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ABSTRACT:

Urban object models are valuable assets that allow reuse in different applications. Besides the need for exchange formats there is
also the need for comprehensive, efficiently processable data structures for such models. This paper presents a graph-based schema for
integrated models of urban data, that is an adaption of the comprehensive CityGML approach. It defines an explicit graph representation
and thus is well-suited to efficient processing algorithms. The paper demonstrates how appropriate light-weight components realizing
different kinds of services on models can be used for consistently processing semantics, geometry, topology and/or appearance of
graph-based models compliant to that schema. Several examples are given.

1 INTRODUCTION

Urban models are valuable assets that should be constructed once
while being used multiple times in different applications. There-
fore the exchange of 3d city models between different tools is
indispensable. Various XML formats are being used to achieve
interoperability between tools. These formats (e.g. CityGML
(Groeger et al., 2008)) are able to carry topological, geometric,
semantic, and appearance information, but in different forms and
to varying extent.

Applications, like tools for the automatic extraction of topo-
graphic objects, build on these urban object models and improve,
transform, and analyze them in different ways. XML-technology
(e.g. XSLT and XQuery) is widely used to support these activ-
ities, but this technology is not well-suited for the implementa-
tion of the various algorithms on urban objects which come from
the areas of algorithmic geometry, computer graphics, and im-
age recognition, since the necessities of efficient content-based
traversal of all relevant information is only hard to realize in the
essentially tree-like structures supplied by XML.

Therefore, a comprehensive, efficiently processable data struc-
ture for urban objects is essential. Geographic information sys-
tems share this necessity with route guidance systems, where a
graph-like internal representation of data is used for the compu-
tation of routing information.

In this paper, we present an approach for the efficient storage,
analysis, and manipulation of city models using graphs and for
the development of application specific components collectively
working on an integrated, efficient graph representation of city
models. Import/export from/to CityGML is tackled, as well. 1

After a short overview of the state of the art in section 1.1, sec-
tion 2 shortly introduces the employed graph and component
concepts. Section 3 describes the graph-based integrated model
schema with all its aspects, and section 4 shows how quite differ-
ent kinds of functionalities can be implemented on such a model
by independent components. Section 5 concludes the paper.

1The project is funded by the DFG (EB 119/3-1).

1.1 State of the art

There are several XML-based modeling languages for urban ob-
jects. The City Geography Markup Language (CityGML)2 is a
common information model for the representation of 3d urban
objects and an official standard of the Open Geospatial Consor-
tium (OGC) since August 2008 (Groeger et al., 2008). Besides
representing geometry, CityGML can also be used to model topo-
logical and semantic properties of 3d city models and to attach
appearance information like textures.

Models described using CityGML can be rendered by Ifc-
Explorer for CityGML3 from the Institute for Applied Com-
puter Science, Forschungszentrum Karlsruhe or the LandXplorer
CityGML Viewer4 from Autodesk and by Aristoteles5 from the In-
stitute for Cartography and Geoinformation, University of Bonn.

Besides CityGML there are other languages for the representation
of 3d urban objects. One common approach is the OGC standard
Keyhole Markup Language (KML)6. CityGML uses a subset of
the OGC standard Geography Markup Language (GML) (Cox
et al., 2001) for geometry representation, KML derived his ge-
ometric elements from GML. KML is often combined with the
COLLADA7 exchange format for 3d assets. Another 3d model-
ing language is Extensible 3D (X3D)8, the successor of the Virtual
Reality Modeling Language (VRML) standard.

2 BASIC TECHNOLOGIES

2.1 TGraph technology

For the efficient manipulation of urban object models with all
their aspects a versatile and powerful basic technology is needed.
In the context of this work TGraph technology is used.

2http://www.citygml.org, http://www.citygmlwiki.org
3http://www.iai.fzk.de/www-extern/index.php?id=1570
4http://www.3dgeo.de/citygml.aspx
5http://www.ikg.uni-bonn.de/aristoteles
6http://www.opengeospatial.org/standards/kml
7http://www.khronos.org/collada
8http://www.web3d.org/x3d
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Figure 1: The integrated model schema as a grUML diagram. Semantic entities are colored white with namespace ”sem”, appearance
entities are colored gray with namespace ”app” and geometry/topology entities are colored dark gray with namespace ”geo/top”.

