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ABSTRACT:

In this paper, a near-realtime system for classification of GIS-objects is presented using multi-sensorial imagery. The system provides
a framework for the integration of different kinds of imagery as well as any available data sources and spatial knowledge, which
contributes information for the classification. The goal of the system is the assessment of infrastructure GIS-objects concerning their
functionality. It enables the classification of infrastructure into different states as destroyed or intact after disasters such as floodings
or earthquakes. The automatic approach generates an up-to-date map in order to support first aid in crisis scenarios. Probabilities are
derived from the different input data using methods such as multispectral classification and fuzzy membership functions. The main core
of the system is the combination of the probabilities to classify the individual GIS-object. The system can be run in a fully automatic
or semi-automatic mode, where a human operator can edit intermediate results to ensure the required quality of the final results. In this
paper, the performance of the system is demonstrated assessing road objects concerning their trafficability after flooding. By means of
two test scenarios the efficiency and reliability of the system is shown. Concluding remarks are given at the end to point out further
investigations.

1 INTRODUCTION

A significant increase of natural disasters such as floodings and
earthquakes has been observed over the past decades (Kundzewicz
et al., 2005). There is no doubt that the disasters’ impact on the
population has dramatically increased due to the growth of pop-
ulation and material assets. The regrettable death of people is
accompanied by heavy economic damage, which leads to a long-
term backslide of the regions hit by the disaster. This situation
calls for the development of integrated strategies for prepared-
ness and prevention of hazards, fast reaction in case of disasters,
as well as damage documentation, planning and rebuilding of in-
frastructure after disasters. It is widely accepted in the scientific
community that remote sensing can contribute significantly to all
these components in different ways, in particular, due to the large
coverage of remotely sensed imagery and its global availability.

However, time is the overall dominating factor once a disaster
hits a particular region to support the fast reaction. This becomes
manifest in several aspects: firstly, available satellites have to be
selected and commanded immediately. Secondly, the acquired
raw data has to be processed with specific signal processing algo-
rithms to generate images suitable for interpretation, particularly
for Synthetic Aperture Radar (SAR) images. Thirdly, the inter-
pretation of multi-sensorial images, extraction of geometrically
precise and semantically correct information as well as the pro-
duction of (digital) maps need to be conducted in shortest time-
frames to support crises management groups. While the first two
aspects are strongly related to the optimization of communication
processes and hardware capabilities, at least to a large extend, fur-
ther research is needed concerning the third aspect: the fast, inte-
grated, and geometrically and semantically correct interpretation
of multi-sensorial images.

Remote sensing data was already used in order to monitor natural
disasters in the year 1969 (Milfred et al., 1969). Particularly, in
the case of flooding a lot of studies are carried out to infer in-
formation as flood masks from remote sensing data (Sanyal and

Lu, 2004). The flooded areas can be derived from optical im-
ages (Van der Sande et al., 2003) as well as from radar images
(Martinis et al., 2009) via classification approaches. Zwenzner
(Zwenzner and Vogt, 2008) estimates further flood parameter as
water depth using flood masks and a very high resolution digital
elevation model. Combining this results with GIS data leads to
an additional benefit of information and simplifies the decision
making (Brivio et al., 2002, Townsend and Walsh, 1998). The
combination of the GIS and remote sensing data is often carried
out by overlaying the different data sources. But, there are only
few approaches which use the raster data from imagery to assess
the given GIS data. In (Gerke et al., 2004, Gerke and Heipke,
2008) an approach for automatic quality assessment of existing
geospatial linear objects is presented. The objects are assessed
using automatically extracted roads from the images (Wiedemann
and Ebner, 2000, Hinz and Wiedemann, 2004). However, in case
of natural disasters the original roads are destroyed or occluded
and, therefore, it is not possible to extract them using the original
methods. Hence, new approaches have to be developed which
assesses damaged and occluded objects, too. The integration and
exploitation of different data sources, e.g. vector and image data,
was discussed in several other contributions (Baltsavias, 2004,
Butenuth et al., 2007). However, there is a lack of methods which
assess the GIS data concerning its functionality using imagery
(Morain and Kraft, 2003).

