spectral features mainly consist of the mean 
value of the near infrared (NIR) channel, the NDVI, and their 
standard deviations; textural features are determined from the 
grey level co-occurrence matrix. The final decision is based on 
a decision tree. Results are presented for a test site in Spain.  
 

Prior knowledge in the form of a GIS is combined with a digital 
terrain model (DTM) and images with a spatial resolution of 
0.25 m by Wassenaar et al. (2002), who detect orchards and 
different kinds of vineyards (Wire-trained and Goblet) using a 
Fast Fourier Transformation. Due to specific knowledge about 
the distances between vine rows the space in the Fourier space 
can be reduced to find the unknown parameters. However, the 
variations in cropland are too wide to make similar assumptions 
about the spacing of the individual rows. 
 

The distances between vine plants and the distances between 
the rows were also considered to be known by Hall et al. 
(2003), who also work with a spatial resolution of 0.25 m. First, 
spectral information, namely the NDVI, is used to separate 
plants and bare soil. Afterwards, the orientation of the rows is 
calculated. It has to be noted that a differentiation between 
plants and soil in cropland is not possible using a spatial 
resolution of 1 m.  
 
In the approaches discussed up to now, radiometric features 
were combined with structural features. Itzerott and Kaden 
(2006, 2007) only use radiometric features to discriminate 
various farmland types. Analysing typical crops and grassland 

in the German federal state of Brandenburg, they could show 
that grassland possesses an NDVI that is significantly greater 
than zero in all seasons, whereas untilled cropland has a very 
low NDVI which is thus significantly different from the NDVI 
of grassland. A differentiation between agricultural classes like 
grassland and cropland or forest and orchards only on the basis 
of structural or textural features in monotemporal imagery 
seems to be impossible (Trias-Sanz, 2006), (Wassenaar et al., 
2002). However, textural and radiometric features can rule out 
specific classes in the classification process. Therefore, they 
give helpful hints for the classification of agriculture classes. 
 
The literature review shows that some work on the 
classification of farmland types using the results of a textural 
analysis and structural as radiometric features has been done. 
Our approach differs from these approaches by the way the 
textural analysis is carried out and by the definition of the 
structural features. Furthermore, the fact that our approach is 
embedded in a system for the verification of GIS objects has 
some implications for the strategy used for classification. For 
instance, whereas the boundaries of the GIS object are already 
provided by the GIS, the class definitions allow for small 
objects of a different class being merged with a larger object, 
which has to be taken into account by the verification process. 
The parameters have to be adapted to the quality requirements 
of the GIS: an undetected false classification in the GIS is 
penalized higher than a correct classification erroneously 
highlighted as false.  
 
 

3. APPROACH 

3.1 Overview 

The goal of our approach is the verification of cropland and 
grassland objects of the GIS-system ATKIS using 1 m pan-
sharpened multispectral IKONOS images. The images are 
orthorectified before processing starts. The verification is based 
on the results of a textural analysis and on structural and 
radiometric features. These features are jointly analysed in 
order to achieve a final assessment of each object according 
whether it conforms to the definition of its class in ATKIS or 
not. . 
 

In this context, the different feature types distinguish different 
classes of objects. The textural features used by our approach 
can be used to separate a combined class ‘agriculture’, which 
comprises both cropland and grassland objects, from other 
classes such as ‘settlement’ or ‘forest’. A differentiation 
between grassland and cropland using the textural analysis is 
not possible due to the similar texture characteristic of these 
classes. On the other hand, the structural and radiometric 
features are used to distinguish only between cropland and 
grassland. Figure 1 shows our model for the classification of 
agricultural objects as a semantic network (Pakzad, 2001). The 
first level of the model describes the class agriculture in the 
Real World which can contain cropland and grassland objects. 
Cropland in turn may be tilled or untilled, with important 
implications for the appearance of such an object in the data. 
The second level, Geometry/Material, describes the geometrical 
and radiometric characteristics of the objects. Finally, the 
Imagery level describes how these characteristics translate into 
the appearance of the objects in the image. The structural 
analysis looks for evidence in the form of parallel lines in the 
image, whereas the radiometric analysis uses the NDVI.  
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Figure 1. Model for the discrimination of cropland and 

grassland. 
 

