
Integration of rendering technologies and visualization techniques to improve 3D Mobile GIS
applications

M. Farnaghi a, A. Mansourian a, A. Toomanian b

a Dept. of GIS, Faculty of Geodesy & Geomatics Eng, K.N.Toosi University Of Technology, Vali-e-asr St., Mirdamad Cross,
 Tehran, Iran, P.C 19967-15433 – (farnaghi@dena.kntu.ac.ir, mansourian@kntu.ac.ir)

b GIS Centre, Dept of Physical Geography and Ecosystems Analysis, Lund University, Sölvegatan 12
SE-223 62 Lund, Sweden – ara.toomanian@nateko.lu.se

Workshop on quality, scale and analysis aspects of city models

Keywords: 3D visualization, GIS, Mobile computing, Tiling, Direct3D Mobile

ABSTRACT: This paper proposes integration of different technologies, techniques and standards to improve the efficiency of 3D
mobile GIS applications. The paper describes different challenges that developers face while developing a 3D mobile GIS
application. It then investigates different solutions to resolve the problems. Integration of client/server architecture and web services
technologies together with culling methods, Level of Detail (LOD) and tiling mechanism was a proper solution that adapted and
implemented. The frame rate was used as an indicator for the test. The results of the implementation and tests showed an
improvement in 3D mobile GIS application when using the proposed solution.

1. INTRODUCTION

3D Mobile GIS has a variety of applications in urban
management, disaster management, tourism, utility
management, etc. However design and development of 3D
Mobile GIS is a challenging work due to limitations of mobile
devices in comparison with desktop computers:

• All mobile and handheld devices suffer from low CPU re-
source.

• Most of mobile and handheld devices have low memory.

• Mobile and handheld devices have limited visualization
capabilities.

• 3D visualization in mobile devices needs an appropriate
3D rendering API.

• Mobile networks don’t have enough band-width to trans-
fer large amount of data.

• 3D spatial data is commonly larger in size than 2D spatial
data and therefore transferring such data over networks
could be a challenging work.

During the last few years, different studies have been conducted
with respect to rendering and visualizing 3D data on mobile
devices, emphasizing on just some aspects of the above-
mentioned challenges. These studies have also rarely attended
on developing an operational 3D Mobile GIS. In this respect,
Lipman (2004) developed a stand-alone mobile application that
renders 3D steel structures. Huang et al. (2007) developed a
mobile application to render 3D objects on mobile devices.
Nadalutti et al. (2006) worked on rendering of X3D content on
mobile devices. Chung et al. 2009 developed a 3D virtual
viewer on mobile device for wireless sensor network-based
RSSI (R… S… S… I…) indoor tracking system. However,
none of these solutions are applicable as a total solution for
development of 3D mobile GIS applications. In fact, due to the
large size of GIS data, storing 3D data on a mobile device is not
a rational solution for 3D spatial data exploration on mobile
devices with low memory.

Baldauf et al. (2008) presented client/server architecture to
explore 3D spatial data on mobile devices. They developed a
J2ME client application that could connect to the server
application and retrieve required 3D data. Although, this
client/server solution is more suitable than the stand-alone
approaches, it is not still a proper solution for 3D mobile GIS
due to the rendering mechanism which is used. Baldauf et al.
(2008) utilized a server side rendering mechanism that is not a
proper rendering method for wireless network environment, as
will be described later in section 2.3.

Considering the above descriptions, this paper intends to
propose an integrated solution to improve 3D mobile GISs by
resolving the limitations of mobile devices, described earlier.
To achieve the aim, the paper is organized as follow. In section
2, different technologies, standards and techniques which
should be utilized and integrated for the development a 3D
mobile GIS is depicted. Design and development of a prototype
3D mobile GIS, based on the proposed solutions, is explained in
section 3. The last section of the paper includes conclusions and
future trends.