In this paper, a classification system using remote sensing data
and additionally available information is developed to assess GIS-
objects. The main goal of the system is the automatic classifica-
tion and evaluation of infrastructure objects, for example the traf-
ficability of the road network after natural disasters. However,
the presented system can be transferred to other scenarios, such
as changes in vegetation, because its design is modular. A focus
is the integrated utilization of any available information, which
is important to ease and speed up the classification process with
the aim to derive complete and reliable results (Reinartz et al.,
2003, Frey and Butenuth, 2009). In comparison to the manual
interpretation of images the presented systems is very efficient,
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which is essential in crisis scenarios. Depending on the type and
complexity of the input data, the system can be run in a fully
automatic or semi-automatic mode, where a human operator can
edit intermediate results to ensure the required quality of the final
results.

Section 2 describes the generic near-realtime classification sys-
tem with the objective to classify and evaluate objects using re-
mote sensing and other available data. In Section 3 the system is
applied to road objects in case of natural disasters. Two test sce-
narios of flooded areas are used to verify the system. By means
of manually generated reference data, the applicability and effi-
ciency of the system is evaluated in Section 4. Finally, further
investigations in future work are pointed out.

2 CLASSIFICATION SYSTEM

The goal of the developed classification system is the assessment
of GIS-objects using up-to-date remote sensing data. The system
is designed in a general and modular way to provide the opportu-
nity to label GIS-objects into different states. Typical states de-
scribe the functionality of infrastructure objects as roads or build-
ings. The generic system embeds different kinds of image data:
multi-sensor as well as multi-temporal data. Additionally, any
kinds of available data sources and spatial knowledge, which con-
tributes information for the assessment, can be embedded. Typi-
cal examples are digital elevation models (DEM) and further GIS
information, e.g. land cover or waterways. The minimum re-
quirement of the system are the objects to be assessed and one
up-to-date image which provides the information for the assess-
ment.
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map
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object

Classification
System

Optical
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DEM
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Time
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Figure 1: Classification system

Theclassification system depicted in Figure 1 can be subdivided
into different components. Starting point are the GIS-objects to
be assessed. Secondly, the input data as imagery or digital eleva-
tion models which contribute the information for the assessment.
In the following this information is calleddata. Thirdly, the clas-
sification system by itself and, finally, a resulting up-to-date map.

The fusion of multi-sensor images is an important issue, because
the corregistration between optical and radar images is still a cur-
rent research topic (Pohl and Van Genderen, 1998). Methods
such as mutual information can be applied for the system (Inglada
and Giros, 2004). The system has to deal with multi-temporal
images having the possibility to derive important information on
time. This leads to an even more complex corregistration pro-
cess. Change detection algorithms can provide information about
the variation of assessed objects. In this article the temporal fac-
tor is neglected, but will be an essential part in future research.

The main core of the system represents the classification. The
goal is to classify each object into a different stateSi. For each
object probabilities are derived belonging to a certain state. The
methods estimating the probabilities depends on the data: typ-
ical examples are multispectral classification or fuzzy member-
ship functions (Figure 2).
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Figure 2: Derivation of probabilities from data using various
methods

Beside the derivation of the individual probabilities from each
data source the combination plays a decisive role:

pS1
= pd1,S1

⊗ pd2,S1
⊗ · · · ⊗ pdn,S1

pS2
= pd1,S2

⊗ pd2,S2
⊗ · · · ⊗ pdn,S2

...
pSi

= pd1,Si
⊗ pd2,Si

⊗ · · · ⊗ pdn,Si
.

(1)

The variablepdn,Si
denotes the probability that the stateSi oc-

curs given datadn. The indicesi andn describe the number of
available states and data, respectively. The resultpSi

shows the
probability that a GIS-object belongs to the stateSi. For each
type of data weightswn can be introduced in order to cope with
the different influence of information content. Hence, Equation 1
for one statei leads to:

pSi
= w1 · pd1,Si

⊗ · · · ⊗ wn · pdn,Si
. (2)

Finally, the object is assigned to the stateSi with the largest prob-
ability pSi

. A basic characteristic of the whole system is the
combination at the probability level in order to remain flexible
concerning the available data.

