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ABSTRACT: 
 
Building reconstruction and building model generation nowadays receives more and more attention. In this context models such as 
formal grammars play a major role in 3D geometric modelling. Up to now, models have been designed manually by experts such as 
architects. Hence, this paper describes an Inductive Logic Programming (ILP) based approach for learning semantic models and 
grammar rules of buildings and their parts. Due to their complex structure and their important role as link between the building and 
its outside, straight stairs are presented as an example. ILP is introduced and applied as machine learning method. The learning 
process is explained and the learned models and results are presented. 
 
 
 

1. INTRODUCTION 

1.1 Motivation and Context 

The last decade has seen an increasing demand for 3D building 
models. These models represent the basis of many approaches 
for the reconstruction and the generation of 3D urban scenes. 
For the interoperable access of 3D city models, the data model 
CityGML has been standardised (Kolbe and Groeger, 2006).  
 
Apart from their original application in natural language 
processing, formal grammars have been used for a variety of 
approaches in 3D modelling, e.g. generation of synthetic city 
models and also geometrical reconstruction of urban objects 
such as buildings and building parts. Figure 1 illustrates 
building models of the Wilhelminian quarter ‘Südstadt’ in 
Bonn, Germany, which were generated with formal grammars 
(Krückhans, 2009 ). 

 
Figure 1. Wilhelminian style building model in Bonn, generated 

with formal grammars  
 
As yet grammar rules have to be defined by experts. An 
automatic generation of these rules has not been available until 

now. In this paper we present a machine learning approach 
based on Inductive Logic Programming (ILP) with the aim of 
learning grammar rules. In order to express the constraints 
between the primitives of the modelled 3D objects, attributes 
and semantic rules are included. Through this approach the 
consistency and correctness of the 3D models is preserved. ILP 
has already been applied successfully to learn natural language 
grammar (Mooney, 1997). However, the learning of semantic 
models and grammar rules of building parts with ILP is a novel 
approach. The learning approach is demonstrated through an 
important and complex example of a building part, viz. straight 
stairs.  
 
This paper is structured as follows: the next section reviews 
related works in the field of formal grammars and inductive 
logic programming. Section 3 introduces formal grammar and 
discusses the theoretical background of ILP as machine learning 
method. Section 4 presents the research results of our work, and 
finally, section 5 summaries the paper and gives an outlook.     
 
 

2. RELATED WORK 

Formal grammars have widely been applied in reconstruction 
tasks. Han (2009) and Zhu (2006) interpret single images using 
attribute graph-grammars. Their approach capitalises on 
grammars in a bidirectional way: The top-down derivation of 
the grammar generates model hypotheses which have to be 
verified subsequently. The bottom-up run aggregates the 
features to composite objects. 
 
Mueller (2006, 2007) propose the application of context-
sensitive split grammars which were introduced by Wonka 
(2003). The grammar controls the procedural modelling and 
synthetic generation of consistent mass models. The split rules 
ensure a tessellation of the faces in order to have topologically 
correct models. 
 
Ripperda and Brenner (2009) and Ripperda (2008) use 
grammars for the reconstruction of windows from terrestrial 
facade images. Therefore they defined a grammar that describes 
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the general structure of facades, i.e. the alignment of windows 
in grids, both regular and irregular. The grammar controls the 
sampling of a reversible jump Markov Chain Monte Carlo 
process. Similar to Han (2009) they work on single images. 
 
Schmittwilken (2009) presents an approach for the 
reconstruction of composite objects from 3D point clouds using 
attribute grammars. The composition is specified by attributes 
which define and propagate form parameters and location 
parameters of the modelled objects. 