2. MATERIALS AND METHODS

2.1 Client/Server Architecture

Despite centralized architecture in which a computer handles all
processing, including input, output, data storage, retrieval, and
analysis, client/server architecture is a distributed application
architecture that partitions tasks or workloads between service
providers (servers) and service requesters, called clients (DAA,
2009). Often clients and servers operate over a computer
network on separate hardware. A server is a high-performance
host that is a registering unit and shares its resources with
clients. A client does not share any of its resources, but requests
a server's content or service function.
The development of 3D Mobile GIS applications with
client/server architecture is a suitable solution to the first and
second challenges, described earlier. In a client/server
application some part of processing and analysis tasks are
operated at the server side. Therefore, the client processes are
reduced. Additionally, in a client/server application, there is no

need to store all of the required data, locally, on a client device.
In fact, client application requests the server to send required
data on demand. It is perceived that the client/server
architecture can resolve the limitations relevant to CPU and
memory of mobile devices in 3D Mobile GIS.

2.2 Web Services Technologies

The mobile networks do not always have permanent and
reliable connection. Thus, the classical client/server
architecture, which presumes always-on broadband
communication, is rarely suitable for mobile applications. A
more resilient model consists in developing a full-featured
client/server application is to use Web services technologies
(Badard 2006).

Web services technologies are realization of a software design
pattern called service-oriented architecture (SOA). In SOA, the
services are applications which present piece of functionality
that fulfils users' (human or software package) requirements.
Such a service is generally implemented as a course-grained,
discoverable software entity that exists as a single instance and
interacts with applications and other services through a loosely
coupled, message-based communication model (Zimmermann
et al., 2004). The service is a software entity that is available
over the Internet or private (intranet) networks; uses a
standardized messaging system; is not tied to any one operating
system or programming language; is self-describing via a
common grammar; and is discoverable via a simple find
mechanism (Brown et al., 2002).

Web services are implemented using a collection of standards,
including network transport protocols such as TCP/IP and
HTTP, meta-language standards such as XML, service
communication standards such as SOAPa, service description
standards such as WSDLb and service publishing and discovery
standards such as UDDIc.

In order to develop an operational server component for the 3D
mobile GIS application, they should be developed as a standard
service, providing interoperable interface for any other mobile
application as well as a more reliable client/server interaction.
Development of server components of the system as services,
using web services technologies, provides the system with such
capabilities.

2.3 3D Rendering on Mobile Devices with Mobile Graphic
APIs

There are several approaches for the rendering of 3D data on
mobile devices. They can be divided into three categories
(Mikovec et al. 2006):

• Server-side or remote rendering: This is a solution in
which the rendering process is performed on a server
computer with powerful graphics accelerator. The
rendered scenes are sent to the client application to be
displayed. Sanna et al. (2004), Pasman and
Woodward (2003) and Baldauf et al. (2008) have
used this approach in their studies.

• Client-side or on-board rendering: This approach
renders the 3D data completely on the mobile device.
Zunino et al. (2003) has adapted this approach as an
example.

a Simple Object Access Protocol or Service-Oriented Access

Protocol
b Web Service Definition Language
c Universal Description, Discovery, and Integration

• Hybrid rendering: The hybrid solution balances the
workload between the server and the client. It is used
by Hekmatzada et al. (2002) and Diepstraten et al.
(2004).

Since mobile devices have only recently reached a performance
that allows them to manage 3D graphics, most of the 3D
rendering applications on mobile devices focuses on remote
rendering rather than on-board or hybrid solutions (Nudalutti et
al., 2006). The remote rendering for mobile devices needs to
have a permanent and reliable wireless connection that is not
always available. Additionally, considering the work load of the
rendering process, the server will not be able to support too
many simultaneous client applications.
The hybrid rendering methods are complicated for the
implementation. As a result, in this research the 3D data are
completely rendered on the mobile devices (using on-board
rendering solution) through a proper Mobile Graphic API.
There are different Graphic APIs which are applicable for
development of graphical applications on desktop computers.
Three of the well-known graphic API for mobile devices are:

• Mobile 3D Graphics (JSR 184)

• Microsoft Direct3D for Mobile (D3DM)

