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ABSTRACT: 
 
In recent years, 3D models have been created of many cities around the world. Most of these models are, however, only used for 
visualization in web frontends or navigation systems. With the rapid progress in the development of sensor systems and algorithms 
for the interpretation of their measurements, an increasing number of more and more detailed models is going to be available. Such 
detailed models can, however, not be used directly in many applications because the data sets are too large or because there is 
information in the model that cannot be handled by the application. The purpose of generalization is therefore to reduce the size and 
semantic complexity of a model to a level that can be handled by the application without losing relevant information. In order to 
implement such a highly application-dependent task as a generic service, it is divided into atomic modules. Generalization requires 
information about the objects and their context they are embedded in. Thus the features present in the data have to be revealed first, 
before generalization can be applied. Thus, especially with a stronger separation of generalization and feature extraction steps, such 
a modularization offers great potential for the reusability of components and flexibility in the integration of application-specific 
components. 
 

1. INTRODUCTION 

3D city models are used in a growing number of domains. 
While the purpose of these models was first mostly 
visualization, the scope of applications has widened, and city 
models form the basis for an increasing range of calculations 
for simulation and analysis. 
In order to avoid having to start a complete new data 
acquisition for each new application, it is sensible to try to reuse 
models created in earlier projects. Especially with the more and 
more detailed models that are going to be created in the near 
future, a growing need is going to arise for the generalization of 
such models because many application scenarios – especially if 
complex computations are necessary – cannot handle the 
amount and semantic complexity of the data in the model. 
Many applications will, for example, have problems dealing 
with building models in which walls are modeled by interior 
and exterior surfaces or with decorations modeled in greater 
detail. These are not only problems of size but also of semantic 
complexity since even if the data set was small enough for the 
calculation, it would not work because of the presence of 
unexpected features in the model.  
The purpose of generalization is therefore to reduce the size and 
semantic complexity of a model without losing information that 
is relevant for the application.  
The concept of relevance being inherently a semantic one, 
semantic criteria play an important part in the problem of 
generalization. This dependence on detailed semantic 
information is the cause for the mixture between feature 
extraction (structure recognition) and generalization that can be 
identified in many generalization approaches. In this scope, the 
term semantics refers to the type and application-specific data 
fields associated with a feature. 
One of the main challenges in the development of a generic 
service for generalization is that the concept of relevance and 
therefore the whole process of generalization strongly depends 
on the application.  In order to meet this challenge, the our 
concept of the service is implemented in the form of a 

framework with different options for customization. In order to 
spare the users the trouble of having to develop their own 
models and generalization approaches for standard scenarios, 
default models and generalization procedures can be defined. In 
the course of the development of the framework, a basic model 
with basic generalization procedures is created. Additionally, 
patterns features (like arrays) and generic operators on these 
patterns (like typification) are investigated and implemented. 
In a digital model, resolution is not a physical restriction. A 
very basic (but nonetheless quite powerful) option for 
customization is the assignment of non-uniform resolutions to 
different parts of the model based on semantic and spatial 
criteria. This includes the cases that parts of the model are 
supposed to be kept or left out. With the support of a frontend 
with basic GIS functionality, even users with little experience in 
generalization and programming can formulate queries like 
“Give all features within 500m of the river Elbe at a resolution 
of 1.5m, the bed of the river and all features in it (like bridges 
etc.) at 1m, and everything else at 2.5m”. Additionally, 
application developers can provide prepared requests for 
recurring scenarios. In the easiest (default) case, the user 
chooses a uniform resolution for the whole model. 
Within the framework, basic feature types with corresponding 
simplification methods are provided as default solutions. If 
nothing different is chosen by the user, the default methods are 
used with default parameters. This way, the users or application 
developers can focus on those aspects of the generalization 
process that are important for their purpose. 
The introduction of the role of the application developer is 
necessary because neither can the developer of a generic 
framework foresee the needs of all conceivable applications, 
nor should all users be faced with the problem of having to 
implement the feature types and adaptors that may be needed to 
customize the framework to meet the requirements of their 
application. 
Due to the modular concept of the framework, application 
developers can use the standard procedures where they are 
sufficient and “plug in” application-specific features and 



 

generalization methods where they are needed. The addition of 
new data fields to existing feature types does not require the 
definition of new feature types; if a new feature type with 
special properties is needed, it can be derived from existing 
ones through inheritance. Using the different options the 
framework offers for customization, the application developers 
can offer special algorithms for parts of the generalization 
process and complete generalization scenarios for special 
purposes. 
In this paper, we report on concepts for such a generic service 
for the generalization of 3D city models. It also gives an 
overview of the status of the prototype for a generic 
generalization service that we develop as a part of the GDI grid 
project that is concerned with the application of grid technology 
to spatial data infrastructures as a part of the German grid 
computing initiative (Groeper et al., 2009). 
 

