
 
A FRAMEWORK FOR GENERALIZATION OF 3D CITY MODELS  

BASED ON CITYGML AND X3D 
 
 

Bo Mao a, *, Yifang Ban a, Lars Harrie b 

 
a Geoinformatics, KTH, Drottning Kristinas vag 30, SE-100 44 Stockholm, Sweden - (mao2, yifang)@infra.kth.se 

b GIS-centre, Lund University, Solvegatan 12, SE-223 62 Lund, Sweden - Lars.Harrie@nateko.lu.se 
 

Commission VI, WG II/2 
 

 
KEY WORDS: CityGML, X3D, Generalization, CityTree, Visualization, Aggregation, City model, Multiple representation data 

structure  
 
 
ABSTRACT: 
 
In this paper, a novel framework for generalization of 3D city models based on CityGML and X3D is proposed. In the proposed 
framework, the CityGML files are first parsed into a Java environment to acquire the city model information using Citygml4j, an 
open source Java API. Generalization is then performed in the Java environment. The outcome of the generalisation is CityTree, a 
multiple representation data structure of the objects, based on which we can effectively realize the continual scaling and 
dramatically reduce the load time of 3D models.  Finally, the X3D representation is generated from the CityTree Model and is 
displayed by Xj3D viewer. By utilising CityTree, the multiple representation data structure, it is possible to have dynamic zoom 
functionality in real time. The paper describes the general framework and an implementation using this framework on the 
aggregation of 3D building objects. The implementation confirms the applicability of the framework for generalization of 3D city 
models.    
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1. INTRODUCTION 

With an increasing number of people living in or moving to 
cities, cities are growing and sprawling. Thus, development of 
effective 3D visualization tools is of critical importance for 
sustainable urban planning as well as effective communications 
to the general public. The fundamentals of these kinds of tools 
are the 3D city object models. In addition, it is important for the 
public to be able to view the 3D city scenes from the most 
commonly used browsers such as Microsoft IE or Mozilla 
Firefox, thus can tremendously increase the accessibility of the 
online city models.  
 
In August 2008, OGC launched the specification CityGML 
(OGC, 2009) as a common information model for the 
representation of 3D urban objects. It defines the classes and 
relations for the most relevant topographic objects in cities and 
regional models with respect to their geometrical, topological, 
semantic and appearance properties. It is a trend to integrate the 
information about a city into CityGML which can be extended 
by users according to their application requirement (Plümer et 
al., 2005).  
 
However, CityGML is made for geometric, topologic and 
semantic representation, but not for presentation and 
visualization. It is not a good idea to render the 3D scenes 
directly from the CityGML files. Furthermore, the CityGML 
models are often very detailed and should be simplified 
(generalized) to enable efficient and readable presentations. Our 
approach is hence to convert the CityGML data to a 
presentation format X3D (Web3D 2009) and during this 
converting process also simplify the model. The rest of the 

paper is structured as follows. Related works are given in 
section 2. Section 3 mainly introduces CityGML and X3D. Our 
framework is proposed in section 4. The generalization 
algorithm is specified in section 5 and experiment results are 
given in section 6. Section 7 summarizes whole paper. 
 
 

2. RELATED WORKS 

The problem of handling several level of details (LODs) in city 
models has been acknowledged for a long time (e.g. Köninger 
and Bartel, 1998) and the CityGML standard also specifies five 
level of details (OGC, 2009). To obtain this several level of 
details, which is required for efficient visualization, several 
methodologies have been proposed. Kolbe and Gröger (2003) 
proposed an MRDB-model for obtaining consistency between 
the different level of details where one object become a part of 
an object in the adjacent LoD. Other researchers have 
concentrated on establishing generalization methods to change 
the representation between different LoD (see Meng and 
Forberg, 2007, for an overview). Mayer (2005) and Forberg 
(2007) developed a scale-space technique for simplifying 
buildings, partly based on the morphological operators opening 
and closing. Kada (2006) used vertical half spaces to model the 
main outline of a building that were then used to simplify the 
building. Later, he extended the approach by also handling roof 
structures with using best fitting primitive roof types (Kada, 
2007). Fan et al. (2009) proposed a methodology for efficient 
handling of 3D building modelled in CityGML LOD3 
(corresponding to a detailed architecture model). Their research 
showed that good visualisation properties could be obtained by 
only using the exterior shell of the building model that 



 

drastically decreases the required number of polygons. 
However, few of these studies explicitly discuss the framework 
in which the generalisation process should be executed. This 
issue has been extensively discussed in 2D cartographic 
generalisation with a common research framework (Burghardt 
et al., 2003). The framework proposed in this paper has 
similarities with earlier work by Lehto and Sarjakoski (2005), 
who performs generalisation by an XSLT process where they 
translated 2D data from GML to SVG. 
 