Table 1. Excerpt of an attribute grammar for stairs 

P1: Stairsn-1  Step Stairsn 

P2: Stairs    Step 
P3: Step  riser tread 
 

R1(P1 ): Stairsn .numberOfSteps = Stairsn-1.numberOfSteps +1 
 

R2(P2): Step.width = Stairs.width 
 

R3(P2): Step.height = Stairs.height 
 

R4(P2): Step.depth = Stairs.depth 

…

 
Apart from related work in reconstruction context, our approach 
draws upon ideas of ILP, which has been successfully applied 
as a learning approach in many different fields. In 
bioinformatics, for instance, ILP has been used to predict 
protein structure (Muggelton et al., 1992) and mutagenicity 
(King et al., 1996).  Mooney (1997) has applied ILP to natural 
language processing.  
 
 

3. BACKGROUND 

In the following section, we will give an introduction to formal 
grammars and an overview of the applied machine learning 
approach ILP. 
 
3.1 Formal Grammars 

Ever since formal grammars were introduced by Chomsky 
(1956, 1959) for reconstructing sentences of natural language, 
they have also been used to generate formal languages. A 
formal grammar G can be defined as quadruple {S, N, T, P} of a 
start symbol S, a set of non-terminals N represented by 
capitalised initials, a set of terminals T denoted by lower case 
initials and a set of production rules P.  
 
A special case of formal grammars are context free grammars 
which play a major role in describing and designing most of the 
programming languages. Production rules appear in the form  
A a where A is a non-terminal, and a is a sequence of 
terminals and non-terminals. This rule implies that each 
occurrence of the symbol A can be replaced by the string a. 
 
 

 
 

Figure 2. Derivation tree for the grammar rules of a building 
 
 
A gable roof building can be modelled context free as follows: 
Building as a start symbol is made of Corpus and gableRoof. In 
addition to the Facade, Corpus consists of left side, right side, 

and back side. Facade is built of windows and Entrance which 
is made of doors and stairs. This aggregation can be expressed 
by the production rules that are illustrated in the derivation tree 
in figure 2.  

 
Likewise, Building can be represented by the following 
production rules P:   
 

 
 

 

 P =  {Building  Corpus gableRoof 
          Corpus  left Facade right back 
          Facade  Entrance window 
          Entrance  door stairs} 

The set of the non-terminals is N = {Building, Corpus, Facade, 
Entrance}; the set of terminals is T = {gableRoof, left, right, 
back, window, door, stairs}.  
 
Context free grammars are suitable to describe context free 
languages. In this case the non-terminals can be substituted 
regardless of the context in which they occur. However, some 
structures can only be produced with regard to their context. In 
the case of stairs, for example, context free grammars are not 
expressive enough to state that all steps of the same stairs have 
the same dimensions. 
 

 
 
In order to deal with this problem context free grammars have 
been extended by Knuth’s attribute grammars (1968, 1971), 
which have been further extended by the probabilistic concept 
of an attribute grammar as proposed by Abney (1997). In 
attribute grammars Terminals and non-terminals are expanded 
by attributes, whereas production rules are extended by 
semantic rules. The latter specify the constraints among the 
attributes. An extract of an attribute grammar of stairs is shown 
in Table 1. 
 
 

 
 

Figure 3. Stairs as recursion of steps 



 

In contrast to the first example of the building grammar, stairs 
exhibit a recursive structure which allows for specifying an 
arbitrary number of steps. A staircase is shown in figure 3 by a 
sequence of steps which consist of risers (vertical rectangles) 
and treads (horizontal rectangles). The grammar symbols in 
table 1. are augmented by the attributes height, depth, and 
width, which are used in semantic rules R2(P2) to R4(P2) in order 
to specify the identity between the form parameters of risers 
and treads within the same stairs. The superscript indices n and 
n-1 are used to differentiate between multiple occurrences of 
the same symbol.    

 
3.2  Inductive Logic Programming  

Inductive Logic Programming is a subarea of artificial 
intelligence which combines machine learning with logic 
programming. Thus, the goal of ILP, which is inherited from 
inductive machine learning, consists in developing techniques 
to induce hypotheses from observations as well as synthesising 
new knowledge from experience by using computational logic 
as representational schema.   
 