2. RELATED WORK 

The approach of using hierarchical models for 3D city model 
generalization has been introduced in (Lal, 2005) in his 
distinction between micro, meso and macro models for 
generalization. There are, however, only these three fixed levels 
in his hierarchy; it is therefore not possible to extend the model 
towards larger or more fine-grained structures. He also stresses 
the necessity of a stronger separation of the processes of feature 
extraction and generalization. The focus of his work is, 
however, on feature extraction and the specific generalization 
operation of aggregation.  
H. Fan et al. (2009) introduce an approach to extract the ex-
terior shells of building models that contain interior and exterior 
surfaces for walls and roofs – with the generalization step 
consisting of replacing the original geometry by the exterior 
shell. Additionally, different strategies for the generalization of 
(regular arrays of) windows are evaluated.  
M. Kada (2007) uses the wall surfaces of a building complex to 
detect structural parts (cells) of an ensemble of building 
components. He introduces parametric primitives for roof 
forms. Using the different roof primitives, regular patterns of 
roofs can be detected in order to apply the generalization 
operator of typification. For the general structure of the building 
complexes, the selection operator is used: If a cell is too small 
to be retained after the generalization process, it is removed 
from the model. The generalization approach works on 
geometric models and consists to a great part of a feature 
extraction component. It is limited to building models that 
consist of wall and roof surfaces. 
Thiemann and Sester (2004) also present an approach towards 
the generalization of 3D city models: The roof and wall planes 
in the model are used to derive a CSG representation of the 
building. The generalization step is a selection that is employed 
by removing those primitives from the representation that are 
too small for the given resolution.  
Representing and constructing 3D city models using formal 
grammars has been proposed by (Wonka et al. 2003); similarly 
such grammars can also be used for the reconstruction process 
as showed by (Reznik and Mayer 2008). 
There are different approaches towards making cartographic 
generalization processes available in a service-oriented frame-
work. In the work of Neun et al. (2008), for example, the 
potential need for additional semantic information for different 
generalization services is stressed. The semantic enrichment has 
to be accomplished by feature extraction or pattern recognition 
methods (Heinzle and Anders 2007). This need is even greater 
in the 3D case because geometrically more complex problems 

may arise here that can be simplified significantly with 
appropriate semantic information.  
 
 

3. THE DEFAULT FEATURE MODEL 

We propose a default feature model with a hierarchical structure 
in which the parent-child relation represents a consists-of or 
containment relation. This structure is very similar to the one 
underlying the CityGML data model (see Kolbe et al., 2005). 
The geometry of the features is, however, represented implicitly 
through the feature type and geometric parameters. 
As in the CityGML model, different layers for different 
semantic contexts like buildings, transportation, and vegetation 
are going to be present in the default model. The focus of the 
first prototype is, however, on settlement objects.  
Due to its hierarchical organization, the model can easily be 
extended by more detailed and more general structures.    
Figure 1 shows the visualization of a building model created for 
the prototype of the generalization service. Figure 2 gives an 
overview of the corresponding structure of the model. 
 

 

Figure 1: A Building Model 
 
For the generalization process, it is important to distinguish 
between the necessary parts and optional additions of a feature. 
The necessary parts of a building are, for example, its body and 
roof: If one of them is removed in the course of the 
generalization, the building is usually not valid anymore.  
This notation was chosen to remind of the UML notation for the 
aggregation and composition relations because it has a similar 
meaning. It does, however, work in the opposite direction: In 
the UML definition, an aggregation relation is a composition if 
the parts do not make sense without the whole while in the 
model the whole is not valid without the essential parts. The 
rhomboids are used to illustrate the distinction between 
necessary and additional child features. The necessary parts are 
modeled as attributes of the class (e.g. body and roof for a 
building) and labeled with the names of these attributes. As the 
optional additions can, in principle, be any kind of feature, they 
are stored in a simple list. 
In the representation of the structure, the necessary parts are 
marked by filled, the optional additions by empty rhomboids. 
The template features of an abstract group feature like a regular 
array are, in fact, necessary parts that can appear more than 
once in different positions defined by the pattern. 
 