3 MODEL FOR ROAD OBJECTS

After describing the generic system, a model is shown which as-
sesses linear objects as roads after flooding. However, this model
is transferable to other linear objects like railways and further
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natural disasters such as avalanches, landslides or earthquakes.
In case of natural disasters the GIS-object can be divided into the
stateintact/usableor not intact/destroyed. Furthermore, a state
between these extrema is possible. Hence, a third statepossibly
not intact/destroyedis introduced, if the automatic approach can
not provide a reliable decision. In order to assess roads after a
flood disaster following states can be used:

• trafficable

• flooded

• possibly flooded

For every available data source the probability for each state has
to be derived. The methods which are employed to the different
data are shown in the following section.

3.1 Methods

A multispectral classification is accomplished in order to derive
different classes from the input imagery. The goal is to assess
each linear object individually without taking adjacent linear ob-
jects into account, because such kind of topological knowledge
about the connectivity of a road network is no more valid in case
of road networks hit by a natural disaster. Every linear object is a
polyline, which consists of several line segments. A line segment
is a straight line, which can be defined with two points. Every line
segment is assigned to a class using an segment-based multispec-
tral classification. To this end, a buffer is defined around each line
to investigate the radiometric image information. In many cases
additional information as the width of the line object can be used
in order to generate the size of the buffer region.

For the multispectral classification various classes have to be de-
fined depending on the underlying imagery in order to classify the
road segments into the three statestrafficable,floodedandpossi-
bly flooded. In case of optical imagery the classes road, water,
forest and clouds are convenient, because the class road corre-
sponds to the statetrafficable, the class water tofloodedand the
classes forest and clouds describe occlusions and therefore be-
long to the statepossibly flooded. If radar images are available
the class clouds can be neglected. Beside the assignment to a
class each individual line segment consists of a probability be-
longing to a classωi, which is derived from the k-sigma error
ellipsoid. The probability can be formulated aspωi

(~g), whereas
~g defines the gray values. The length of the vector is equivalent
to the number of channels.

Beside the imagery additional information such as digital eleva-
tion models or GIS data can be integrated in the system. The
methods to derive probabilities depend on the data. One method
are membership functions of fuzzy sets (Zadeh, 1965). Mem-
bership functions do not describe the likelihood of some event,
but they only characterize a degree of truth in vaguely defined
sets. Since it is often difficult to derive sound probabilities from
GIS data, membership functions provide an opportunity to infer
confidence values. To emphasize the distinction the membership
function is labeled asµ instead ofp.

The membership functionsµt(a), µf (a) are introduced if a dig-
ital elevation model is given. The functionµt(a) denote the be-
longing to the statetrafficablet depending on the altitudea. Sim-
ilarly µf (a) represents the statefloodedf . Both functions are
depicted in Figure 3. There are two thresholdsa1 anda2 which
determine the height of very likely flooded or trafficable areas, re-
spectively. The current water level lies between these thresholds,
which can be calculated by

a1 = ll − b1

a2 = lh + b2,
(3)

in which ll is the lowest andlh is the highest water level in the
scene. In order to involve variations due to flows and barriers
additional buffersb1, b2 are added.

0

1

a1 a2 Altitude

µf(a)

Water Level

µt(a)

0.5

Figure 3: Membership functions for flooded roads and trafficable
roadsderived from DEM

3.2 Combination of Probabilities

The core of the classification system is to combine probabilities
resulting from a multispectral classification with the degree of
truth of membership functions. In this section, an example is
shown which combines the derived probabilities from optical im-
ages with membership functions inferred from a digital elevation
model. By means of multispectral classification for each class
(waterw, roadr, foresto, cloudc) the corresponding probabil-
ity pωi

for i = {w, r, o, c} can be derived. On the other side,
the membership function provide the degree of truthµt(a) and
µf (a). Utilizing the knowledge that roads higher thana2 are def-
initely trafficable and roads lower thana1 are very likely flooded
a case differentiation is carried out:

µf (~g, a) =











µf (a) = 1 a ≤ a1

µf (a) · pωw
(~g) a1 < a < a2

µf (a) = 0 a ≥ a2

(4)

µt(~g, a) =











µt(a) = 0 a ≤ a1

µt(a) · pωr
(~g) a1 < a < a2

µt(a) = 1 a ≥ a2.