The work flow for our method starts with the definition of 
training areas for classes such as ‘agriculture’, ‘settlement’, or 
‘forest’. Based on these training areas, a classification of the 
whole image based on a textural analysis is carried out. This 
classification is carried out for the whole scene before the actual 
verification procedure starts. The verification process itself is 
carried out separately for each agricultural object in ATKIS, i.e. 
for each object classified either as ‘cropland’ or as ‘grassland’. 
The classification results obtained for the whole scene will be 
accessed in the verification process of each individual object.  
 
In the process of the verification of an individual object, the 
object’s boundary polygon is used to limit the analysis to areas 
inside the object. After that, the object has to be split into 
homogeneous areas by a segmentation procedure. These 
homogeneous areas are considered to be units having the same 
land use, and they are classified separately based on the results 
of the textural classification and on structural and radiometric 
features. In this procedure, the segment can be assigned to the 
classes ‘cropland’, ‘grassland’, or ‘other’. Finally, the whole 
agricultural object is assessed by merging the results of the 
individual classification results of all of its units. This overall 
assessment has to take into account the sizes of the individual 
segments. It is not necessary that each of the segments belongs 
to the class of the whole object. For instance, the definition of 
class ‘cropland’ in ATKIS allows for small ‘grassland’ units 
being merged with a larger cropland object (Adv, 2009).  
 
Our approach is still work in progress. It is implemented in the 
knowledge-based image interpretation system GeoAIDA 
(Bückner et al, 2002). Its main components and their current 
implementation state are described in the subsequent sections.  
 

3.2 Methods 

3.2.1 Textural Analysis: The textural analysis is done using a 
supervised classification algorithm based on Markov random 
fields in combination with Gibbs potentials (Gimel’farb, 1996). 
It has been extended to simultaneously handle textures at 
different scales. By using manually created trainings regions the 
optimal Gibbs-potentials are learnt by applying a maximum 
likelihood estimation. Then, the classification and labelling of 
the image consist in finding piecewise homogenous regions 
using a maximum a posteriori (MAP) criterion. Simulated 
annealing is used to determine the class of maximum 
probability (Gimel’farb, 1996). 
 

For the classification process, the algorithm needs to learn the 
properties of the classes from training regions. The classes to be 
discerned in this context depend on the scene which is to be 
processed. Characteristic classes for a rural area are 

‘agriculture’, ‘settlement’ and ‘forest’. It is not necessary to 
train the operator for each image, because the trained 
parameters can be applied to an entire set of images having 
similar properties. This step is assisted by a human operator, 
who manually defines and classifies training regions for the 
desired classes. The results of the training are used during the 
classification process.  
 

Busch et al. (2004) have shown that this algorithm is suitable 
for the classification of high resolution satellite orthophotos 
(IKONOS). However, the classes of interest for our approach, 
cropland and grassland, cannot be distinguished, because they 
have similar texture. Thus, we determine a combined class 
called ‘agriculture’ and use other features to further distinguish 
cropland and grassland. The classification has been shown to 
give best results if the near infrared, red, and green bands of a 
multispectral image are used. 
 

3.2.2 Segmentation: Segmentation is necessary due to the fact 
that in ATKIS one agricultural object may consist of different 
units. For instance, a cropland object may consist of fields 
covered by different crops. The generalisation of ATKIS 
cropland objects even allows that within such an object, there 
may be small areas having another land use as long as they do 
not exceeded a certain size. For instance, there may be a small 
patch of grassland within a larger cropland object. This results 
in several problems for the structural verification of cropland 
objects. Firstly, different fields belonging to the same GIS 
object may show different tilling directions. Secondly, the 
borders between the individual fields may interfere with the 
tilling structures. Thirdly, small objects of another class may 
have completely different radiometric and structural 
characteristics. This is why segmentation is necessary to 
subdivide the original GIS objects into radiometrically 
homogeneous regions (sub-objects). 
 