TGraphs are directed graphs whose vertices and edges are typed,
ordered and attributed. Their structure, types and attributes help
to model the different aspects (topology, geometry, semantics,
and appearance annotation) of urban objects in a common in-
tegrated data structure. TGraphs are supported by a powerful
API (JGraLab9) in combination with a graph query language
(GReQL) and a corresponding UML-based metamodeling ap-
proach (grUML). grUML is a subset of UML class diagrams
which allows the specification of classes of TGraphs on the
schema level (Ebert et al., 2008). Figure 1 contains an example.

2.2 Lightweight component model

If all relevant data of the urban object model are stored in a
TGraph, all processing of the model can be encapsulated in ap-
propriate components working on this particular TGraph.

The work described here is based on a light-weight Java compo-
nent model which is employed for the different processing activ-
ities on the model (see section 4). The component concept is ba-
sically an extension of the well-known strategy pattern (Gamma
et al., 1995). Every component has a definition in the form of a
Java interface which describes its service and at least one imple-
mentation in the form of a Java class.

9http://jgralab.uni-koblenz.de

Components are serializable and get their data to process as argu-
ments of their execute()-methods. Further data that influence
their work are handled as parameters which have a default value
and are manipulated via getters and setters. For example some
processing steps can be configured by parameters (like thresh-
olds).

3 THE INTEGRATED MODEL SCHEMA

The internal representation of urban object models by TGraphs
has to be specified by a metamodel, called schema in the follow-
ing. This schema defines the set of compliant TGraphs. Classes
define the possible vertex types, and associations define the edge
types. The attributes of vertices and edges can be added accord-
ing to the well-known UML notation, as well. Edge direction is
visualized by arrow heads, though it should be noted, that TGraph
edges are traversable in both directions by algorithms.

Figure 1 shows the main parts of an integrated schema which de-
fines a set of TGraphs for urban objects. (To improve readability
all enumeration types and some semantic subclasses as well as
attributes are elided.) This schema is inspired by and partially
derived from the CityGML 1.0 schema. Especially it follows the
idea to separate the four relevant aspects of an urban object model
(namely topology, geometry, semantics, and appearance).
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Figure 2: The main components as feature diagram. Component groups are colored white, concrete components are colored gray.

The schema contains semantic entities, appearance entities and
geometry/topology entities. The semantic part contains enti-
ties from the subpackages Core (namespace ”core”), CityOb-
jectGroup (namespace ”grp”), Generics (namespace ”gen”) and
Building (namespace ”bldg”). It should be noted that in principle
also other ontologies might be used for the semantic part.

This grUML schema extends the tree-like XML schema of
CityGML to a real graph-based schema, that (meta-)models the
entities and relations of urban objects much more explicitly.

In CityGML models multiple occurences of the same object can
mostly be modeled by defining the object once and referencing
it using XLink10. But this is not possible for every object. As
an example, the GML specification offers the definition of the
control points of a LinearRing (exterior of a Surface) using the
types DirectPosition or PointProperty. The first is used, if
the control points are used only in this geometry element, the
second is used used, if the control points may be referenced from
other geometry elements. CityGML restricts these possibilities
to DirectPosition. This means in CityGML models for every
occurence of the same real world point as control point of the
surfaces of a building there is a new DirectPosition. And even
if XLinks are used, they often can not be processed sequentially
and their interpretation is time-consuming.

Using the integrated model schema of figure 1, every entity in
an urban object model exists only once as a node and all its uses
and occurences are modeled by edges. This explicit, strongly
linked representation reduces redundant information and enables
automatic model processing by a very large class of algorithms.
It is easy to import and export CityGML models using LODs 1-3
to and from an integrated model.

3.1 Geometry/topology schema part

The geometry/topology part of the integrated model schema dif-
fers from the CityGML schema. CityGML uses a subset of GML
to represent geometric entities as a boundary representation (Fo-
ley et al., 1990, Herring, 2001). But the geometry/topology part
of the integrated model schema is not based on this GML subset,
since entities and relations are not represented explicitly enough
and the same geometric objects may appear more than once in the
same model.