In the following section some important concepts in logic 
programming are introduced (Raedt, 2008). First, a function is 
called predicate, if it returns a truth value, e.g. parallel/2 is a 
predicate of arity 2. Second, a term is a constant, a variable or a 
structured term f(t1,…,tn) composed of a functor f and n terms ti. 
Third, an atom is a predicate symbol followed by its necessary 
number of terms, e.g. line(X) is an atom which represents a line 
in a two dimensional space and which is represented by the 
term X as variable. Fourth, a literal is an atom or its negation. 
 
By using these concepts the key concept of a horn clause can be 
defined as an expression of the form: h  b1,…,bm in which h  

and bi are logical atoms. The symbol ‘,’ symbolises a 
conjunction whereas ‘’ stands for an implication. Clauses of 
the form: h  true are called facts.  
 
An example of a horn clause C can be illustrated by the parallel 
relation (here given in the logic programming language 
Prolog): 
 
C: parallel(X,Y)  line(X), line(Y), line(Z), orthogonal(X,Z),     
  orthogonal(Y,Z). 
 
Hereby a new predicate parallel is defined as head of the rule 
(the arrow’s right hand side being the rule’s body). The line X 
and the line Y satisfy this predicate if there is a line Z which is 
orthogonal to both lines X and Y. Moreover, a first order 
alphabet can be defined as a set of predicate symbols, constant 
symbols and functor symbols.  
 
ILP systems are able to learn first order horn clauses by the use 
of background knowledge. Apart from syntactic differences, 
logic programs and attribute grammar are basically the same 
(Abramson and Dahl, 1989). Thus, the learned logic programs 
can be safely used for reconstruction tasks realised by attribute 
grammars.  
 
The observation of 3D point clouds in order to recognise and 
extract constraints (cf. Schmittwilken, 2009) and the learning of 
3D models from these constraints are two disjoint but 
complementary problems. Thus, this paper assumes that the 
user first provides examples such as sketches of the models 
which have to be learned. These are then processed either by 

using snap points or thresholds to obtain consistent learning 
examples. This step is beyond the scope of this paper. 
Consequently, our focus and attention will be given to ILP as 
machine learning formalism.  
Another opportunity to handle the uncertainty and to deal with 
noisy data consists in the extension of inductive logic 
programming techniques with probabilistic reasoning 
mechanisms. This area is called Probabilistic Inductive Logic 
Programming (Raedt et al., 2008).   
   
3.2.1 Method 
 
Given a set E of positive and negative examples as ground facts 
and a background knowledge B, a hypothesis H has to be found 
which explains the given examples with respect to B and meets 
the language constraints. The hypothesis H has to be complete 
and consistent. H is complete if all the positive examples are 
covered. If none of the negative examples are covered H is 
considered consistent. The coverage of an example e  E is 
tested with a function covers(B,H, e) which returns the value 
true if H covers e given the background knowledge B,  and 
otherwise returns false. 
 
The ability to provide declarative background knowledge to the 
learning system is one of the most distinct advantages of ILP. 
This background knowledge can be given in the form of horn 
clauses or ground facts which represent the prior knowledge 
about the predicates that appear in the learned hypothesis later. 
For example, if instances of the predicates orthogonal and line 
(cf. last section) are given, they can serve as background 
knowledge in order to learn the parallel relation.  
 
ILP tasks are search problems in the space of possible 
hypotheses. In order to perform this search adequately a partial 
ordering of clauses is needed. For this purpose many inductive 
logic programming systems use θ-subsumption as 
generalisation or specialisation operator. A clause C is said to 
be θ-subsumed by a clause C’ if there is a substitution θ, such 
that C’θ  C. Hereby a substitution θ is a function which maps 
variables to terms. For instance, the clause:  
 
  C’: parallel(X,Y)  line(X), line(Y).  
 
θ-subsumes the clause C in the last section under the empty 
substitution θ =  . The θ-subsumption defines the notion of 
generality. A clause C’ is at least as general as clause C if C’  
θ-subsumes C (Lavrac, 1994).  
   