• OpenGL ES

The Mobile 3D Graphics API, commonly referred to as M3G, is
a specification defining an API for writing Java programs that
produce 3D computer graphics. It extends the capabilities of the
Java Platform Micro Edition. M3G is a completely high-level
API that originated from previous APIs such as Java 3D and
OpenInvendor. Commonly standardized high-level APIs are not
as popular as low-level ones for writing dedicated engines, such
as a game engine (Pulli et al., 2008) or a GIS engine. Hardware-
accelerated low-level APIs can provide more flexible tools for
development of any dedicated engine. Additionally, if the/a
developer wants to create such engine using a high-level API
such as M3G, the entire program should be developed in Java
incurring a significant performance penalty. Therefore, in this
study, we don’t recommend to use M3G in 3D mobile GIS
applications developments.

Microsoft Direct3D Mobile is a low-level API that provides
support for 3D graphics applications on mobile devices,
(Direct3D, 2009). It is a subset of Direct3D API found on
Microsoft Windows-based desktop systems. Microsoft
Direct3D Mobile is optimized for use on embedded systems.

OpenGL ES is a cross-platform API for 3D graphics on
embedded systems - including consoles, phones, appliances and
vehicles. It consists of well-defined subsets of desktop
OpenGL, creating a flexible and powerful low-level interface
between software and graphics acceleration, (OpenGL ES,
2009).

During the last decade, various researchers such as (Miszalok,
2009; Roy, 2002 and Akenine-Moller et al., 2008) compared
these technologies from different point of views. As a result of
these studies as well as the investigations of the present
research, the selection of one of these two technologies for the
implementation, generally relates to the experience of
development team and the implementation platform of the end-
user device. It is expected to address the third and the fourth
challenges by use of Direct3D Mobile or OpenGL ES..

2.4 Rendering Techniques

While this paper proposes on-board rendering approach, it is
necessary to reduce the workload of mobile devices by adapting
proper rendering techniques. In this section some 3D rendering
techniques are discussed which can be used to improve the
performance of 3D applications.

2.4.1 Viewing frustum culling

In 3D space the viewpoint can only see a partition of space that
is called frustum. Geometries that are not within the inner space
of this frustum are not visible to viewpoint and can be ignored
(Chung et al., 2009). The act of determining the objects that
entirely lie outside of the viewing frustum and ignoring them
from rendering process is called viewing frustum culling
(Akenine-Moller et al., 2008).

2.4.2 Back-face culling and Occlusion culling

It is impossible to directly see the back side of an object, when
it is modelled as a solid object. Additionally it is not possible to
see the objects that are entirely behind other opaque objects. So,
to save time, back-facing geometries and occluded geometries
can be ignored to be rendered. This technique is known as back-
face and occlusion culling (Akenine-Moller et al., 2008).

2.4.3 Multi-resolution rendering

Complex geometries can be simplified into some levels and
depend on the criteria like viewpoint location, simplified copy
geometry could be sent to rendering stage.

2.4.4 Level of Detail (LOD) and Tiling

The term level of detail (LOD) refers to the capability of
providing and using different representations of spatial object,
at different levels of accuracy and complexity, depending on
specific application needs (Danovaro et al., 2006). A large
dataset can be tiled into different levels of a pyramid. Each level
of this pyramid covers the same area of the source dataset. Each
level of this pyramid contains a simplified version of data with
a pre-calculated Level of Detail. Tiling of data with level of
detail can help the application to access the large datasets
partially and on-demand. In other words, using tiling with level
of detail each user of the system just needs to receive
appropriate tiles of data in proper level to gain required data.
This can prevent the application from loading large size
datasets.

It seems that the combination of culling methods and multi-
resolution rendering can significantly improve the performance
of client application by addressing the third and the fourth
challenges. However, using multi-resolution increases the size
of the stored data on mobile device and considering the low
storage size of mobile devices this can be a problem. To solve
this problem a tiling mechanism along with level of detail
(LOD) can be used. Using these mechanisms, a large dataset is
divided into smaller parts at different levels of a pyramid. At
each level, level of detail is calculated based on LOD strategy
of user. Then the tiled dataset is served through the server
components over the communication infrastructure. Mobile
device can establish a connection to the web service and receive
its data partially. In other words, this research proposes
applying culling methods and multi-resolution models along
with tiling mechanism and LOD for developing 3D mobile GIS
applications.

