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ABSTRACT: 

 

Classified remotely sensed data serves as the basis for various types of city models. Since the requirements concerning the 

correctness of these models are rapidly growing, the demands for a significant assurance of their quality increase as well. Standard 

methods for the a posteriori evaluation of classified data have successfully been applied but they do not fully meet the 

requirements resulting from recent developments, primarily the higher geometric and thematic accuracies of modern sensor 

systems. One consequence is that the uncertainties inherent in all kinds of data cannot be ignored anymore – not even those in the 

so-called ground truth data which is used as reference in the quality assessment process. Hence, we propose an integrated 

approach that considers uncertainties in both the classification and the reference data. The phenomenon of indeterminate 

boundaries – another effect of more accurate remote sensing data – is treated using a border model based on fuzzy logic. 

This paper describes the overall concept (section 1) as well as its key steps, the generation of transition zones including the 

fuzzification process (section 2) and the derivation of the advanced uncertainty measure (section 3). In section 4 we present an 

example application of the concept dealing with the evaluation of a classified orthophoto scene. 

 

 

1. CONCEPTUAL OVERVIEW 

Basically, the conventional evaluation procedures for classified 

remote sensing data (especially in connection with a 

comparison between classification result and reference) take 

the reference data to be error-free (ground truth). This 

assumption is certainly acceptable for lower resolution remote 

sensing data due to a larger probability of the existence of 

reference data of higher order. But for high resolution data 

uncertainties in the reference data should not be neglected 

because of the worse ‘relative resolution’ between reference 

and sensor data. Consequently, we propose an integrated 

evaluation method which considers uncertainties in the 

reference data as well. 

Due to the higher spatial resolution the effect of indeterminate 

boundaries between certain object classes is increased in terms 

of the absolute number of pixels of the respective transition 

zones. Although adapted methods (like fuzzy logic approaches) 

have been developed for the actual thematic classification, 

analogous fuzzy logic methods for evaluation purposes are 

hardly applied. 

We propose an integrated fuzzy approach which deals with the 

issue of indeterminate boundaries by the definition of buffer 

zones around the object boundaries. This allows for the 

computation of the class-specific fuzzy certainty measure 

(CFCM) which implicates uncertainty information.  Figure 1 

outlines the resulting overall process whose key procedures, 

i.e. the generation of transition zones and the derivation of an 

integrated uncertainty measure, will be treated in detail in the 

next sections. 

 

 

 

 

 

 

 

 
Figure 1. Overall workflow for the derivation of the advanced 

uncertainty measure CFCM 

 



 

 

 

2. GENERATION OF TRANSITION ZONES 

2.1 Idea and previous work 

During an interpretation process rules for the allocation of an 

image object to a given (topographic) class normally assume 

determinate, discrete boundaries between these objects. 

However, in high resolution remotely sensed data larger 

regions (i.e. a larger number of pixels) evolve between classes 

(e.g. along the boundary of a forest) which make a unique 

allocation impossible or at least very subjective. Such 

indeterminate transition zones originate from limited positional 

accuracies or insufficient semantic definition of objects and 

their boundaries. Using modern sensors this fuzziness effect is 

even more severe due to the smaller ground pixel sizes. The 

spectral variance within regions representing a single 

topographical object increases and this leads to a larger 

number of mixed elements (e.g. forest consists of trees, bare 

ground, etc.). 

For modeling indeterminate regions within a classification 

process the application of (ε-) bands (refer to Chrisman, 1992) 

and the fuzzy logic theory have been proposed. With respect to 

the latter the concept of varying memberships to a class (from 

‘no membership at all’ to ‘perfect membership’) along with its 

application for classification tasks, have been demonstrated by 

Fisher (2000). Also Wang (1990) warrants the application and 

proposes the derivation of a fuzzy partition matrix which 

summarizes the membership values of a feature to every 

possible class as defined in the object catalogue. Edwards & 

Lowell (1996) define a membership function for the 

description of spatial uncertainties. Here for all pairs of objects 

classes (so-called twains) fuzzy widths are introduced based on 

the mean deviations derived from repeatedly digitizing 

boundaries from aerial photos. 

 

2.2 Geometric aspects 

The transition zones serve as a model of the boundary area 

between two classified geographical objects. Their geometry is 

constructed depending on the kind of object pair. Basically it is 

assumed that the transition areas are symmetric, i.e. two 

adjacent objects share the same transition zone geometry. 

In order to create the geometries for these zones the boundaries 

are buffered on both sides (figure 2). The boundary width 

depends on the classes of the respective objects and is 

determined in advance on the basis of semantic aspects for 

each occurring pair of object classes (see section 2.3). Inside of 

the transition zone a fuzzy membership function is defined 

perpendicular to the object's boundary. The result is a function 

that provides a value of 1.0 (full membership to an object 

class) on the inner boundary of the transition zone and a value 

of 0.0 (no membership) on the outer boundary. 