3.2.2 Aleph Algorithm 
 
In the last few years many ILP systems have been implemented. 
One of the most popular ILP approaches is the Progol 
algorithm with many different implementations. Relevant for 
this paper is the Aleph engine (cf. Srinivasan, 2007) as a Prolog 
based implementation of Progol. Progol is an ILP framework 
which was developed to learn first order horn clauses.  
 
For this aim, Progol first selects a positive seed example and 
then finds a consistent clause which is the most specific clause 
(MSC) of this example and which entails this example. Against 
the theoretical background of inverse entailment the MSC can 
be acquired (cf. Muggelton, 1995). The construction of the 
MSC will be exemplified in section 4.  
   



 

In this way Progol learns by using a single example and by 
verifying the consistency of its generalisation with the dataset. 
This generalisation is added to the background knowledge. 
Afterwards, all redundant examples which have been covered 
by the MSC are removed. This process is repeated until a theory 
is found which covers all the positive examples. The coverage 
function is defined as follows:   
 

 covers(B,H,e) = true if  B  H ⊨ e  

 
In other words, the hypothesis H covers the example e with 
respect to the background knowledge B if B  H semantically 
entails e. 
 
In order to examine the goodness of clauses, each clause is 
evaluated by a score function. In this context, the default 
evaluation of Aleph is coverage which defines clause utility as 
P-N, in which P, N are the number of positive and negative 
examples covered by the considered clause respectively.  This 
could also be realised by other evaluation functions, like, for 
example, entropy. 
 
As mentioned before, ILP tasks are search problems in the 
space of possible hypotheses. Progol bounds this space with the 
MSC as lower bound, whereas the top of the search space is 
bounded by the empty clause. Once the MSC has been built, 
Aleph performs a top-down search in the space of possible 
specialisations by using θ-subsumption as refinement operator. 
In this process only the literals appearing in the MSC are used 
to refine clauses.   
 
In order to restrict the vast space of hypotheses, learning 
systems employ a so-called declarative bias. “Bias” is anything 
other than the training instances that influences the results of 
the learner (Raedt, 2008). Aleph makes use of mode 
declarations as bias while searching for the best hypothesis. On 
the one hand, the mode declarations specify the predicates to be 
used, and state whether a predicate is a head (modeh 
declaration) or a body (modeb declaration) predicate. On the 
other hand, they declare whether an argument of a predicate 
may be an input variable, output variable or a constant value.  

 

Figure 4. Semantic and topologic primitives of stairs 

 
A further restriction of the space of the possible literals is 
achieved by type specification. Hereby a place-marker is 
employed in order to constrain the type of the terms that will 
replace the place-marker correctly. Aleph treats types just as 
labels and does not perform a type-checking. The different 
instantiations of a predicate in a given clause with the same 
sequence of input variables can also be bound through an 
integer, so-called recall number. An asterisk denotes that the 
predicate has unbounded indeterminacy. In Aleph, it is possible 
to infer mode and type information from the predicates of 
generative background knowledge and examples. 
 
The declaration:  
 
 modeb(*, orthogonal(+line, -line))  
 
states that the predicate orthogonal has to be used as body 
predicate and its arguments have to be instances of the same 
type. Additionally, the symbol “+” states that the first argument 
is an input argument and therefore it has to be bound, whereas 
the second is an output argument and may be either bound or 
unbound. In other words, in a literal orthogonal(X, Y), X has to 
be an old variable, in contrast to Y that may be either an old or 

a new variable. Within a clause any input variable in the body 
literal must be an input variable in the head of the clause or an 
output variable in some preceding literals. 
 
 

4. RESULTS 

The following section presents the findings of our approach as 
well as the problems that have occurred in the process of 
learning. The potential to model background knowledge enables 
a stepwise learning process of stairs. In order to evaluate the 
potential of ILP for the automatic learning of building parts 
straight stairs have been used as an example.  The specific 
challenge in the case of stairs is their recursive structure. At the 
beginning it was not clear whether ILP would meet this 
challenge. Interestingly, some positive and some negative 
examples were sufficient.  
 