Additionally tiling mechanism can effectively respond to low
band-widths of mobile networks and large size of 3D data
which are the fifth and sixth challenge, described earlier. Using

the tiling mechanism, client application always receives the
optimum part of data and therefore the data transfer between
client and server will be efficient.

2.5 3D Graphic formats and GIS formats

3D mobile GIS applications should support vector, raster and
elevation data. Vector data should be stored and transferred in a
3D capable format. The format should be also a GIS format to
be able to carry the topology data of vector datasets. Therefore
standard 3D formats such as VRML and X3D are not applicable
in this context. Evaluation of different spatial data formats
proves that currently GMLa is one of the most popular and
complete formats that can be used to store and transfer 3D
spatial data for 3D mobile GIS.

Raster data should be stored and transferred through an image
format that does not allow spatial and quality loss. Additionally,
the raster format should be capable of carrying spatial reference.
This paper proposes tagged image format (*.tif) as a proper
format for raster data, due to it’s capability of carrying spatial
reference information.

In order to store and transfer elevation data, triangulated
irregular network (TIN) data is stored in X file which is a well
known format in 3D visualization world. X file format is a
binary format and optimum for storage and transferring 3D
data.

3. SYSTEM ARCHITECTURE AND A PRACTICAL
TEST

This section describes the design, implementation and test of a
prototype 3D mobile GIS application, based on the solutions
described earlier.

3.1 Architecture

The proposed system has a client/server structure where the
overall architecture is illustrated in figure 1. The system has
four main subsystems: (i) the manager subsystem responsible
for pre-processing 3D data and tiling input data into the server
data repository, (ii) the server subsystem which loads 3D tiled
data from the data repository and responds to the client, (iii) the
communication layer that implements the communication
mechanism, and (iv) the client application that connects to the
server and receives the data and renders 3D geodata.

a Geography Mark-up Language

Data Repository

Figure 1 Overall system architecture

3.2 Manager Subsystem

The manager subsystem is responsible for pre-processing data
and tiling specified datasets. In order to tile spatial data, a tiling
mechanism is developed that tiles each dataset in a pyramid in
WGS 1984 geographic coordinate system. Each level of this
pyramid covers an area of 180°×360° in latitude and longitude
directions. In each level (n) there are 2n× 2n tiles of data.
Minimum number of levels can be computed based on
resolution of initial dataset through Eq. 1.

)(ceiling log
360

2
TRN ×= a (Eq. 1)

The tile number (row and column of the tile) of desired
coordinate is calculated through Eq. 2.

)
360

2)180((

)
360

2)180((

n

n

floorj

floori

×−
=

×+
=

ϕ

λ
b (Eq. 2)

The coordinate of top left corner of each tile can be computed
through Eq. 3.

n

n

j

i

2
360180

180
2

360

×
−=

−
×

=

ϕ

λ
c (Eq. 3)

a N symbol is used to denote minimum number of levels. R
symbol is used to denote the resolution of input data. T
symbol is used to denote the specified tile size.

b λ symbol is used to denote longitude of desired coordinate. φ
symbol is used to denote latitude of desired coordinate. n
symbol is used to determine the level in the pyramid. i and j
symbols define the row and column of the tile in level n in
which the desired coordinate will be.

c i and j symbols define the row and column number of the tile
in level n. n symbol is used to determine the level in the
pyramid. λ symbol is used to denote longitude of top left

There is a convention for naming of each tile in each level. The
manager subsystem is developed as a desktop application that
helps to manipulate data in data repository. The application can
access to data repository through the LANd.
3.3 Server

The server consists of a data service and a map service. These
two services are completely developed based on web services
technologies using Microsoft ASP.NET Web Services
Technology. The map service is responsible for presenting
general setting for the client application such as layer names
and rendering conditions. The data service is responsible for
transferring requested data to the client. The data service
delivers appropriate tiles to the client based on the client’s
needs.

