
GENERALIZATION OF 3D CITY MODELS AS A SERVICE

R. Guercke, C. Brenner, M. Sester

Institute of Cartography and Geoinformatics, Leibniz University Hanover, Germany
Appelstr. 9A, 30167 Hannover

{richard.guercke, claus.brenner, monika.sester}@ikg.uni-hannover.de

KEY WORDS: Generalization, City Models, 3D, Service, Semantics, Modularization

ABSTRACT:

In recent years, 3D models have been created of many cities around the world. Most of these models are, however, only used for
visualization in web frontends or navigation systems. With the rapid progress in the development of sensor systems and algorithms
for the interpretation of their measurements, an increasing number of more and more detailed models is going to be available. Such
detailed models can, however, not be used directly in many applications because the data sets are too large or because there is
information in the model that cannot be handled by the application. The purpose of generalization is therefore to reduce the size and
semantic complexity of a model to a level that can be handled by the application without losing relevant information. In order to
implement such a highly application-dependent task as a generic service, it is divided into atomic modules. Generalization requires
information about the objects and their context they are embedded in. Thus the features present in the data have to be revealed first,
before generalization can be applied. Thus, especially with a stronger separation of generalization and feature extraction steps, such
a modularization offers great potential for the reusability of components and flexibility in the integration of application-specific
components.

1. INTRODUCTION

3D city models are used in a growing number of domains.
While the purpose of these models was first mostly
visualization, the scope of applications has widened, and city
models form the basis for an increasing range of calculations
for simulation and analysis.
In order to avoid having to start a complete new data
acquisition for each new application, it is sensible to try to reuse
models created in earlier projects. Especially with the more and
more detailed models that are going to be created in the near
future, a growing need is going to arise for the generalization of
such models because many application scenarios – especially if
complex computations are necessary – cannot handle the
amount and semantic complexity of the data in the model.
Many applications will, for example, have problems dealing
with building models in which walls are modeled by interior
and exterior surfaces or with decorations modeled in greater
detail. These are not only problems of size but also of semantic
complexity since even if the data set was small enough for the
calculation, it would not work because of the presence of
unexpected features in the model.
The purpose of generalization is therefore to reduce the size and
semantic complexity of a model without losing information that
is relevant for the application.
The concept of relevance being inherently a semantic one,
semantic criteria play an important part in the problem of
generalization. This dependence on detailed semantic
information is the cause for the mixture between feature
extraction (structure recognition) and generalization that can be
identified in many generalization approaches. In this scope, the
term semantics refers to the type and application-specific data
fields associated with a feature.
One of the main challenges in the development of a generic
service for generalization is that the concept of relevance and
therefore the whole process of generalization strongly depends
on the application. In order to meet this challenge, the our
concept of the service is implemented in the form of a

framework with different options for customization. In order to
spare the users the trouble of having to develop their own
models and generalization approaches for standard scenarios,
default models and generalization procedures can be defined. In
the course of the development of the framework, a basic model
with basic generalization procedures is created. Additionally,
patterns features (like arrays) and generic operators on these
patterns (like typification) are investigated and implemented.
In a digital model, resolution is not a physical restriction. A
very basic (but nonetheless quite powerful) option for
customization is the assignment of non-uniform resolutions to
different parts of the model based on semantic and spatial
criteria. This includes the cases that parts of the model are
supposed to be kept or left out. With the support of a frontend
with basic GIS functionality, even users with little experience in
generalization and programming can formulate queries like
“Give all features within 500m of the river Elbe at a resolution
of 1.5m, the bed of the river and all features in it (like bridges
etc.) at 1m, and everything else at 2.5m”. Additionally,
application developers can provide prepared requests for
recurring scenarios. In the easiest (default) case, the user
chooses a uniform resolution for the whole model.
Within the framework, basic feature types with corresponding
simplification methods are provided as default solutions. If
nothing different is chosen by the user, the default methods are
used with default parameters. This way, the users or application
developers can focus on those aspects of the generalization
process that are important for their purpose.
The introduction of the role of the application developer is
necessary because neither can the developer of a generic
framework foresee the needs of all conceivable applications,
nor should all users be faced with the problem of having to
implement the feature types and adaptors that may be needed to
customize the framework to meet the requirements of their
application.
Due to the modular concept of the framework, application
developers can use the standard procedures where they are
sufficient and “plug in” application-specific features and