The algorithm starts with a watershed segmentation (Gonzalez 
and Woods, 2002) that achieves a strong over-segmentation of 
the image. For the merging process a Region Adjacency Graph 
(RAG) is generated; the nodes of the RAG are the homogeneous 
segments whereas its edges represent the neighbourhood 
relations. When the RAG is constructed, the attributes of both 
its nodes (the segments) and its edges are determined. The 
geometric attributes of a segment comprise its area and its 
centre of gravity, whereas its radiometric attributes consist of 
the mean grey level vector, the covariance matrix of the grey 
levels, and an overall measure of the noise level inside the 
segment. The only attribute of an edge in the RAG is the edge’s 
strength that measures the degree to which the boundary 
between the two neighbouring segments corresponds to a grey 
level edge or not.  
 

The goal of the segmentation process is to merge regions that 
have similar radiometric properties and noise levels, but that are 
not separated by a significant edge. Hence, we use three criteria 
for merging similar segments. Two adjacent regions are 
merged, if the two mean grey level vectors are similar (more 
specifically: the difference between the two grey level vectors 
is statistically significant given the grey level covariance 
matrices), if the level of noise of the segments is similar, and if 
there is no significant grey level edge between the segments. If 
all criteria are fulfilled, these segments are merged, including 
the boundary pixels that formerly separated them, and the RAG 
is updated. This analysis is repeated iteratively until no more 
segments can be merged. The merging order is given by the 
degree of similarity between the mean grey level vectors. The 

http://dict.leo.org/ende?lp=ende&p=thMx..&search=criteria


 

algorithm is outlined in Figure 2. More details can be found in 
(Helmholz et al., 2008). 
 

 
Figure 2. Segmentation of objects into radiometrically 

homogeneous regions. 
 

3.2.3 Structural Analysis: The goal of this step is the 
differentiation of cropland and grassland in the segments of the 
ATKIS objects in the agriculture class using characteristic 
structural information. A main differentiation between 
grassland and cropland is the exploitation of structures caused 
by the cultivation, which is conducted more frequently in crop 
fields, compared to grassland. The agricultural machines 
normally cause parallel straight lines which are observable in 
the image.  
 
Our approach for the detection of parallel straight lines is 
divided into three steps: we detect edges using the Canny 
operator (Canny, 1986) which then are transformed into Hough 
space, and finally the orientation is estimated. An overview is 
given in Figure 3. 
 

 
Figure 3. Steps of the structural analysis. 

 
The edge image is transformed into a parameter space (Hough 
space), where an accumulator is defined. The line parameters in 
image space are the angle φ between the normal vector of the 
line and the x-axis and the distance r of the line from the origin. 
These parameters define the Hough space. Thus, parallel lines 
are mapped into points vertically above each other, assuming 
the parameter φ is mapped to the horizontal axis in Hough 
space. By extracting these points of interest (POI in Figure 3) in 
Hough space we focus on salient lines in image space.  
 

In the next step, a histogram of the extracted points along the φ–
axis in Hough space is derived. A Gaussian curve is to the 
histogram, and the resulting standard derivation σ is checked. 
For cropland, we assume parallel straight lines caused by 
tilling. That is, the standard deviation σ of the orientation 
angles must be low. It thus is compared to a pre-defined 
threshold σmax. If σ > σmax, the segment is assumed to 
correspond to grassland.  
 