The server contains a data cache that manages frequently
requested data on the server. There is a method that
synchronizes the cached data with the source data. This method
cleans the cached data if the main data is changed or deleted. In
addition, there is a client side cache which is implemented on
the communication layer.

3.4 Client

Client application is responsible not only for the interaction
with the users but also the data presentation to them. The client
application is able to establish connections to the server using
communication platforms that are provided by the mobile
device. Once the client application establishes a connection, it
creates a communication thread and sends a map request to the
server and receives an XML file that contains application
settings. After applying those settings, the client creates another
communication thread and sends viewing parameters to the
server and receives the appropriate tiles of data. The data will
then be rendered on screen.

The client application is developed using Microsoft .NET
Compact Framework. The programming language was C#. The
client application runs on most Windows CE based platforms
such as Microsoft Windows Mobile Operating System.

The problem of rendering 3D graphics on mobile devices is
simplified by Direct3D Mobile and OpenGL ES. In this
research, the client application favours the Direct3D Mobile for
rendering 3D data on mobile device. The client uses a culling
method that substantially reduces the geometry sent to the
rendering stage. In fact, before sending geometry to rendering
stage, two methods begin to work: (1) viewing frustum culling
method, (2) occlusion and back-face culling method. The
former method prevents the selection of objects which are not
within viewing frustum of viewpoint. The latter method
prevents selection of the objects which their line of sight to the
viewpoint is blocked with other objects. After applying these
methods, proper geometries are selected and will be sent to
rendering stage.
Additionally, a multi-resolution mechanism is implemented in
the client application that supports focusing on a given area of
the scene for detailed extraction of the relevant geometry.

3.5 Communication Layer

The communication between the client and the web services
(server) is handled by the communication layer on top of the
HTTP protocol. The layer implements some classes for
communicating with the map service and data service.

corner of the tile. φ symbol is used to denote latitude of top
left corner of the tile.

d Local Area Network

This layer contains a data cache that stores requested data on
the client side. This cache periodically checks the size of cached
data and deletes part of them if the size exceeds a specified
value. Additionally this cache contains a synchronization
method that checks to see if the data is synchronized with the
source data on the server based on the metadata of tiles.

3.6 Evaluation and Test

To test the system, the client application ran on a Dell Axim
X51 PDA and PocketPC 2003 emulator. The server ran on a
typical desktop personal computer. A X * X Km2 area of
Tehran, the capital of Iran, was selected as the case study and its
3D data including elevation data as TIN, building block data as
volumes and road data as surfaces, were entered to the system.
Maximum number of triangles viewed is at most 2000 for the
specified data when the viewpoint is close to the map and less
than 1200 when the viewpoint is far from the map. The scene
resolution changes progressively during navigation.
To evaluate the system, frame rate was selected as an indicator
of performance of the system. Frame rate (frequency), is the
measurement of the frequency at which an imaging device
produces unique consecutive images called frames. Frame rate
is most often expressed in frames per second (FPS). Larger
frame rate shows that the processes to generate frame in a
visualization application are done faster and this means that the
application is working more efficiently. To test the system, a
path was determined on the test data. The viewpoint was moved
through the path and frame rate of the client application were
measured. Error! Reference source not found.3 and Error!
Reference source not found. are two plots that show the frame
rate of 3D GIS data rendering on client application in two
different modes.

Figure 2 Frame rate of rendering the test data when culling,

multi-resolution, tiling, and LOD is turned off and all the data is
saved on client application

Figure 3 Frame rate of the test data when culling, multi-

resolution, tiling, and LOD is turned on and data is
progressively transferred to the client application by the server

Error! Reference source not found. shows the plot of frame
rate of the client application when culling, multi-resolution,
tiling, and LOD is turned off and all the data is saved on the
client application. In fact figure 2 is a plot of a stand-alone
application, without any of the recommended rendering
techniques and tiling mechanism. Figure 3 shows the plot of the
client application when these methods are all turned on and the
data is retrieving from the server on demand. The plots show
that the frame rate in the second situation is better than the first
one. In the second plot, maximum frame rate reaches to about
17 fpsa but in the first plot it doesn’t exceed the 11 fps.
Additionally in the second plot, the average frame rate is equal
to 7.068 while in the first plot the average frame rate is equal to
11.803. It shows that the proposed architecture along with the
recommended technologies and solutions can obviously
improve the performance of 3D mobile GIS applications.