10http://www.w3.org/TR/xlink

Here, geometry and topology are modeled as another kind of
boundary representation, namely as an extended vertex-edge-
face-graph (v-e-f-graph) similar to the well-known and highly
efficient Doubly Connected Edge List (DCEL) representation
(Muller and Preparata, 1978). A geometric object consists of 3d
points, 3d faces and 3d volumes, modeled as typed nodes con-
nected via edges. The geometric information is encoded in the
attributes of the 3d points, and the topological information is rep-
resented by the edges between the geometric entities.

3.2 Semantics schema part

The semantics part of the integrated model schema is based on the
CityGML modules Core, CityObjectGroup, Generics and Build-
ing. Thus, terms like ”building”, ”wall surface” and so forth can
be used without further explanation in the following. Each of the
mentioned modules is packed in its own subpackage.

3.3 Appearance schema part

The appearance part of the integrated model schema is oriented
at the CityGML appearance module. But the different kinds of
surface data (material, different kinds of textures) are directly re-
lated to the 3d faces they shall be applied to. The model allows
static and dynamic textures, but dynamic textures are preferred.
A dynamic texture consists of an image and a transformation ma-
trix containing values to compute 2d texture coordinates for ex-
isting 3d points concerning the given image. By using dynamic
textures, texture coordinates can be updated during model export
if their corresponding 3d points have changed during model im-
provement.

4 INTEGRATED MODEL PROCESSING

The integrated model schema defines the class of TGraphs that
represent urban object models with all their aspects. There are a
lot of possible processing activities for integrated models, which
are introduced in the following. Figure 2 gives an overview over
such processing activities and their dependencies in the form of a
feature diagram (Czarnecki and Eisenecker, 2000).

Here, the components constitute a product line (Pohl et al., 2005)
where features are implemented by Java components (subsec-
tion 2.2). (The components are referenced by identifiers written
in typewriter style.)
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This chapter presents some of these processing components in
more detail in order to prove on an example basis that all kinds of
processing is possible on integrated models based on TGraphs.

The (intermediate) results of the different processing activities are
exported using the CityGMLModelWriter component (subsec-
tion 4.5) and the XML text is rendered using the IfcExplorer for
CityGML (section 1.1). IfcExplorer encodes different (semantic)
parts of CityGML models using various colors. Wall surfaces are
rendered gray, ground surfaces dark gray, roof surfaces red, doors
dark blue, windows light blue and nearly transparent and all other
faces cyan. (Unfortunately this distinction is hardly visible in the
black-and-white versions of this article.)

4.1 Example

The functionality of the components is demonstrated on the ba-
sis of a model of one simple example building, which may be
created using the ExampleBuildingModelGenerator (subsec-
tion 4.2). The full model consists of one ground surface, four
wall surfaces, four roof surfaces, one door and five windows, its
geometry contains fifteen 3d faces and thirty four 3d points. The
user can choose, which model parts should be generated and how
they should be connected. Figure 3 shows the full model. Since
semantics, geometry and topology of this example model are well
known, it is used as example model for most of the components
mentioned in the following.

Figure 3: Full example model.

4.2 Model creation.

First of all, an integrated model has to be created. There are
two kinds of automatic model creation, namely model import and
model generation.

Model import. During model import an existing model is
read from a file. TgModelReader reads an existing inte-
grated model from a .tg-file (the JGraLab file format) and
CityGMLModelReader reads an existing CityGML model from
an .xml-file and transforms it into an integrated model. This
import respects the CityGML[Appearance,Building,CityObject-
Group,Generics]11 profile. Semantic objects from other
CityGML modules are ignored at present.

Model generation. During model generation an inte-
grated model is created from scratch by a list of cre-
ation steps which are hard-coded in Java. The component
ExampleBuildingModelGenerator constructs the complete

11The Core module is not mentioned in CityGML profile names, be-
cause it belongs to every profile

example model from figure 3 that contains all four integrated
model parts. InitialBuildingModelGenerator constructs
incomplete models which function as bases for incremental
model supplementation activities, which are not explained in
further detail here.

4.3 Model improvement

The advantage of a graph-based representation of 3d models be-
comes clear if elaborate algorithmic activities are applied to them.
Such activities are especially needed if the imported model is still
unprecise and incomplete, for instance because it consists of raw
data delivered by some object extraction tool (Falkowski et al.,
2009).

Then, the raw models might have to be improved algorithmi-
cally. This includes topological, geometric and semantic model
improvement. Geometric model improvement may even be spe-
cialized into geometry correction and geometry/topology supple-
ment.