 

3. CITYGML AND X3D 

3.1 CityGML 

CityGML is a common information model for the 
representation of 3D urban objects (OGC, 2009). It is realised 
as an open data model and XML-based format for the storage 
and exchange of virtual 3D city models.  
 
CityGML defines five levels of detail (LOD), where objects 
become more detailed with increasing LOD. Meanwhile, the 
CityGML files can contain multiple representations for each 
object in different LOD simultaneously and show the 
generalized objects over different scales.   
 
CityGML files are very large, often several GB for the big 
cities. Even though file sizes can be effectively reduced by 
compression method such as gzip (≈10%) the XML validation 
and processing can be a problem (classical DOM parsing are 
generally not feasible due to main memory limitations) and 
WFS access might have to be realized in an asynchronous way 
in order to avoid timeouts. Another problem with a cityGML 
model is the complexity. A city in itself is very complex and 
CityGML allow modelling of much of this complexity. This is 
of course nice for many applications, but it also stresses the 
need for efficient visualization techniques of CityGML. 
 
3.2 X3D 

X3D is an XML-based ISO standard for visualisation of 3D 
models in computers, the successor of Virtual Reality Modeling 
Language (VRML). X3D supports several pre-defined 
geometry objects such as box, cone, cylinder and so on, which 
can be used to represent CityGML models in X3D (X3D, 2009). 
 
There are several toolkits available for X3D. Xj3D, for example, 
is an open source toolkit for X3D manipulation and 
visualization. Xj3D creates 3D scenes not only in Java 
application viewer but also in Java applet viewer embedded in 
web pages. It renders the 3D scenes with Java bindings for 
OpenGL (JOGL) and supports real time interaction with users. 
Xj3D supplies Scene Access Interface (SAI) to change or build 
X3D worlds. For details see web3D (2009). 
 
In order to add a 3D window to an application, an X3D 
component should be created and added to the application. 
Today there are free X3D components available, e.g. the Java 
class X3DScene. Now we can dynamically build an X3D world 
by creating new X3DScene. Each X3DScene must pre-declare 
what Profile and X3D Components it will use. Profile is a 
shortcut mechanism to reduce the amount of text needed to be 
typed by the end user, and to also specify a set of known 
functionality. Once we have the Profile and Component 
instance, an X3DScene can be created accordingly and 
visualised in the application.  

 
4. OUR FRAMEWORK 

The basic framework of the proposed generalization structure is 
shown in Figure 1. The CityGML dataset can be stored both in 
files and in databases. CityGML dataset is parsed with 
CityGML4j (CityGML4j, 2009) and converted into Java objects 
representing City Objects like buildings, roads which may 
contain both geometry and semantic information from the input 
dataset. CityGML4j can directly deal with the CityGML file 
and if the dataset comes from a database, some extra import 
tools like 3DcityDBv2 (Claus, 2009) may be required.  
 

 
 

Figure 1.  Framework of the 3D city model generalization. 
 
The next step is to convert the original Java classes to one or 
several X3D Scenes, which are instances of the Java class 
X3DScene. To perform this conversion the standard Java 
classes, JAXB is used; for the geometrical and topological 
operation we utilise the open source library JTS Topology Suite 
(JTS, 2009). The outcome of this conversion process is the 
proposed multiple representation data structure, CityTree. An 
option to CityGML would be to perform the conversion using 
XSLT, which is a general tool for converting XML documents. 
However, because of difference between the geometry 
representations in CityGML and X3D, and the visualization of 
semantic information, complex calculates would be required; 
this implies that such a conversion would be difficult to 
implement using XSLT.  
 
In the final step the 3D City view is generated from the City 
tree (stored as X3DScene Java objects). This is performed with 
a Xj3D viewer. Since all generalisations are already performed 
and the different levels of details are stored in the multiple 
representation data structure CityTree, the visualisation process 
can be performed dynamically in real time. 
  
Meanwhile, the Xj3D supports Java Applet which could be 
used to visualize 3D City Model through Internet. Besides Java 
applet, Internet Brower plug-in X3D viewers such as BS 
Contact could also be used for online 3D City Model 
visualization. However, Java applet is recommended because of 
its standardization and smooth integration with the whole 
framework 
 

5. GENERALIZATION 

An implementation of the proposed framework was carried out 
by aggregation of buildings. The framework could be used, 
however, for other data types and generalisation operators. 
 