generalization methods where they are needed. The addition of
new data fields to existing feature types does not require the
definition of new feature types; if a new feature type with
special properties is needed, it can be derived from existing
ones through inheritance. Using the different options the
framework offers for customization, the application developers
can offer special algorithms for parts of the generalization
process and complete generalization scenarios for special
purposes.
In this paper, we report on concepts for such a generic service
for the generalization of 3D city models. It also gives an
overview of the status of the prototype for a generic
generalization service that we develop as a part of the GDI grid
project that is concerned with the application of grid technology
to spatial data infrastructures as a part of the German grid
computing initiative (Groeper et al., 2009).

2. RELATED WORK

The approach of using hierarchical models for 3D city model
generalization has been introduced in (Lal, 2005) in his
distinction between micro, meso and macro models for
generalization. There are, however, only these three fixed levels
in his hierarchy; it is therefore not possible to extend the model
towards larger or more fine-grained structures. He also stresses
the necessity of a stronger separation of the processes of feature
extraction and generalization. The focus of his work is,
however, on feature extraction and the specific generalization
operation of aggregation.
H. Fan et al. (2009) introduce an approach to extract the ex-
terior shells of building models that contain interior and exterior
surfaces for walls and roofs – with the generalization step
consisting of replacing the original geometry by the exterior
shell. Additionally, different strategies for the generalization of
(regular arrays of) windows are evaluated.
M. Kada (2007) uses the wall surfaces of a building complex to
detect structural parts (cells) of an ensemble of building
components. He introduces parametric primitives for roof
forms. Using the different roof primitives, regular patterns of
roofs can be detected in order to apply the generalization
operator of typification. For the general structure of the building
complexes, the selection operator is used: If a cell is too small
to be retained after the generalization process, it is removed
from the model. The generalization approach works on
geometric models and consists to a great part of a feature
extraction component. It is limited to building models that
consist of wall and roof surfaces.
Thiemann and Sester (2004) also present an approach towards
the generalization of 3D city models: The roof and wall planes
in the model are used to derive a CSG representation of the
building. The generalization step is a selection that is employed
by removing those primitives from the representation that are
too small for the given resolution.
Representing and constructing 3D city models using formal
grammars has been proposed by (Wonka et al. 2003); similarly
such grammars can also be used for the reconstruction process
as showed by (Reznik and Mayer 2008).
There are different approaches towards making cartographic
generalization processes available in a service-oriented frame-
work. In the work of Neun et al. (2008), for example, the
potential need for additional semantic information for different
generalization services is stressed. The semantic enrichment has
to be accomplished by feature extraction or pattern recognition
methods (Heinzle and Anders 2007). This need is even greater
in the 3D case because geometrically more complex problems

may arise here that can be simplified significantly with
appropriate semantic information.

3. THE DEFAULT FEATURE MODEL

We propose a default feature model with a hierarchical structure
in which the parent-child relation represents a consists-of or
containment relation. This structure is very similar to the one
underlying the CityGML data model (see Kolbe et al., 2005).
The geometry of the features is, however, represented implicitly
through the feature type and geometric parameters.
As in the CityGML model, different layers for different
semantic contexts like buildings, transportation, and vegetation
are going to be present in the default model. The focus of the
first prototype is, however, on settlement objects.
Due to its hierarchical organization, the model can easily be
extended by more detailed and more general structures.
Figure 1 shows the visualization of a building model created for
the prototype of the generalization service. Figure 2 gives an
overview of the corresponding structure of the model.