(5)

Variablea denotes the height of a road object. The road is as-
signed to the statefloodedSF if the degree of truthµf (~g, a) ex-
ceeds an thresholdt1, which can be pre-estimated via the stan-
dard deviation of the likelihood function resulting from the train-
ing data for water. The road is assigned to the statepossibly
floodedSPF , if µf (~g, a) is less thant1. The probabilityµt(~g, a)
is treated in an analogous manner. The road is assigned to the
statetrafficableST if µt(~g, a) exceeds a pre-determined thresh-
old t2. Otherwise, the road is again assigned to the statepossibly
floodedSPF . The road segments which are classified as forest
ωo or cloudsωc are assigned to the states in the following way:

a < a1 ⇒ floodedSF

a1 < a < a2 ⇒ possibly floodedSPF

a > a2 ⇒ trafficableST

(6)
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In Figure 4 a schematic overview of the used classification sys-
tem is depicted. A multispectral classification is carried out to
assign the road objects to the different classes. The results of the
multispectral classification combined with the membership func-
tion leads to the assignment of the road objects to the different
states.

water forest clouds roads

possibly
flooded

flooded trafficable

Multispectral Classification

Figure 4: Schematic overview of the classification system

4 RESULTS AND EVALUATION

The presented system has been exemplarily tested with two sce-
narios representing flood disasters. In both cases roads are as-
sessed concerning their trafficability. The first scenario is the Elbe
flood in the year 2002 near Dessau, Germany. Three different
data sources are used for the assessment: Firstly, an IKONOS-
Image with four channels (red, green, blue and infrared), cf. Fig-
ure 5. The ground-sampling distance of the panchromatic chan-
nel is 1 meter and the color-channels is 4 meter. As second
source a digital elevation model with a resolution of 10 meters
is used. Finally, the objects to be assessed are taken form the
ATKIS (German Official Topographic Cartographic Information
System) database. The test scene covers an area of 33 km2, which
contains 5484 line segments. In the following investigations only
the road objects are studied.

The second study area is located in Gloucesterhire Region in
Southeast England. In July 2007 the record flood level at Tewkes-
bury was measured. During the flooding a TerraSAR-X scene in
StripMap mode with a spatial resolution of 3 meter was acquired.
The polarization is HH, which is more efficient than HV or VV
to distinguish flooded areas (Henry et al., 2003). The test scene
covers an area of of 9,5 km2. Additionally, linear membership
functions from the original rivers are derived and an automati-
cally extracted flood mask is used. As GIS-objects 522 roads
from OpenStreetMap are assessed.

The test scenarios are very appropriate to test the classification
system due to their diverse global context and the different kinds
of roads. The roads vary from paths to highways. Both test sce-
narios are evaluated using manually derived reference data. The
availability of reference data describing the real status of roads
during the flooding is very difficult caused by the fast changes of
the water level and the accessibility of the roads. One possibil-
ity is to derive the reference data from the image itself, which is
done for the Elbe scenario. This kind of reference data does not
describe the ground truth, but the information which is possible
to get from the studied image. In the case of the Gloucesterhire
scenario high resolution airborne image with a resolution of 20
cm are available. This imagery which was acquired half a day

later than the studied TerraSAR-X scene was used to infer the ex-
act ground truth. To draw conclusions from the following results,
it is important to consider the kind of used reference data.

The result of the Elbe scene is visualized in Figure 5. The red
lines refer to flooded roads, green lines to trafficable roads and
the yellow lines point out, that no decision is possible by the auto-
matic system. In Figure 6 a detail of the original IKONOS image
and the assessed roads is shown.

Figure 5: Automatic assessment of roads using the classification
system:flooded roads (red), trafficable roads (green) and possibly
flooded roads (yellow)

Figure 6: Detail of original and assessed IKONOS scene

Comparingthe result with the manually generated reference leads
to the numerical results shown in Table 1. ”Correct assignment”
means that the manually generated classification is identical with
the automatic approach. In the case of ”Manuel control neces-
sary” the automatic approach leads to the statepossibly flooded
whereas the manual classification assigns the line segments to
floodedor trafficable. The other way around denotes the expres-
sion ”Possibly correct assignment”. ”Wrong assignment”’ means
that one approach classifies the line segment tofloodedand the
other totrafficable. With the current implementation of the sys-
tem the approach achieves a correct assignment for 78% of the
road objects. Only a very small value of false assignments is
obtained. This result is deteriorated due to the 5% of ”Possibly
wrong assignments”. Less than 1/5 of all road segments (17%)
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should be controlled manually in order to reach a correctness of
95%.