 

5.1 Work flow of the generalisation 

After the CityGML file is parsed by CityGML4j, all required 
information is stored in Java classes. Because the city models 
are in different LoDs, it is necessary to convert the model from 
higher LoDs to lower LoDs. This study focuses on the building 
aggregation, and therefore buildings are converted to LoD1 
with only ground plan and height information in our 
implementation. 
 
Figure 2 describes the work flow of the generalisation. Firstly, 
the ground plans of the buildings are generated. Then simplify 
those ground plans. Next, the buildings are divided into clusters 
by the road. For each building cluster, a CityTree is created for 
visualization. These four steps are the pre-process. With the 
CityTree, X3D nodes are created to represent the selected 
buildings. The generalization information (aggregated group 
buildings) is also shown in the X3D environment dynamically. 
 
 

 
 

Figure 2. Work flow chat of generalization. 
 

Next, the building clusters are generated by dividing the 
Delaunay triangulation of the building ground plans. Finally, 
for each block, the CityTree, a novel proposed structure 
supporting real-time generalization and continued scaling of 3D 
city model, is generated for visualization. 
 
5.2 Ground plan generation 

Although CityGML schema use groundsurface type to define 
the ground plan of a building, there are still many models do 
not have such semantic information. It is necessary to find out 
method to create the ground plan from a simple surface set 
without any semantic information.  
 
Fan et al. (2009) derived the ground plan from the exterior shell 
model by projecting the wall on the ground and connecting the 
foot-print into a closed polygon. However, this method is based 
on the exterior shell generated by their algorithm which is quite 
complex and time consuming. Actually, in lots of cases like our 
building group application, it is not necessary to compute the 
exterior shell. Meanwhile, the wall based algorithms which 
construct the ground plan from walls can not deal with the 3D 
building model with wall sounded yard. Therefore, a method 

that can directly derive the ground from city models and not 
based on wall is required.  
 
At this paper, every surfaces of the building is used to generate 
the ground plan. The algorithm can be simplified described like 
this. First, project all surfaces into the horizontal plane (xy-
plane). Then, unify the projected surfaces to the ground plan. 
Finally, merge the ground plan to be one polygon. 
 
 

 
 

Figure 3. Flow chart of ground plan generation. 
 

Some buildings are made up of separated parts. Therefore, the 
ground plans for those buildings are multi-polygons. In our 
implementation, Ground plan gp is a multi-polygon. 3D 
building b is constructed from CityGML data. Surface s is a 
common surface in 3D building model b. For every surface s in 
b, project it into the xy-plane and get p. If p is not a polygon 
such as a line, ignore p. If p is a polygon, unify gp and p.  
Finally, merge the polygons in gp to ground plan. JTS is used to 
unify the polygons.  
 
At this step, we only merge the polygons that are close enough, 
otherwise, the building is considered as separated buildings. 
The threshold is set to 0.5 meters. For those close polygons, the 
same merger algorithm in section 6 which is applied for 
different buildings is employed. 
 



 

 
(a) 

 
(b) 

Figure 4. Generated ground plan. 
 
5.3 Ground plan simplification 

For ground plan simplification, Fan’ method (Fan and Meng 
2009) is used. This method is designed for the individual 
building ground plan simplification is used and adjusted 
according to the needs of building group simplification. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. cases of the ground plan simplification. 
 
The simplification is started by selecting the shortest edge of 
the ground plan Sn, and testing weather Sn is shorter than the 
threshold Smin (Sester et al., 2004). If so, delete Sn and adjust 
the neighbour edges. If not, the simplification process is over. 
There are 4 cases as discussed by Fan as shown in Figure 5. 
Figure 6 shows a flow chart of the ground plan simplify process. 
 
Case 1: Sn-1 and Sn+1 are parallel and Sn-1 shorter than Sn+1. 
Then delete Sn-1 and Sn; prolong Sn-2 and shorten Sn+1. As shown 
in Figure 5(a).  
 
Case 2: Sn-1 and Sn+1 are parallel and Sn-1 longer than Sn+1. Then 
delete Sn+1 and Sn; prolong Sn+2 and shorten Sn-1. As shown in 
Figure 5(b).  
 
Case 3: Sn-1 and Sn+1 are not parallel and the intersection point 
P of Sn-1 and Sn+1 is near Sn. Then delete Sn; prolong Sn-1 and 
Sn+1 to P. As shown in Figure 5(c).  
 
Case 4: Sn-1 and Sn+1 are not parallel and the intersection point 
P of Sn-1 and Sn+1 is far away Sn. Then delete Sn; prolong Sn-1 
and Sn+1 to the middle point of Sn. As shown in Figure 5(d). 
 