Figure 1: A Building Model

For the generalization process, it is important to distinguish
between the necessary parts and optional additions of a feature.
The necessary parts of a building are, for example, its body and
roof: If one of them is removed in the course of the
generalization, the building is usually not valid anymore.
This notation was chosen to remind of the UML notation for the
aggregation and composition relations because it has a similar
meaning. It does, however, work in the opposite direction: In
the UML definition, an aggregation relation is a composition if
the parts do not make sense without the whole while in the
model the whole is not valid without the essential parts. The
rhomboids are used to illustrate the distinction between
necessary and additional child features. The necessary parts are
modeled as attributes of the class (e.g. body and roof for a
building) and labeled with the names of these attributes. As the
optional additions can, in principle, be any kind of feature, they
are stored in a simple list.
In the representation of the structure, the necessary parts are
marked by filled, the optional additions by empty rhomboids.
The template features of an abstract group feature like a regular
array are, in fact, necessary parts that can appear more than
once in different positions defined by the pattern.

Figure 2: Structure of the model shown in Figure 1

For some applications, not all of these parts may be necessary.
In such a case, special kinds of necessary parts may be removed
from the list of parts for a feature. This can, however, make
adjustments to simplification procedures for the feature
necessary. For this reason, the set of required parts for a feature
type remains fixed in the default model. Such strongly
application-specific relaxations of very general constraints have
to be evaluated in the post-processing step when the output data
is prepared for the application.

4. BASIC WORKFLOW IN A GENERALIZATION
SCENARIO

In a hierarchical model, patterns of features can be modeled as
special features. For this reason, pattern recognition is treated as
a special kind of feature recognition in this context.
With the generalization of 3D city models, a workflow like the
one shown in Figure 3 can be identified in most approaches —
often with different instances of the workflow for different
situations or patterns in one generalization algorithm. This
happens because in most models that are available at the
moment, the level of semantic information needed for
generalization is not represented explicitly. Even if highly
structured models like CityGML are used, it is not necessarily
explicitly modeled, that e.g. neighboring windows form a row
or even a grid of windows.

Figure 3: Basic Generalization Workflow

Unfortunately, many of the approaches introduced so far are
limited to models with more or less specific properties because
the feature extraction (or structure recognition) and
generalization are bundled into a single process. Especially the
implicit combination of feature extraction and generalization

components is a problem because feature extraction is a
research topic in its own right.
Splitting up the different approaches into atomic units can
significantly increase the reusability of the different
components. Especially a general availability of feature
extraction techniques or of models enriched with more detailed
structural information is going to advance the progress in the
field of generalization considerably because it will help
developers to use more rich object descriptions as basis for their
developments of generalization operations.
Especially in the restructuring component of the generalization
process described in section 5, it can be helpful or even
necessary to apply feature extraction algorithms to parts of the
model during the main generalization step. Instead of being an
argument against the separation and modularization of the
different steps, this is rather a further motivation for the
modularization because existing atomic modules from earlier
steps or other contexts can be used very flexibly in the
generalization process.
The post-processing module encapsulates the adjustments and
abstractions that are necessary to transform the output of the
generalization into a model that can be handled by the
application. Such a module can, of course, only be implemented
with knowledge of the application. This will usually be done by
an expert in the application domain – possibly in cooperation
with developers of generalization modules. Once such a module
is available, different users from the domain can use it to get
access to all sources of information for which there are feature
extraction procedures that can identify the relevant structures
for the application
For a flooding scenario as reported by (Kurzbach and Pasche,
2009), for example, upright surfaces like walls cannot be
handled directly. This means that the walls either have to be
modeled as sloped surfaces or the houses have to be replaced by
special elements representing holes in the terrain model.