This procedure fails if line structures caused by cultivation are 
not observable (e.g. maize close to harvest, untilled crop fields), 
if lines in crop fields are not straight respectively parallel to 

each other (e.g. on hillsides), if grassland possesses parallel 
lines (e.g.mowed grassland), and at a specific point in time 
when the crop looks like green grass and structures are not 
visible. The first three problems may be corrected by 
radiometric features, though the differentiation between 
cropland and mowed grass may be difficult if the mowed grass 
(which is no longer vivid) covers the ground so densely that its 
spectral signature is close to bare soil. The time when the crop 
looks like grass (shortly after gestation) has to be avoided.   
 

3.2.4 Radiometric Analysis: As stated above it is sometimes 
impossible to differentiate between cropland and grassland 
solely by means of structural features. For instance, untilled 
cropland shows no structural features in the image resolution 
we are dealing with (1 m). The verification method used in our 
work is to be expanded by using the NDVI: untilled cropland 
has a low NDVI, whereas the NDVI of grassland and tilled 
cropland is usually rather high (Itzerott & Kaden, 2006, 2007). 
Therefore, if we detect no vegetation, grassland can be ruled 
out. An example is given in Figure 4 where the range of the 
NDVI was scaled to the interval [0,255]. 
 

 

 
Figure 4. RGB-image (top) and NDVI-images (below) of a 

tilled cropland field (left), an untilled cropland field 
(middle) and a field with dead vegetation (right) 

 
There are different ways to use the NDVI for differentiating 
cropland and grassland. If no prior information about the NDVI 
is available, supervised training can be applied. In a given 
scene, sample areas of cropland and grassland have to be 
selected, and the mean value and the standard deviation of the 
NDVI for both classes has to be computed from these regions. 
If the mean values are significantly different from each other, 
the NDVI can be used for the segmentation. Otherwise, the 
classes are not separable using the NDVI. 
 

If prior knowledge is available, it is possible to differentiate the 
tow classes using an unsupervised classification. Prior 
knowledge is the date and time when the image was taken, and 
NDVI tables such as those published in (Itzerott and Kaden, 
2006, 2007). The advantage of such an approach is that no 
training is required, but on the other hand, it may be sensitive to 
variations in the growing period. Detailed studies have to be 
carried out in the future. 
 

3.3 Classification 

As pointed out in Section 3.1, there are two assessments that 
have to be carried out in order to verify an agricultural object in 
ATKIS. First, each of the segments representing a unit of the 
object has to be classified, and secondly, the classification 
results of the individual segments have to be combined for the 
verification of the whole object  
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3.3.1 Classification of the segments: The classification of a 
segment is done by combining the results of the textural, 
radiometric and structural analysis for this individual segment. 
The classification is based on a hierarchical set of rules that are 
applied to the segment. Firstly, if the majority of the pixels 
belonging to a segment were assigned to another class than 
‘agricultural’ in the textural analysis or if the segment contains 
at least one larger contiguous group of pixels assigned to 
another class, the segment is classified as being neither 
cropland nor grassland (class ‘other’). If a segment has been 
found to correspond to the ‘agricultural’ class, the structural 
analysis is used to determine whether the segment has a 
dominant tilling direction. In this case, the segment is assigned 
to the class ‘cropland’. Otherwise, the NDVI is used to 
differentiate between ‘cropland’ and ‘grassland’. As an 
alternative to such a rule-based technique, other methods that 
simultaneously evaluate the evidence provided by the features 
will be investigated in the future.  
 

3.3.2 Assessment of the object: The classification of the object 
is done by merging the results of the classification of all 
segments of this object where we have to take into account 
special characteristics of the used GIS ATKIS which were 
described before in section 3.2.2. (segmentation). The 
specifications can be implemented using an evaluation 
catalogue that was designed by use of the ATKIS catalogue and 
with use of the experience of human operators. Therefore, the 
final classification decision is based on the definition in the 
ATKIS objects catalogue.  
 