Figure 6. Flowchart of the ground plan simplification. Modified 
from Fan and Meng (2009). 

 



 

However, Fan’s method is designed for signal building ground 
plan simplification, but we have to deal with the aggregated 
building group. Therefore, we suggest use the dynamic 
thresholds instead of absolute thresholds. Along with the 
aggregation of buildings, the area of the ground plan could be 
changed dramatically, and the thresholds such as Smin should 
change accordingly. In this paper, we mainly take the area of 
the ground plan into consideration, and calculate the Smin and 
other thresholds based on the area of the ground plan. Figure 7 
gives an example of ground plan simplification in detail. The 
original ground plan is given in figure 4(b). 
 

 
 

Figure 7. Ground plan simplification in detail. 
 
Figure 8 shows the simplified buildings in whole study area. 
There are 5330 buildings which contain 35215 points in their 
ground plans. After the simplification, 14150 points are left. 
More than 60% points are deleted, while the grounds plans are 
still quite similar. 
 

 
 

Figure 8. Ground plan simplification whole area. 
 
5.4 Building Clustering 

It is reasonable to divide the buildings into groups according to 
the road in the area. First, buildings in the two sides of the road 
should not be aggregated as long as the road exists. Second, it 
will improve the process performance by clustering buildings, 
since the building number is smaller in a group than whole area, 

which is essential to certain algorithm such as search and 
sorting.  
 
It seems that divided certain area by road is not a difficult test. 
However, in realistic, the data about road is quite mess. A road 
may be composed by several line strings which might be 
connected, parallel or not related. In order to deal with this kind 
of data, Delaunay triangulation of all buildings which is 
represented by its centroid is generated. Then, for each edge in 
the triangulation network, test if it crosses some road, if so, 
delete the edge. By deleting the edges, sub graphs is generated. 
Each sub graph will represent a building group.  
 
 

 
 

Figure 9. Flow chart for the building clustering. 
 
A flow chart for the building clustering is given in Figure 9. 
First, create an array of Point with the centroid of ground plan. 
Then, generated the Delaunay triangulation graph G(V, E) of P, 
in which V is set of the vertexes and E is the set of edges. Then, 
get an edge e from E, and reset the R to contain all roads. If all 
edges in E have been processed (e == null) then the algorithm 
finished. If not, for every road r in R, test whether r crosses e. If 
so delete e from edge set E. Figure 10 shows the result of 
segmentation. It is clear to see that our algorithm can perform 
the building clustering effectively.  



 

 
(a) Building and road data. 

 

 
(b) Triangulation of the buildings (one node per building). 

 

 
(c) Edges that intersects road and/or are longer than100m are 

removed 
Figure10. Building Clustering of whole study area. 

  

5.5 CityTree Generation 

So far we have only made a first example of implementing a 
first algorithm into our framework. A novel structure CityTree 
is proposed to support real-time building aggregation and 
continued scaling of 3D city. This structure is based on a binary 
tree in which leaf nodes represent the original 3D city objects 
(mainly the buildings) and the other nodes represent the 
generalization models of their children. In visualization, 
selected nodes of the CityTree are shown to the user according 
to his/her view point. When the view point is changed, the new 
selected nodes in CityTree will replace the previous ones. With 
CityTree, the real-time generalization of 3D city can be 
efficiently realized.  
 
For each building clustering, the CityTree is generated based on 
“closeness value” between city objects. First, city objects like 
building are represented by their centre of gravity and the 
Delaunay triangulation is used to compute the neighbourhood 
relations between buildings which can be directly got from 
building clustering. Second, get the “closeness value” between 
neighbour buildings based on not only geometry information 
such as the distance, height, area, but also semantics ones like 
usage, owner and so on. In this paper, we mainly consider the 
distance between ground plans and the difference of height. 
Third, merge the closest two nodes to create a new node and 
repeat this step to create a tree—CityTree. The structure is 
implemented by CityGML and X3D and the experiment shows 
that the load time and space in visualization 3D city model can 
dramatically reduced by using CityTree. 
 
Figure 11 gives a demo example of the CityTree. Figure 11(a) 
shows the distribution of the original city object (1~5). The 
rectangle areas (A~D) are created by selecting nearby objects. 
Then, the CityTree is generated as shown in Figure 11(b). The 
leaf nodes (1~5) are original objects in city model. The other 
nodes (A~D) are new generated middle nodes to represent their 
child nodes. 
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Figure11. CityTree Model. 
 



 

Each building cluster Bi is represented by triangulation sub-
graph Gi = (V, E) in which V is the set of vertexes, and E is the 
set of edges. The pseudocode of creating CityTree is shown in 
following steps. 
 