5. A PROCESS MODEL FOR THE GENERALIZATION

STEP

Figure 4 gives an overview of the general structure of the
generalization process. Basically, it consists of a depth-first
traversal of the feature hierarchy. In the course of this traversal,
the generalized model is assembled.
Within this traversal, feature extraction steps may be necessary,
so the basic workflow described in section 4 can appear in
several instances in the course of the generalization of a model.
Additionally, the process can be embedded in such a workflow
as the generalization component.

Figure 4: Process Model for Generalization

For all sub-processes in this process model, different modules
can be defined to perform the respective task. The choice of the
module to be used for an individual feature is made according
to the specifications in the generalization request. In most cases,
the standard modules provided by the framework should be
sufficient – possibly with some adjustments of parameters.
The basic idea behind the introduction of standard features and
procedures is to relieve the user of having to be concerned with
issues they are not interested in. The user has only to specify
the cases in which exceptions from the standard components
occur. This way, the users can focus on the parts of the process
that are relevant for their special application.

5.1 Selection

Starting with the root feature of the input model, the first step is
a selection operation. If the feature does not qualify to be
retained in the output model, nothing is returned. Besides a
selection based on semantic criteria, the most common criterion
for this decision is to test if the diameter of the feature’s
bounding box is greater than the target resolution assigned to
the feature. Features can be labeled to be retained without
having to pass the selection step.

5.2 Simplification

The term “simplification” is used in a more general sense than
usual: It refers to any generalization operation that changes to
shape of the feature. This can be either a feature(type)-specific
operation like the replacement of gabled roof by a flat one or an
abstraction of a cartographic generalization operator.
The simplification process is the point where individual gene-
ralization procedures for the rearrangement of components of
the feature can be plugged in. In this step, the parts and

parameters of the original feature can be rearranged or the
feature can be replaced by a less complex one – a gabled roof
may, for example, be replaced by a flat one. In order to deal
with the sub-features of the affected child features, it is
necessary to keep track of the mappings from the old to the new
sub-features.
Many of the well-known standard generalization operators can
be interpreted as simplification operators for higher-level
features. The typification operator, for example, can be seen as
a simplification method for features representing regular
patterns or clusters of features: It takes a cluster of features and
returns a cluster consisting of less (mostly also less complex)
features. For this reason, it can be seen as a simplification
procedure for a cluster of features where the “cluster of
features” is an abstract type of feature. One subclass of this
“cluster of features” class is, for example, the FeatureArray
class that models features that are arranged in a regular grid.
In the standard case, the first step is to start the generalization
process for the necessary parts of the current feature. The
generalized versions of the parts are then joined to form the
generalized feature. In order to use this standard procedure for a
feature, it has to provide a get_parts() method that returns the
necessary parts of the feature. For the standard simplification,
there has to be restore_from_parts() method to reassemble the
feature from its generalized parts.
After that, the different optional additions of the feature are
subjected to the generalization process – including the selection
step. If additions are removed (in case they do not pass the
selection test), the selection step can be repeated for the current
feature at this step: The bounding box could have been enlarged
significantly by small features like high (but thin) chimneys or
antennae on the roof of a house.

5.3 Harmonization

In the harmonization component, conflicts arising due to the
independent simplification of the sub-features are resolved.
Especially the conflicts between additions and the feature itself
or its necessary parts are an issue here.
A simple case are, for example, dormers on a roof. If a gabled
roof is simplified to a flat one, the dormers would either
disappear below the roof or sit on it like small turrets. In order
to avoid such a situation, either the dormers have to be removed
or the roof simplification step has to be undone. The second
option would require a new start of the simplification step with
the simplification to a flat roof disabled. Dormers on steep roof
surfaces (for example, the lower surfaces in mansard or gambrel
roofs) can also be replaced by windows.
In more complex cases – especially in the context of the
displacement or emphasis –, more sophisticated techniques are
going to be necessary. One possible way to solve such conflicts
is to introduce priorities for the different features and to restart
the generalization of the feature of lower priority with the areas
occupied by the higher priority features marked as forbidden
areas that must not be intersected by any part of the generalized
feature. One of the principal challenges in the development of
the framework is the identification of generic classes of
conflicts and the development of generic strategies for their
resolution.