Thus, the major difficulty in learning how stairs are defined 
consists in handling the recursion. Due to the complexity of 
stairs, in particular their recursive structure, the learner requires 
a large amount of negative examples. However, the learning 
process becomes much easier by applying a modular bottom-up 
approach, which consists of two steps: First, the non-recursive 
parts of stairs are learned, and then, building up on these parts, 
the recursive clause is learned. This divide and conquer 
approach is illustrated in figure 4. Stairs are broken down into 
their primitives. Aggregation and learning directions are 
indicated by descending and ascending arrows respectively. 
Aggregation occurs top-down whereas learning is realised by a 
bottom-up approach, starting from the smallest atomic feature 
to the whole stairs object. The semantic primitives are 
marked in bold whereas the topologic primitives are marked in 
normal font.  
 
 

 
Table 2 gives the produced output rules of the learner.  In order 
to learn the end recursive rule in lines (01-05) only four positive 
and two negative examples were required. This low number can 
be attributed to the stepwise learning strategy. The interested 
reader may verify that the difference between these rules and 
those in table 1 is merely syntactic. It should be noted that rules 
in table 1 are only a subset of the rules of table 2. 
 
On the level of aggregation we have seen in section 3.1 that 
stairs are made of a recursion of steps that are composed of 
horizontal and vertical rectangles.  In turn both rectangles can 
be defined by two 3D points.  In contrast to the aggregation, the 
starting point on the level of learning is two observed left and 



 

Table 2. The whole learned logic program of stairs 

 
01 stairs([step(R,T,Point,Height,Depth,Width)], Height,Depth,Width). 
02 stairs([step(R2,T2,Point2,Height,Depth,Width),  
03         step(R1,T1,Point1,Height,Depth,Width) | Tail], Height,Depth,Width)  

04          stairs([step(R1,T1,Point1, Height,Depth,Width)| Tail], Height,Depth,Width),    
05            meetsPerpendicular(T1,R2). 
06 

07 step(R,T,Point1,Height,Depth,Width)   riser(R,Point1,Height,Width), 
08                                        tread(T,Point2,Depth,Width), 
09                                        meetsPerpendicular(R,T). 
10 

11 meetsPerpendicular(R,T)  riser(R,Point(X,Y,Z),Height,Width), plus(Z,Height,Z1),   
12                            tread(T,Point(X,Y,Z1),Depth,Width). 
13 

14 riser(R,point(X,Y,Z),Height,Width)   plus(X,Width,X1), point(X1,Y,Z1), plus(Z,Height,Z1). 
15  

16 tread(T,point(X,Y,Z),Depth,Width)   plus(X,Width,X1), point(X1,Y1,Z), plus(Y,Depth,Y1). 
17 

18 meetsPerpendicular(T,R)   tread(T,point(X,Y,Z),Depth,Width), plus(Y,Depth,Y1),  
                              riser(R,point(X,Y1,Z),Height,Width). 
 

right 3D points for identifying the horizontal (tread) and the 
vertical rectangle (riser) respectively.  As described in 
subsection 3.2.1, the task of learning requires a set of positive 
examples which are generalised with respect to the set of 
negative examples and the background knowledge. Aleph 
supports first order horn clauses as background knowledge and 
is further able to learn ranges and functions with numeric data. 
These functions can also be used as background knowledge that 
represents a good basis to describe the geometric and topologic 
constraints inside building parts. This is particularly important 
at the low level of the learning process. Beside the observed 
point in the case of riser, the background knowledge 
includes arithmetic, namely the operation plus which is used 
to specify topologic constraints between these points of the 
rectangle and their coplanarity. Since straight stairs are 
invariant in rotation we can safely assume an axis-parallelity 
with regard to the representation in figure 3. 
  
Altogether two positive examples and two negative examples 
were necessary to learn a riser. The learning of the concept of 
tread happened analogously. In order to learn a tread the same 
number of examples was required. Rules in lines 14 and 16 (cf. 
table 2) show the learned rules of riser and tread. 
 