4. CONCLUSION AND FUTURE WORKS

This research intended to propose a 3D mobile GIS application
that can operate on mobile devices in a proper manner. In order
to reduce the work load of the 3D mobile GIS application, a
client/server architecture based on web services technologies
was recommended as suitable architecture for the system. The
client/server architecture also addresses the problem of low
storage size of mobile devices by storing large datasets on the
server.

Considering the low band-width of mobile network a tiling
mechanism was developed to split large datasets into various
tiles in different levels of a pyramid. Each level of the pyramid
contains a generalization of source data with a calculated level
of detail. Tiled data are sent to client application by the server
of the system. This approach allows the users to visualize and
manipulate large GIS data on restricted mobile devices.

The server components of the system are developed as web
services based on web services technologies standards,
therefore these services can support any other applications on
mobile devices or personal computers that need to access the
tiled data of the system.

The system evaluated through a performance test which
performed using frame rate indicator. The evolution show that

a frame per second

proposed architecture and utilized technologies can significantly
improve the performance of the 3D mobile GIS applications.

For the future work, improvement of the user interface of the
system and also evaluation of the system in an operational
environment is considered. This implementation also can be
used as a base for development of egocentric GIS applications
or augmented reality.

5. REFERENCE

Akenine-Moller T., Haines E., Hoffman N., 2008. Real-Time
Rendering, L K Peters Ltd.

Badard T., 2006, Geospatial Service Oriented Architectures for
Mobile Augmented Reality, Proceedings of the 1st International
Workshop on Mobile Geospatial Augmented Reality, Banff,
Canada, p.73-77.

Baldauf M., Fröhlich P., and Musialski P., 2008, A Lightweight
3D Visualization Approach for Mobile City Exploration,
Proceedings of TIPUGG, First International Workshop on
Trends in Pervasive and Ubiquitous Geotechnology and
Geoinformation GIScience conference

Brown, A., Johnston, S., Kelly, K., 2002. Using Service-
Oriented Architecture and Component-Based Development to
Build Web Service Applications. A Rational Software White
Paper, Visited on:
http://www.ibm.com/developerworks/rational/library/510.html,
last access: June 2, 2009.

Chung W. Y., Lee B. G., and Yang C. S., 2009, 3D Virtual
Viewer on Mobile Device for Wireless Sensor Network-based
RSSI indoor tracking system, Journal of Sensors and Actuators
B 140, 35-42.

DAA: Distributed Application Architecture, Sun Microsystems,
http://java.sun.com/developer/Books/jdbc/ch07.pdf. Retrieved
on 2009-06-16.

Danovaro E., De Floriani L., Magillo P., Puppo E., and Sobrero
D., 2006, Level-of-detail for data analysis and exploration: A
historical overview and some new perspectives, Journal of
Computers & Graphics, Vol. 30, p-334-344.

Diepstraten J., Gorke M., Ertl T., 2004, Remote Line Rendering
for Mobile Device, CGI ’04: Proceedings of the computer
graphics international. Washington, USA: IEEE Computer
Society.

Direct3D Mobile, http://msdn.microsoft.com/en-
us/library/aa452478.aspx, last access: June 15, 2009.

Hekmatazada D., Meseth J., Klein R., 2002, Non-photorealistic
Rendering of Complex 3D Models on Mobile Devices,
Proceedings of eighth annual conference of international
association for mathematical geology, Vol. 2, p. 93-98.

Huang J., Bue B., Pattath A., and Ebert D. S., 2007, Interactive
Illustrative Rendering on Mobile Devices, IEEE Computer
Graphics and Applications, v.27 n.3, p.48-56.

Lee K., 2007, 3D Urban Modelling and Rendering with High
Resolution Remote Sensing Imagery on Mobile 3D and Web
3D Environments, Proceedings of Urban Remote Sensing Joint
Event, p. 1-5.