5.4 Restructuring

The restructuring component handles requests for changes to be
applied for a new generalization cycle. This includes the
handling of blocks for certain generalization steps or the
definition of forbidden areas.

The principal function of this component is, however, to make
adjustments of the input model possible. These changes can be
used to resolve conflicts or to increase the quality of the result.
Figure 5 shows, for example, a façade and two possible
structural decompositions of it. Even though its structure is
rather 2(.5)-dimensional, the principles shown in this example
can obviously be applied to three-dimensional situations as
well.
In the left interpretation, the façade is modeled as a symmetric
arrangement of windows with the (slightly protruding) central
part being treated separately. In the right one, the whole façade
is interpreted as a set of different windows arranged in a regular
grid. The basic concepts of the façade model and the picture are
taken from Ripperda & Brenner (2009).

Figure 5: Two structural decompositions of a façade

Depending on the required resolution, both views are justified:
If more detail is required, the first option is often more suitable
for the generalization of the whole structure because the
problems arising from having to model and deal with the great
number of exceptions necessary in the second model would
offset advantage of the simpler structure. If, however, a less
detailed model is requested, the differences of the individual
features may not be relevant anymore, and the second option
will probably yield better results.
In the restructuring component, such different options can be
generated, for example, by the application of structure
recognition algorithms or through predefined possible
transitions.
The harmonization component controls the process of testing
different structures (generated by the restructuring component)
in order to get more suitable generalized models.

5.5 Example

The upper part of the façade in Fig. 5 is assumed to be modeled
according to the left of the smaller pictures: It consists of a

central part and two symmetric sides – of which only one is
modeled explicitly.
In the generalization of this part of the facade, the first step
consists of testing if this component is supposed to be kept for
the given resolution. If this answer to this question is negative,
then the space occupied by this facade could made available for
other features (not very likely in this context) or left blank to be
filled by the default background pattern.
If the feature is decided to be kept, the facade elements
covering the central and the side parts are analyzed (sent to an
appropriate generalization service).
In the example, both center and sides could be modeled as
arrays of windows with slightly different features in the rows
(different ornaments), so a typification service for
inhomogeneous array data could be used to get a generalized
version of the parts. In this first run, both center and sides are
considered essential parts of the façade, so we pass them to the
typification service with the selection process of the typification
service disabled. This service would then pass the individual
window templates to an appropriate generalization service
which may, for example, simplify or remove ornaments. After
that, the typification service will rearrange the distribution of
the (simplified) window templates according to the chosen
resolution. The result of this process is that there are two new
arrays of windows with – possibly fewer – less complex
window templates (with less complex ornamentations, crossbar
structures etc.) and possibly less instances of these templates
(for example, only one column for the sides).
After having received the resulting features for the central and
side parts, the generalization service for the whole structure can
invoke a service (in the reconstruction component) that tests if
the two features can be merged. In the case of the two arrays,
such a test can evaluate if the arrays have sufficiently similar
template features. At coarse resolutions, the template features
(windows) will be similar because the ornaments which make
up for most of the differences between the windows will be
more similar of completely removed. In this case, it may be
decided that the center and the sides can be treated as one array
of windows. This one array can then be fed to the typification
service for inhomogeneous feature arrays. The result could, for
example, be an array of 3 rows with four windows each. If the
difference between the sides and the central part are too big for
the given resolution, the generalized versions of the center and
the sides can simply be kept.
A need for harmonization can arise, for example, if the space of
the side panel is not sufficient to hold even a single window. In
such a case, it would have to be enhanced. This requires that the
central part is supposed to give up some of its width to the sides
which may lead to new problems. In our example, this case is
not so critical because the center and the sides could probably
be merged in such a situation.
In the enhancement step, different models for the same real-
world object may be generated and compared. In the example,
this could involve merging the upper and lower part of the
façade (storing the differences) and testing how such changes
affect the result of the generalization. The different results
could then either be presented to an operator for the final
decision or selected according to an application-specific
evaluation function.