4. EXAMPLES 

In this section, we want to present examples for the algorithms 
implemented so far. Note that the radiometric analysis is still 
work in progress. The examples are presented for two IKONOS 
scenes. The first scene was acquired on June-18, 2005 in the 
area of Halberstadt, Germany (Figure 5). The second scene was 
acquired on June-24, 2003 in the area of Weiterstadt, Germany 
(Figure 6). Firstly, texture analysis was applied on the entire 
images using the classification classes ‘agricultural’, 
‘settlement’ and ‘forest’. The results for Halberstadt and 
Weiterstadt are shown in Figures 7 and 8, respectively.  
 

For the presentation of the results of the segmentation and 
structural analysis we will focus on the objects highlighted in 
cyan in Figure 5 and 6. Figure 9 shows the segmentation results 
superimposed to the image (left), and the structural analysis of 
each segment (right) for the object in Halberstadt. Figure 10 
shows the image (left), the segmentation results (centre), and 
the structural analysis (left) for the object in Weiterstadt. In 
both cases, all segments were classified as ‘agricultural’ by the 
textural analysis. In Halberstadt (Figure 9), the two main 
segments correspond to the two management units, and both 
were classified as cropland by the structural analysis. Therefore, 
the entire object was verified as a cropland object. In 
Weiterstadt, two of the management units were merged (blue 
segment in Figure 10), but all the others were correctly 
separated. In any case, the structural analysis could classify all 
segments as cropland, so that the entire was verified as a 
cropland object. 
 

 
Figure 5. RGB-IKONOS image from Halberstadt with ATKIS 

superimposed to it (red: settlement, green: cropland, 
blue: grassland, yellow: forest). 

 

 
Figure 6. RGB-IKONOS image Weiterstadt with ATKIS 

superimposed to it (red: settlement, green: cropland, 
blue: grassland, yellow: forest). 

 

 
Figure 7. Results of the textural analysis for Halberstadt (green: 

agricultural, red: settlement, yellow: forest). 



 

 
 

Figure 8. Results of the textural analysis for Weiterstadt 
(green: agricultural, red: settlement, yellow: forest). 

 

 

Figure 9:  Cropland object with segmentation result (left) and 
the result of the structural analysis (right).  

 

   
 

Figure 10: Cropland object with segmentation result (left) and 
the result of the structural analysis (right) 

 
5. CONCLUSIONS AND OUTLOOK 

In this paper, a method for the verification of cropland and 
grassland objects in a GIS has been presented. Each GIS object 
is verified individually, taking into account the results of a 
texture-based classification as well as structural and radiometric 
features. For the structural analysis to work, but also due to the 
class definitions used by the GIS, the object has to be 
segmented into homogeneous segments first. Each segment is 

classified individually, and the classification results for the 
individual segments are combined for the overall verification of 
the object. Currently, a rule-based algorithm is used for 
classification, but in the future other classification methods that 
evaluate all features simultaneously will be investigated. The 
presented method is still work in progress, because the 
radiometric analysis has not been implemented so far. The 
examples presented in this paper still show the potential of this 
approach, but an extensive evaluation still remains to be done. 
 

We will also have to investigate whether the introduced 
approach is also suitable for an update of the GIS. In this 
context, the method would also have to detect new cropland or 
grassland objects, not only check the classification of such an 
object in the GIS. The detection of new objects works in a 
similar way as the verification of existing ones. The only 
difference is that, rather than existing GIS objects, contiguous 
segments of ‘agricultural’ objects extracted in the textural 
analysis would have to be used as candidate regions to be 
verified using structural and radiometric features. 
 
We also hope to be able to detect other object classes with 
similar features such as vineyards and plantations. However, in 
this case, the image resolution would have to be adapted for the 
structural analysis, because the rows of plants only appear as 
parallel lines at a coarser resolution than 1 m. This future 
research would also have to determine the optimal scale for 
each object class. 
 
Furthermore, there is still room for improvement of the 
individual components of the approach, for instance the 
analysis of the histogram in the structural analysis or the 
automatic training of the parameters for the segmentation.  
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