Lipman R. R., 2004, Mobile 3D Visualization for Steel
Structures, Journal of Automation in Construction, Vol. 13, p.
119-125.

Mikovec Z., Cmolik L., Kopsa J., and Slavik P., 2006, Beyond
Traditional Interaction in a Mobile Environment: New

Approach to 3D Scene Rendering, Journal of Computers &
Graphics, Vol. 30, p. 714-726.

Miszalok, V., (2009), OpenGL and DirectX,
http://www.miszalok.de/Lectures/L05_OpenGL_DirectX/OGL_
DX_english.htm, last access: June 29, 2009.

Nadalutti D., Chittaro L., and Buttussi F., 2006, Rendering of
X3D Content on Mobile Devices with OpenGL ES,
Proceedings of Web3D 2006, p. 19-26.

OpenGL ES, http://www.khronos.org/opengles/, last access:
June 15, 2009.

Pasman W., AND Woodward C., 2003, Implementation of an
Augmented Reality System on a PDA, In ISMAR’03:
Proceedings of the second IEEE and ACM International
Symposium on Mixed and Augmented Reality, IEEE Computer
Society, Washington, DC, USA, 276.

Pulli K., Aarnio A., Miettinen V., Roimela K., and Vaarala J.,
2008, Mobile 3D Graphics with OpenGL ES and M3G, Morgan
Kaufmann Publishers, USA.

Roy, P., (2002), Direct3D vs. OpenGL: Which API to Use
When, Where, and Why,
http://www.gamedev.net/reference/articles/article1775.asp, last
access: June 29, 2009.

Sanna A., Zunino C., AND LAMBERTI F., 2004, A
Distributed Architecture for Searching, Retrieving and
Visualizing Complex 3DModels on Personal Digital Assistants,
International Journal of Human Computer Studies, Vol. 60, p.
701–716.

Thomson, R., (2009), Direct3D vs. OpenGL: A Comparison,
http://www.xmission.com/~legalize/d3d-vs-opengl.html, last
access: June 29, 2009.

Zimmermann O., Tomlinson M.R., Peuser S., 2004.
Perspectives on Web Services: Applying SOAP, WSDL and
UDDI to Real-World Projects. Springer-Verlag, Berlin
Heidelberg New York.
Zunino C., Lamberti F., and Sanna A., 2003, A 3D Multi-
resolution Rendering Engine for PDA devices, Proceedings of
seventh world multi-conference on systemics, cybernetics and
informatics (SCI03), Vol. 5, p. 538-542.

http://www.ibm.com/developerworks/rational/library/510.html
http://java.sun.com/developer/Books/jdbc/ch07.pdf.%20Retrieved%20on%202009-06-16
http://java.sun.com/developer/Books/jdbc/ch07.pdf.%20Retrieved%20on%202009-06-16
http://msdn.microsoft.com/en-us/library/aa452478.aspx
http://msdn.microsoft.com/en-us/library/aa452478.aspx
http://www.miszalok.de/Lectures/L05_OpenGL_DirectX/OGL_DX_english.htm
http://www.miszalok.de/Lectures/L05_OpenGL_DirectX/OGL_DX_english.htm
http://www.khronos.org/opengles/
http://www.gamedev.net/reference/articles/article1775.asp
http://www.xmission.com/%7Elegalize/d3d-vs-opengl.html

	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1 Client/Server Architecture
	2.2 Web Services Technologies
	2.3 3D Rendering on Mobile Devices with Mobile Graphic APIs
	2.4 Rendering Techniques
	2.4.1 Viewing frustum culling
	2.4.2 Back-face culling and Occlusion culling
	2.4.3 Multi-resolution rendering
	2.4.4 Level of Detail (LOD) and Tiling

	2.5 3D Graphic formats and GIS formats

	3. SYSTEM ARCHITECTURE AND A PRACTICAL TEST
	3.1 Architecture
	3.2 Manager Subsystem
	3.3 Server
	3.4 Client
	3.5 Communication Layer
	3.6 Evaluation and Test

	4. CONCLUSION AND FUTURE WORKS
	5. REFERENCE