 

 

 

Figure 2: Structure of the model shown in Figure 1 
 
For some applications, not all of these parts may be necessary. 
In such a case, special kinds of necessary parts may be removed 
from the list of parts for a feature. This can, however, make 
adjustments to simplification procedures for the feature 
necessary. For this reason, the set of required parts for a feature 
type remains fixed in the default model. Such strongly 
application-specific relaxations of very general constraints have 
to be evaluated in the post-processing step when the output data 
is prepared for the application.  
 

4. BASIC WORKFLOW IN A GENERALIZATION 
SCENARIO 

In a hierarchical model, patterns of features can be modeled as 
special features. For this reason, pattern recognition is treated as 
a special kind of feature recognition in this context.  
With the generalization of 3D city models, a workflow like the 
one shown in Figure 3 can be identified in most approaches — 
often with different instances of the workflow for different 
situations or patterns in one generalization algorithm. This 
happens because in most models that are available at the 
moment, the level of semantic information needed for 
generalization is not represented explicitly. Even if highly 
structured models like CityGML are used, it is not necessarily 
explicitly modeled, that e.g. neighboring windows form a row 
or even a grid of windows.  
 

 

Figure 3: Basic Generalization Workflow 
 
Unfortunately, many of the approaches introduced so far are 
limited to models with more or less specific properties because 
the feature extraction (or structure recognition) and 
generalization are bundled into a single process.  Especially the 
implicit combination of feature extraction and generalization 

components is a problem because feature extraction is a 
research topic in its own right.  
Splitting up the different approaches into atomic units can 
significantly increase the reusability of the different 
components. Especially a general availability of feature 
extraction techniques or of models enriched with more detailed 
structural information is going to advance the progress in the 
field of generalization considerably because it will help 
developers to use more rich object descriptions as basis for their 
developments of generalization operations.  
Especially in the restructuring component of the generalization 
process described in section 5, it can be helpful or even 
necessary to apply feature extraction algorithms to parts of the 
model during the main generalization step. Instead of being an 
argument against the separation and modularization of the 
different steps, this is rather a further motivation for the 
modularization because existing atomic modules from earlier 
steps or other contexts can be used very flexibly in the 
generalization process. 
The post-processing module encapsulates the adjustments and 
abstractions that are necessary to transform the output of the 
generalization into a model that can be handled by the 
application. Such a module can, of course, only be implemented 
with knowledge of the application. This will usually be done by 
an expert in the application domain – possibly in cooperation 
with developers of generalization modules. Once such a module 
is available, different users from the domain can use it to get 
access to all sources of information for which there are feature 
extraction procedures that can identify the relevant structures 
for the application 
For a flooding scenario as reported by (Kurzbach and Pasche, 
2009), for example, upright surfaces like walls cannot be 
handled directly. This means that the walls either have to be 
modeled as sloped surfaces or the houses have to be replaced by 
special elements representing holes in the terrain model. 

 
5. A PROCESS MODEL FOR THE GENERALIZATION 

STEP 

Figure 4 gives an overview of the general structure of the 
generalization process. Basically, it consists of a depth-first 
traversal of the feature hierarchy. In the course of this traversal, 
the generalized model is assembled.  
Within this traversal, feature extraction steps may be necessary, 
so the basic workflow described in section 4 can appear in 
several instances in the course of the generalization of a model. 
Additionally, the process can be embedded in such a workflow 
as the generalization component.  
 



 

 

Figure 4: Process Model for Generalization 
 
For all sub-processes in this process model, different modules 
can be defined to perform the respective task. The choice of the 
module to be used for an individual feature is made according 
to the specifications in the generalization request. In most cases, 
the standard modules provided by the framework should be 
sufficient – possibly with some adjustments of parameters.  
The basic idea behind the introduction of standard features and 
procedures is to relieve the user of having to be concerned with 
issues they are not interested in. The user has only to specify 
the cases in which exceptions from the standard components 
occur. This way, the users can focus on the parts of the process 
that are relevant for their special application. 
 