Currently, the concept is limited to linear fuzzy functions but 

future research will consider non-linear membership functions 

as well. It appears reasonable to apply different kinds of fuzzy 

functions in order to consider the shape of different transitions 

between certain objects. 

In the case of an object with multiple neighbouring objects, its 

boundary is being split up and the partial boundaries are 

buffered separately. After this, all single zones along each 

boundary are aggregated to an overall zone using a standard 

union operation (see the example application in chapter 4). 

 
Figure 2. Generation of transition zones and fuzzification per 

class 

 

2.3 Semantic aspects 

As already pointed out, the thematic membership of the 

neighbouring objects have a significant influence on the 

fuzziness of the boundary and the width of the transition zone 

(Edwards & Lowell, 1996). A generally accepted specification 

for the width of border regions in terms of absolute numbers is 

virtually not possible due to a couple of factors like different 

ground sampling distances, seasonal influences or up-to-

dateness. Alternatively, a qualitative approach for the 

definition of the width of boundary regions can be transferred 

from ecology. Jalas (1955) and Sukopp (1972) developed a 

system that describes the intensity of human influences, 

distinguishing between ‘natural habitats’ and ‘artificial 

habitats’. Based on that, regions under consideration are 

classified on a scale from ahemerob (natural) to polyhemerob 

(artificial) – which is a measure for the influence of mankind 

on landscape. First approaches for the combination of the 

degree of naturalness with remote sensing data have been 

developed in the Austrian SINUS-project (refer to Wrbka et al. 

2003). In this project a statistical correlation has been 

determined between landscape metrices calculated from remote 

sensing data and the degree of naturalness. 

Based on these results and our own test series we have started 

with a qualitative definition of boundary region widths. The 

result is a ranking that includes typical object class pairs and 

their boundary width in relation to each other (on a scale from 

‘0’ to ‘+++++’).  



 

This guideline helps us to assign absolute, quantitative zone 

widths to the object classes of a specific classification dataset. 

This must be done with respect to the characteristics of the 

classification data and the used object class catalogue 

(minimum mapping unit, quality of data sources etc.). 

Obviously, expert knowledge is needed for this initial step of 

the process so our aim is to build up a collection of parameters 

for common landcover / landuse catalogues (e.g. CORINE 

Landcover) being transferable to different datasets of the same 

classification product. 

 

3. DERIVATION OF THE CHARACTERISTIC VALUE 

3.1 Definition 

The class memberships of a pixel or a region within the 

reference (μREF) and in the classification result (μCLASS) as 

described in the previous section form the basis for the 

derivation of the class-specific fuzzy certainty measure 

(CFCM). Outside of the transition zones the class memberships 

can either be 1.0 (if the point lies within an object of the class) 

or 0.0 (if it does not). Inside of the transition zones the class 

memberships are determined by the fuzzy function leading to a 

value within the interval [0.0, 1.0]. 

Computing the difference between the class memberships μREF 

and μCLASS yields the overall certainty measure for each class 

as follows: 
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μREF(c): class membership value of a pixel / area for class c in 

reference data 

μCLASS(c): class membership value of a pixel / area for class c 

in classification data 

n: number of pixels / areas under examination 

 

A high resulting CFCM value for a certain class expresses a 

high accordance between the objects of the class in the 

reference dataset and the classification. The CFCM can be 

computed for specific topographical classes either in an entire 

scene or in arbitrary areas such as single objects. 

Figures 3a and 3b demonstrate the effect of the advanced 

uncertainty measure CFCM (in a qualitative manner) in 

comparison to a conventional approach. Concerning the latter 

the evaluation results in a binary decision (in the presented 

case a classification as ‘false’). In contrast to this, the 

transition zone definition (figure 3b) considers the effect of 

indeterminate boundaries – the degree of coincidence is 

expressed by a CFCM value being larger than 0 (but still 

clearly below 1.0).  

The benefit from the advanced method is that the statement 

about the (un-)certainty of the classification allows for a much 

more differentiated conclusion about the quality of the dataset. 

One intended effect is that geometric differences in the object 

boundaries resulting from class definition characteristics and 

interpretation tolerance are weighted less compared to ‘real’ 

differences (e.g. divergent allocation of an object to a class).  

 

 

 

 
Figure 3a. Comparison of ground truth and classification.  

Without fuzzy borders the coincidence at the marked position 

is characterized as ‘false’. 

 

 

 
Figure 3b. The advanced uncertainty measure CFCM uses 

fuzzy borders. The coincidence at the marked position is 

characterized as ‘neither completely false nor true’ – a value 

between 0 and 1. 

  



 

 

 

4. EXAMPLE OF USE 

Apart from a range of synthetic test scenarios we apply our 

concept on first datasets based on real high resolution remote 

sensing scenes. The most important aim is to gather experience 

with the transition zone model, especially regarding the 

definition of the fuzzy border geometry (zone widths) on the 

basis of the existing semantic information. One of the 

examples is presented in this chapter. 

We consider two classification datasets of a research area in 

the region around Hamburg, Germany – a residential area next 

to a forest and an agricultural area. From a student project we 

have obtained multiple manual classifications of this area on 

the basis of orthophoto material (pixel-resolution of 10 cm). 