Step1. For every edge e composed by vertex node A and B in E, 
calculate the “distance” between node A and B, set the root of 
A and B to themselves, and children to null, in which A and B 
represent a building respectively. A node contains 4 parts: 
ground plan polygon, height, root, and children. The distance 
may contain the ground plan distance, the height difference, and 
other semantic difference. In this paper, we only consider the 
distance between ground plans. The root is the root node in 
CityTree. Children is its child-nodes. 
 
Step2. Get the edge emin with the smallest “distance” value from 
E.  
 
Step3. Let Node A and B be the two nodes of emin. If RA the 
root of A is not equal with RB the root of B. Then create a new 
node C, set root of RA and root of RB to C, children of C to RA 
and RB, ground plan of C to be the aggregation of RA and RB, 
and the height of C to be the area weighted average of the 
height RA and RB, and the root of C to C. Else set C to RA and 
go to Step 4. 
 
Step4. Delete emin from E. If E is empty set, return CityTree C 
and Exit. Else, go to Step2.  
 
We aggregate the ground plans by selecting and union the 
convex hole generated from the nearest edges of the ground 
plans. Figure 12 shows an example of ground plan aggregation. 
G1 and G2 are ground plans Figure 12(a). First, find out the 
nearest edges between them: A1B1 with A2D2, B1C1 with 
A2A2 are the nearest pairs. Then create the convex holes with 
the nodes of closest edges shown in Figure 12(b). Next select 
the convex hole with smallest area but not zero, and union the 
ground plans with the convex hole shown in Figure 12(c).  
 

 
 

Figure 12. Aggregation of ground plans. 
 
After the aggregation, the new generated ground plan is 
simplified with the simplification method described in 5.3 with 
adjusting the threshold accordingly. In this paper, we adjust the 
threshold according to the area of the ground plan. Figure 13 
gives a example of ground plan aggregation. From (a) to (c), the 
scale is decrease and more buildings are aggregated. 
 

   
                  (a)                                (b)                         (c) 
 

Figure13. Ground plan aggregation result. 
 
5.6 CityTree Visualization 

In the visualization step, the CityTree nodes are selected based 
on the user’s view point and the features of the node. In this 
paper, the distance between the view point and the visible area 
of the node is considered.  
 
Every node in CityTree has a function to create the X3D scene. 
First, the root of the CityTree tests relationship of the ground 
plan area and distance to the view point. We calculate the rate 
of distance square and the area, if the rate is bigger than a 
threshold, then this node is shown in the X3D scene, else we 
test the children of the node to see if they should be visualize in 
the X3D scene. For the leaf nodes with no children, we just 
show them with out test the rate. The pseudocode of CityTree 
visualization is given in Figure 13 
 

 
 

Figure 13. Pseudocode of CityTree visualization 
 
By invoking the createX3DScene function of a CityTree root, 
the “most suitable” nodes are selected for visualization. At this 
paper, we only consider the relationship between view point (vp) 
and the building ground plan area.  
 
In the Xj3D visualization environment, we can get the view 
point in real time, based on that, the 3D city models are created 
dynamically. Figure 14 gives some results of scaling. More 3D 
buildings in detail can be seem when zoom in. 



 

 
(a) CityTree visualization in higher view point 

 

 
(b) CityTree visualization in closer view point 

Figure 14. CityTree Visualization 
 

6. EXPERIMENT RESULT 

The framework was implemented Java application. The 
platform is Eclipse 3.4.1 running on a PC with Inter 2.4GHz 
Core2 Duo CPU, 2.39GHz 3.25GB RAM, and Microsoft 
Window XP SP3. The CityGML data is parsed by citygml4j 
0.2.0. The 3D city model is visualized with Xj3D 2.0.0. The test 
datasets come from the CityGML.org (CityGML, 2009).  
 

 
(a) Before Aggregation 

 

 
(b) After Simplification and Aggregation 

Figure 15. Experiment result 

 
Figure 15 shows an X3D city model of an area around 
Leverkusen in Germany.  Figure 15 (a) is the visualized 3D city 
model with out generalization, while Figure 15 (b) shows the 
result of generalization with our proposed method. 
 

7. CONCLUSION 

In this paper, CityTree, a framework to support the 
generalization of 3D city model, is proposed. CityTree is 
implemented based on CityGML and X3D which are used to 
represent and visualize the 3D city model respectively. 
According to the experiment results, CityTree can effectively 
realize the continual scaling and dramatically reduce the load 
time of 3D models. However, it is still need to be improved in 
the generalization of a group of 3D city models.  
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