5.1 Selection 

Starting with the root feature of the input model, the first step is 
a selection operation. If the feature does not qualify to be 
retained in the output model, nothing is returned. Besides a 
selection based on semantic criteria, the most common criterion 
for this decision is to test if the diameter of the feature’s 
bounding box is greater than the target resolution assigned to 
the feature. Features can be labeled to be retained without 
having to pass the selection step. 
 
5.2 Simplification 

The term “simplification” is used in a more general sense than 
usual: It refers to any generalization operation that changes to 
shape of the feature. This can be either a feature(type)-specific 
operation like the replacement of gabled roof by a flat one or an 
abstraction of a cartographic generalization operator. 
The simplification process is the point where individual gene-
ralization procedures for the rearrangement of components of 
the feature can be plugged in. In this step, the parts and 

parameters of the original feature can be rearranged or the 
feature can be replaced by a less complex one – a gabled roof 
may, for example, be replaced by a flat one. In order to deal 
with the sub-features of the affected child features, it is 
necessary to keep track of the mappings from the old to the new 
sub-features. 
Many of the well-known standard generalization operators can 
be interpreted as simplification operators for higher-level 
features. The typification operator, for example, can be seen as 
a simplification method for features representing regular 
patterns or clusters of features: It takes a cluster of features and 
returns a cluster consisting of less (mostly also less complex) 
features. For this reason, it can be seen as a simplification 
procedure for a cluster of features where the “cluster of 
features” is an abstract type of feature. One subclass of this 
“cluster of features” class is, for example, the FeatureArray 
class that models features that are arranged in a regular grid.  
In the standard case, the first step is to start the generalization 
process for the necessary parts of the current feature. The 
generalized versions of the parts are then joined to form the 
generalized feature. In order to use this standard procedure for a 
feature, it has to provide a get_parts() method that returns the 
necessary parts of the feature. For the standard simplification, 
there has to be restore_from_parts() method to reassemble the 
feature from its generalized parts. 
After that, the different optional additions of the feature are 
subjected to the generalization process – including the selection 
step. If additions are removed (in case they do not pass the 
selection test), the selection step can be repeated for the current 
feature at this step: The bounding box could have been enlarged 
significantly by small features like high (but thin) chimneys or 
antennae on the roof of a house. 
 
5.3 Harmonization 

In the harmonization component, conflicts arising due to the 
independent simplification of the sub-features are resolved. 
Especially the conflicts between additions and the feature itself 
or its necessary parts are an issue here. 
A simple case are, for example, dormers on a roof. If a gabled 
roof is simplified to a flat one, the dormers would either 
disappear below the roof or sit on it like small turrets. In order 
to avoid such a situation, either the dormers have to be removed 
or the roof simplification step has to be undone. The second 
option would require a new start of the simplification step with 
the simplification to a flat roof disabled. Dormers on steep roof 
surfaces (for example, the lower surfaces in mansard or gambrel 
roofs) can also be replaced by windows. 
In more complex cases – especially in the context of the 
displacement or emphasis –, more sophisticated techniques are 
going to be necessary. One possible way to solve such conflicts 
is to introduce priorities for the different features and to restart 
the generalization of the feature of lower priority with the areas 
occupied by the higher priority features marked as forbidden 
areas that must not be intersected by any part of the generalized 
feature. One of the principal challenges in the development of 
the framework is the identification of generic classes of 
conflicts and the development of generic strategies for their 
resolution. 
 
5.4 Restructuring 

The restructuring component handles requests for changes to be 
applied for a new generalization cycle. This includes the 
handling of blocks for certain generalization steps or the 
definition of forbidden areas. 



 

The principal function of this component is, however, to make 
adjustments of the input model possible. These changes can be 
used to resolve conflicts or to increase the quality of the result.  
Figure 5 shows, for example, a façade and two possible 
structural decompositions of it. Even though its structure is 
rather 2(.5)-dimensional, the principles shown in this example 
can obviously be applied to three-dimensional situations as 
well.  
In the left interpretation, the façade is modeled as a symmetric 
arrangement of windows with the (slightly protruding) central 
part being treated separately. In the right one, the whole façade 
is interpreted as a set of different windows arranged in a regular 
grid. The basic concepts of the façade model and the picture are 
taken from Ripperda & Brenner (2009). 
 