We have selected two of them in order to demonstrate the 

process by means of the forest object contained in this dataset 

(see figure 5). 

 

Figure 5. Two different manual classifications based on an 

orthophoto scene. 
(c) Freie und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung 

 

The first step is to compile the existing landcover classes and 

define the degree of uncertainty for the occurring object class 

pairs. Table 1 shows the assignment of fuzzy zone widths to 

the object classes whereas a value of 1 m results in a 

symmetric buffer zone with 2x1 m (1 m to both sides of the 

border). The choice of the values has been done according to 

their degree of naturalness (see 2.3) and our experience from 

multiple classifications. The largest zone width is assigned to 

the boundary between ‘forest’ and ‘residential area’ in contrast 

to the ‘road’ class which separates from ‘residential area’ quite 

clearly. Figure 6 shows the transition zone of the forest object 

completed by a detail view of the buffer between ‘forest’ and 

‘residential area’ in figure 7. 

 

 residential 

area 

road agriculture forest 

residential 

area 
 1 m 4 m 10 m 

road   - - 

agriculture    5 m 

forest     

Table 1. Object classes and pairwise zone widths. 

 

 
Figure 6. Definition of the transition zones for the forest object 

with different zone widths for agriculture (2x5 m) and 

residential area (2x10 m). 

 

 
Figure 7. Detail view of transition zones in the boundary area 

between ‘forest’ and ‘residential area’. 

 

forest 

road 

agri- 

culture 

residential area 



 

According to our concept the following steps have been 

performed: 

1. Splitting up the boundaries according to adjacency  

→ partial boundaries 

2. Buffering of each partial boundary with the 

respective width according to its object pair 

3. Merging the partial buffers of each object to one ring 

buffer → transition zone 

4. Application of (here: linear) fuzzy function → fuzzy 

memberships 

 

After defining the transition zones we are able to determine the 

membership to a class for each point in the dataset. Figure 8 

presents the membership values for class ‘forest’ ranging from 

1.0 (inside the object) to 0.0 (outside) including values in 

between within the transition zones.  

 

 
Figure 8. Membership values for ‘forest’ (Classification A). 

 

From the membership values, the quality measure can be 

obtained: 

1. Computation of CFCM measure for each object class 

(for the whole area) 

2. Computation of mean CFCM value for each class 

 

The software implementation performs the whole process 

automatically so that the manual effort for the computation is 

limited to the provision of the parameters. The following 

outputs are created by the software: 

 The buffer zones 

 The membership values 

 The CFCM distribution for each class 

 One overall CFCM value for each class 

 

Figure 9 exemplarily shows the distribution of the CFCM 

values for class ‘forest’. It depicts the certainty of the forest 

object which turns out to be relatively low at the northern 

boundary adjacent to the residential area whereas the border 

area between the forest and the agriculture object is evaluated 

as more certain. 

 
Figure 9.  CFCM distribution for class ‘forest’. 

 

Apart from this distribution data that can be used for an 

uncertainty examination we compute the mean value of all 

CFCM values for each class which yields in one single value. 

The outcome for this example is compiled in table 2. The 

CFCM figures express the agreement between the two 

classified datasets considering the fuzziness of the contained 

objects. One can see that the values are close to 100% aside 

from the road object which shows an accordance below 80% 

which is due to the different interpretation of the two editors in 

respect to a dead-end street (see figure 5).  

This example points out how the CLAIM concept supports the 

assessment of classification quality with the help of an 

uncertainty model. A number of applications will follow in the 

near future to support the further development of the concept. 

    

 residential 

area 

road agriculture forest 

CFCM 96,09% 78,37% 98,45% 96,77% 

Table 2. Mean CFCM value for object classes 

 

 



 

5. STATUS AND OUTLOOK 

The presented concept of modeling indeterminate transition 

zones in both the reference and the classified data allows for a 

well founded description of uncertainty in classified remotely 

sensed data. With that the derivation of fuzzy logic 

membership values becomes possible which leads to an 

advanced certainty measure named class-specific fuzzy 

certainty measure CFCM, giving the desired quantitative, 

integrated evaluation of the classification accuracy. 

The discussed model has already been implemented as Java 

software that allows for automated test series based on 

synthetic and real data. This and the integration of additional 

expert knowledge will help to further develop and quantify the 

needed control parameters (e.g. for determining the width and 

the symmetry properties of transition zones). The choice of 

zone widths plays an important role; that is why the definition 

of parameters sets for standard landcover / landuse catalogues 

is intended.  

The assignment of the zone widths is currently done under 

consideration of class-specific attributes. The extension of this 

concept by the provision for object-specific criteria (size, shape 

etc.) seems promising and will be one of our next steps of 

further development leading to an object-specific certainty 

measure. 

Connected to this we will continue with the successive 

expansion of our CLAIM software library that will be available 

under open source license in order to gain as much user 

feedback as possible.  
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