Once riser and tread have been learned, they can be used 
as primitives in order to learn the concept of a step.  They are 
added to the background knowledge. In the following the 
learning process will be exemplarily elaborated.  
 
For the completion of the necessary background knowledge of 
step, information about the adjacency between risers and treads 
is required. This is expressed by the relation 
meetsPerpendicular which will be explained later. Now 
we are able to learn the concept of step.  
 
The rule in lines (07-09) (cf. table 2) shows the result clause, 
which defines a step. The head of this rule represents the whole 
step object, whereas the body defines its aggregated 
primitives. The attributes R and T serve as an identifier for 
riser and tread respectively which the whole step is 
composed of. The geometric description of the model is given 
by the location and form parameters. The location parameter of 
step is described by the attribute Point1. Figure 5 

demonstrates that this attribute represents the left point of its 
riser. The remaining attributes Height, Depth and Width 
constitute the form parameters. For the consistency of the 
model the locations as well as the form parameters have to be 
propagated, that is, they occur as attributes in the head of the 
rule. 
 
The semantic rules are implicitly specified by the identity of the 
attributes and the relation meetsPerpendicular. On the 
one hand, the identity of the attribute Width in riser and 
tread represents the constraint that within the same step the 
riser and the tread have the same width. On the other hand, the 
occurrence of this attribute in the head ensures its propagation 
from the parts to the whole step. In contrast, the values of 
Height and Depth are only inherited as property of step 
without being further constrained. In addition to the identifier R 
and T both the location parameter Point1 and the form 
parameters Height, Depth and Width are propagated. We have 
already explained that the symbol ‘,’ in the rule must be 
interpreted as a logical AND. This rule means that step is a 
valid step if a riser and a tread exist which have the same 
Width and which are further perpendicularly connected. 
 
As mentioned in section 3.2.2 we demonstrate the construction 
of the MSC using an example of step. In order to form a rule for 
a step, Aleph searches the subset of the background knowledge 
which is relevant for a seed example and conforms to the mode 
declarations defined by the user. Table 3. shows an instantiation 
of these declarations for the case of step. The target predicate is 
declared with the modeh declaration which also specifies the 
necessary attributes of a step. The other declarations represent 
the possible predicates that may appear in the body of the 
learned rule. 
 

 

 
Table 3. Mode declarations of step 

 
modeh(*,step(+riser,+tread,+point,+height, 
  +depth,+width)).      
modeb(*,riser(+riser,+point,+height,+width)). 
modeb(*,meetsPerpendicular(+riser,+tread)). 
modeb(*,tread(+tread,-point,+depth,+width)). 
 



 

 

Figure 5: Parameters of a step; 5a, 5b, 5c: Positive examples of a step; 5d, 5e, 5f: Negative examples of a step 

At the beginning of the learning process, Aleph picks up a seed 
example such as step(r,t,p,1,2,3) provided by the user. 
This fact describes that a step is composed of riser r and 
tread t with Height = 1, Depth = 2 and Width = 3 
respectively. We assume that the following facts are available 
in the background knowledge: riser(r,p,1,3), 
tread(t,p’,2,3) and meetsPerpendicular(r,t). 
In this case the identity of the constants r and 3 in step and 
riser is decisive to specify how relevant the fact 
riser(r,p,1,3) is for step(r,t,1,2,3). In the same 
manner the remaining facts will be considered as relevant. 

sequently the following rule is formed from these facts:   

r,t,p,1,2,3) 3),                       
      meetsPerpendicular(r,t).  

lause which 
 the mode declarations presented in table 3.: 

ould be note
at four positive examples and two negative examples were 

Con

tep(

eets

,Width), 
ead(T,P’,Depth,Width), meetsPerpendicular(R,T). 

ertical and horizontal alignment of riser and tread respectively.  

d three 
egative examples were needed to learn the rule of step. 

 the 
lation meetsPerpendicular in line 18 ensures this 

d 

contains clauses and facts that 
present logically encoded information relevant to the domain 

t and adjust the temporary 
sults and classify new examples until a valid model of the 
rget concept has been generated.  