 
 

     

Figure 5: Two structural decompositions of a façade 
 
Depending on the required resolution, both views are justified: 
If more detail is required, the first option is often more suitable 
for the generalization of the whole structure because the 
problems arising from having to model and deal with the great 
number of exceptions necessary in the second model would 
offset advantage of the simpler structure. If, however, a less 
detailed model is requested, the differences of the individual 
features may not be relevant anymore, and the second option 
will probably yield better results. 
In the restructuring component, such different options can be 
generated, for example, by the application of structure 
recognition algorithms or through predefined possible 
transitions. 
The harmonization component controls the process of testing 
different structures (generated by the restructuring component) 
in order to get more suitable generalized models.  
 
5.5 Example 

The upper part of the façade in Fig. 5 is assumed to be modeled 
according to the left of the smaller pictures: It consists of a 

central part and two symmetric sides – of which only one is 
modeled explicitly.  
In the generalization of this part of the facade, the first step 
consists of testing if this component is supposed to be kept for 
the given resolution. If this answer to this question is negative, 
then the space occupied by this facade could made available for 
other features (not very likely in this context) or left blank to be 
filled by the default background pattern. 
If the feature is decided to be kept, the facade elements 
covering the central and the side parts are analyzed (sent to an 
appropriate generalization service).  
In the example, both center and sides could be modeled as 
arrays of windows with slightly different features in the rows 
(different ornaments), so a typification service for 
inhomogeneous array data could be used to get a generalized 
version of the parts. In this first run, both center and sides are 
considered essential parts of the façade, so we pass them to the 
typification service with the selection process of the typification 
service disabled. This service would then pass the individual 
window templates to an appropriate generalization service 
which may, for example, simplify or remove ornaments. After 
that, the typification service will rearrange the distribution of 
the (simplified) window templates according to the chosen 
resolution. The result of this process is that there are two new 
arrays of windows with – possibly fewer – less complex 
window templates (with less complex ornamentations, crossbar 
structures etc.) and possibly less instances of these templates 
(for example, only one column for the sides). 
After having received the resulting features for the central and 
side parts, the generalization service for the whole structure can 
invoke a service (in the reconstruction component) that tests if 
the two features can be merged. In the case of the two arrays, 
such a test can evaluate if the arrays have sufficiently similar 
template features. At coarse resolutions, the template features 
(windows) will be similar because the ornaments which make 
up for most of the differences between the windows will be 
more similar of completely removed. In this case, it may be 
decided that the center and the sides can be treated as one array 
of windows. This one array can then be fed to the typification 
service for inhomogeneous feature arrays. The result could, for 
example, be an array of 3 rows with four windows each. If the 
difference between the sides and the central part are too big for 
the given resolution, the generalized versions of the center and 
the sides can simply be kept. 
A need for harmonization can arise, for example, if the space of 
the side panel is not sufficient to hold even a single window. In 
such a case, it would have to be enhanced. This requires that the 
central part is supposed to give up some of its width to the sides 
which may lead to new problems. In our example, this case is 
not so critical because the center and the sides could probably 
be merged in such a situation. 
In the enhancement step, different models for the same real-
world object may be generated and compared. In the example, 
this could involve merging the upper and lower part of the 
façade (storing the differences) and testing how such changes 
affect the result of the generalization. The different results 
could then either be presented to an operator for the final 
decision or selected according to an application-specific 
evaluation function. 
  

6. CONCLUSIONS AND OUTLOOK 

In this paper, we presented the concept for a process model for 
the generalization of hierarchical feature models. Due to the 
modular structure of the generalization process, different 



 

feature models with associated simplification procedure can be 
integrated in the generalization framework.  
To validate our approach, a prototype of the generalization 
service is developed. In its current version, the selection and 
simplification modules have been implemented for a simple 
feature hierarchy.  
In order to show the practicability of the approach, the next step 
is to model more complex composite buildings and façade 
structures and to investigate the problems arising in the 
generalization of these features. 
Especially the harmonization and enhancement of results for 
such complex structures are crucial points.  
After the default model and generalization procedures are 
implemented, the next step is to develop customizations for the 
application scenarios in the context of flooding and noise 
simulation that are associated with the project.  
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