6. CONCLUSIONS AND OUTLOOK

In this paper, we presented the concept for a process model for
the generalization of hierarchical feature models. Due to the
modular structure of the generalization process, different

feature models with associated simplification procedure can be
integrated in the generalization framework.
To validate our approach, a prototype of the generalization
service is developed. In its current version, the selection and
simplification modules have been implemented for a simple
feature hierarchy.
In order to show the practicability of the approach, the next step
is to model more complex composite buildings and façade
structures and to investigate the problems arising in the
generalization of these features.
Especially the harmonization and enhancement of results for
such complex structures are crucial points.
After the default model and generalization procedures are
implemented, the next step is to develop customizations for the
application scenarios in the context of flooding and noise
simulation that are associated with the project.

7. ACKNOWLEDGEMENT

This work was funded by the German Ministry of Education
and Science (BMBF) in the context of the GDI Grid project.

8. REFERENCES

H. Fan, L. Meng, M. Jahnke, 2009. Generalization of 3D
Buildings Modelled by CityGML, Advances in
GIScience: Proceedings of 12th AGILE Conference
on GIScience, Lecture Notes in Geoinformation and
Cartography, p. 387-405, Springer, Berlin, 2009.

R. Groeper, C. Kunz, C. Grimm, 2009. Connecting OGC Web

Services and the Grid using Globus Toolkit 4 and
OGSA-DAI, Proceedings of the 10th IEEE / ACM
International Conference on Grid Computing
(Grid2009)

M. Kada, 2007. 3D Building Generalisation by Roof

Simplification and Typification. In: Proceedings of
the 23th International Cartographic Conference,
Moscow, Russian Federation.

T. H. Kolbe, G. Gröger and L. Plümer, 2005. CityGML:

Interoperable access to 3D city models. In: First
International Symposium on Geo-Information for
Disaster Management GI4DM.

S. Kurzbach and E. Pasche, 2009 A 3D Terrain Discretization

Grid Service For Hydrodynamic Modelling, 8th
International Conference on Hydroinformatics 2009,
Concepción, Chile

J. Lal, 2005. Recognition of 3D Settlement Structure for

Generalization. PhD thesis, Technische Universität
München, 2005.

M Neun, D. Burghardt, R. Weibel, 2008. Web service

approaches for providing enriched data structures to
generalisation operators. International Journal of
Geographical Information Science, 22(1-2): 133-165.

N. Ripperda and C. Brenner, 2009. Application of a Formal

Grammar to Facade Reconstruction in Semiautomatic
and Automatic Environments. Proceedings of 12th
AGILE Conference on GIScience, Hannover,
Germany, 2009.

F. Thiemann and M. Sester, 2004. Segmentation of Buildings
for 3D-Generalisation. Proceedings of the ICA
Workshop on generalisation and multiple
representation, Leicester, UK.

Heinzle, F., and K. H. Anders. 2007. Characterising Space via

Pattern Recognition Techniques: Identifying Patterns
in Road Networks. In Generalization of geographic
information: cartographic modelling and
applications, eds. W. Mackaness, A. Ruas and T.
Sarjakoski, 233-253. Oxford: Elsevier.

Reznik, S., and H. Mayer. 2008. Implicit Shape Models, Self-

Diagnosis, and Model Selection for 3D Facade
Interpretation. Photogrammetrie - Fernerkundung -
Geoinformation 3:187-196.

Wonka, P., M. Wimmer, F. Sillion, and W. Ribarsky. 2003.

Instant Architecture. ACM Transaction on Graphics
22 (3):669--677.