 

bottom-up approach consisting in learning non-
cursive primitives of stairs first, and then learning the whole 

  
s    riser(r,p,1,3), tread(t,p’,2,
 
 
Now this rule is generalised to the following c
m
 
step(R,T,P,Height,Depth,Width)   riser(R,P,Height
tr
 
The relation meetsPerpendicular in Table 2 ensures the 
topological correctness of the step model. A 3D model is said to 
be topologically correct if only meets and disjoint are allowed 
as spatial relations between its different objects (Egenhofer and 
Franzosa, 1991), viz, that geometric objects do not intersect or 
cover one another. This is assured by the arithmetic operation 
plus which moves the left point of riser by the distance 
Height along the z-axis. The perpendicularity is ensured by the 
v
 
In order to understand how the examples influence the learning, 
an excerpt of positive and negative examples which has been 
used to learn a step is illustrated in figure 5.  The first three 
examples are positive examples, whereas the last three are 
negative examples. The examples 5a, 5b and 5c represent 
correct steps in which riser and tread have various Depth and 
Height and are perpendicular connected to build a step with a 
mutual edge. The example 5d avoids that a tread and a riser are 
validated to a step although they do not meet. Example 5e 
cannot represent a step because the constraint enforcing the 
movement of the left point of the riser along the z-axis is not 
satisfied. The last example 5f illustrates the case that the riser 
meets perpendicularly with another geometric object which 
does not correspond to a tread. All in all three positive an
n
 
The concept of steps is only one part of the concept of stairs. 
The adjacency between steps has to be learned as well. In 
contrast to the relation meetsPerpendicular in line 11 

which ensures the topologic correctness within a step
re
correctness between two neighbouring steps within stairs. 
 
Now we have the necessary background knowledge to learn the 
recursive concept of stairs. The rule for stairs has already 
been shown in table 2 (cf. lines 01-05).  The square brackets in 
this rule symbolise a list in Prolog. In other words, stairs are 
represented as a list of steps which is separated into head and 
tail (stairs([head|tail])). The new stairs on the left side of 
the rule consists of the stairs from the right side 
concatenated with the next new neighbouring step. As 
mentioned above, the neighbourhood of the steps is ensured 
with the meetsPerpendicular relation. This concatenation 
of steps implies that the new stairs consists of exactly one 
step more than the one before. Once again it sh
th
sufficient to learn the recursive clause stairs. 
 
Aleph is one of the so-called batch learners. This means that the 
examples which are labelled positive or negative have to be 
provided before the learning process takes place, in contrast to 
incremental learners which expect that the examples will be 
given step by step. In this context the positive and the negative 
examples of the concept to be learned are written in two 
separate files. The background knowledge is delivered 
additionally in a third file which 
re
of interest.  
 
Furthermore, the validity of the generalised models has to be 
verified by a user. Thus, Aleph belongs to the category of 
interactive systems. Since attribute grammar rules are 
generative, the user is able to tes
re
ta

 
5. SUMMARY AND OUTLOOK 

We have introduced an ILP based approach for learning 
semantic models and grammar rules of building parts and have 
taken straight stairs as an example to demonstrate our machine 
learning approach. Beside the geometric and the topological 
constraints, the specific challenge lies in handling the complex 
recursive structure. This complexity has been overcome by 
using a 
re
stairs.    
 
The ability to corporate background knowledge turns out to be a 
major tool to cope with this kind of complexity. The learned 



 

ic point of view. A very limited number of examples 
ere sufficient to explain a human understanding of stairs to the 

 for an 
teractive generating of semantic models and attribute 

 deal with these uncertainties 
nd deviations, our future works will include probabilistic logic 
odels in the learning process.  
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and semant
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machine.  
 
Recursion did not turn out to be a major obstacle. 
Consequently, this is the first step of a major project
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grammar rules of man-made objects such as buildings.  
 
This paper proposed a machine learning method for 3D models 
which requires examples provided by the user. Another 
possibility is to learn such models by taking into consideration 
observed noisy data. In order to
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