Possible assignment Result

Correct assignment 76.99%

Manual control necessary 17.87%

Possibly correct assignment 4.96%

Wrong assignment 0.18%

Table 1: Results Scenario: Elbe

Theresults are obtained with the threshold parameterst1 = 0.5
andt2 = 0.001. The variations of the parameters are depicted
in Figure 7. The parameters are responsible for the amount of
road segments which are assigned to the statepossibly floodedon
condition that they are classified to the classes water or road. The
decrease of ”Wrong assignment” comes along with the decrease
of ”Correct assignments” and an increase of manual control.
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Figure 7: Results dependent on parametert1 andt2 (red= Wrong
assignment, orange = Possibly correct assignment, yellow = Man-
ual control necessary, green = Correct assignment)
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Figure 8: Combination of probabilities and impact of the param-
etert1

In Figure 8 the combination of the probabilitiesµf (a) andpωw
(~g)

is shown. The grayscale bar indicates the combined probability
µf (~g, a). Every star defines a road segment assigned to the class
water by multispectral classification, the color shows the state as-
signed in the reference. Many road segments which are assigned
to the statetrafficable in the reference are wrongly classified by
the system to the class water. The reason is the high standard
deviation of the probability densitiy function for the class road

and, therefore, the overlapping of the class road and water. Road
segments in urban areas occluded by shadows are responsible
for this effect. The thresholdt1 is depicted in blue which dev-
ide the assignment of the roads to the statefloodedandpossible
flooded(Figure 8). Shifting this parameter leads to the results il-
lustrated on the right plot in Figure 7. Furthermore, the improve-
ment of the combined probability is shown in Figure 8. If only
one probability is available, the thresholdt1 would be depicted
as a straight horizontal or vertical line. The total required time
to generate the manual reference is about three hours. Compared
to the time needed for the automatic classification (less than one
minute) points out the efficiency of the approach.

The results of the second test scenario are depicted in Figure 9.
A detail of the original TerraSAR-X scene and the assessed road
segments is shown in Figure 10.

Figure 9: Automatic assessment of roads using the classification
system:flooded roads (red), trafficable roads (green) and possibly
flooded roads (yellow)

Figure 10: Detail of original and assessed TerraSAR-X scene

In the second test scenario the real ground truth is available. Hence,
the assignmentpossibly floodedis not existing in the reference
data. The comparison with the automatic classification system
leads to the result shown in Table 2. After controlling 5% man-
ually, altogether over 86% are correctly assigned. The value
of 14% of wrong assignment is caused by mainly two reasons:
Firstly, the resolution of the StripMap mode hardly enables to
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detect flooded roads in urban areas. Secondly, the geometric ac-
curacy of the used OpenStreeMap road objects are in many cases
not accurate enough for a correct assignment.

Possible assignment Result

Correct assignment 81.22%

Manual control necessary 4.60%

Wrong assignment 14.18%

Table 2: Results Scenario: Gloucesterhire

CONCLUSIONS

Thisarticle presents a classification system to assess GIS-objects
concerning their functionality. The system is evaluated by means
of two test scenarios with the goal to derive the trafficability of
roads during a flooding. Both test scenarios show the good per-
formance and especially the efficiency of this approach. In fu-
ture work, the whole system will be evaluated using real ground
truth to identify the reliability in disaster scenarios. Moreover,
the additional benefit combining different image data types such
as optical and radar will be part of further study. Currently, the
combination of the probabilities is accomplished with a simple
multiplication. It has to be investigated, if the combination of
different probabilities could be realized better using a Dampster-
Shafer framework. In addition, future work comprises the devel-
opment of multi-temporal models to better exploit different image
acquisition times including different data types. A further point
is the preprocessing of the used GIS-objects to impove the spatial
accuracy of the used infrastructure objects.
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