Topological model improvement. During topological
model improvement different kinds of topological infor-
mation are added to an integrated model. The component
TopologySupplementor complements an integrated model
by adding implicit topological dependencies as explicit arcs in
the graph. It may connect all neighboring faces of a 3d face by
isAdjacentTo-edges and all neighboring 3d points accordingly
to a 3d point, if they are not related yet. Furthermore it may
add all 3d faces that lie in another 3d face as inner faces. The
component uses the geometric/topologic model part, but changes
only topology.

Topological model improvement should always be the first im-
provement step, since most of the later processing steps are
based on computational geometry algorithms that assume com-
plete topological information.

Geometry correction. In raw models, the computed 3d coor-
dinates are often only known approximately. This may lead to
(slightly) distorted models. See figure 4 as an example.

Figure 4: Geometry correction: Example model with ”wrong” 3d
point and therefore with 4 non-planar faces.

During geometry correction the geometry information of an in-
tegrated model (i.e. the x-, y- and z-coordinates of 3d points) is
corrected. The FaceToPlaneFitter tests the planarity of all
3d faces and makes them planar, if they are not. The FaceTo-

RectangleFitter tests the squareness of all 3d faces and makes
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them rectangular, if they are nearly squared. Both components
use appropriate approximation algorithms and both use the geo-
metric/topologic model part, but change only the geometry. This
correction transfers the model of figure 4 to the one in figure 3.

Geometry/topology supplement. Models extracted from 2d
images are usually incomplete, since hidden information is miss-
ing. For urban data (sometimes) plausible assumptions may be
made about the 3d-structure of the objects (e.g. they may be as-
sumed to be cuboids).

Figure 5: Geometry/topology supplement: Incomplete Example
model (left), supplemented example model (right).

During geometry/topology supplement different kinds of geomet-
ric and topological information are added to an integrated model.
The CuboidCompleter tests if there are incomplete cuboids in
the integrated model and completes them by adding mirrored in-
verted copies of existing 3d faces (figure 5). The component uses
the geometric/topologic model part, and enhances geometry as
well as topology.

Semantic model improvement. Given a corrected and supple-
mented model, also semantic information might be inferable and
should be added to the model.

Figure 6: SemanticsSupplement: Model without relations be-
tween building and boundary surfaces as well as boundary sur-
faces and openings.

During semantic model improvement different kinds of semantic
information are added to an integrated model. The component
SemanticsSupplementor complements an integrated model by
adding implicit semantic dependencies as explicit relations. It
acts on the assumption, that if an object belongs to an aggre-
gation, its parts also have to belong to this aggregation as well

and vice versa. The component adds openings or building to a
city model, if their related boundary surfaces belong to this city
model. Figure 6 shows a an example of a semantically poor
model which is be transformed into the full model of figure 3
by this component. The component uses the semantics and the
geometric/topological model part, but changes only semantics.

4.4 Model transformation

A general class of processing activities is the modification of an
integrated model by some kind of model transformation. There
are geometry/topology transformations and semantic transforma-
tions. An example for geometry/topology transformation could
be triangulation. An example for latter might be changing the
CityGML like semantics part into one according to a proprietary
ontology.

4.5 Model export

In general the integrated model or at least parts of it have to be
stored persistently after processing. During model export an in-
tegrated model is written to a file.

The component TgModelWriter writes a full integrated model
to a .tg-file. If the exported .tg-model is imported again, no infor-
mation will be lost.

Figure 7: Extraction of the example graph, exported to .dot for-
mat and rendered via dotty, a Graphviz tool.

The component DotModelWriter writes an integrated model to
a .dot-file, the standard file-format of the Graphviz12 graph visu-
alization software (figure 7). The result can be processed further
using Graphviz.

The CityGMLModelWriter writes the integrated
model via a special graph traversal algorithm as a
CityGML[Appearance,Building,CityObjectGroup,Generics]
model into an .xml-file. The user can influence the result by
choosing the LOD and the kinds of textures to be written. The
result can be processed further by other tools. For example,
it may be rendered via any appropriate CityGML Viewer (see
section 1.1). If the exported .xml-model is imported again,
information might be lost, since the integrated model contains
more information than those covered by CityGML.

12http://www.graphviz.org
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4.6 Model analysis

Many more activities might be implemented on the integrated
model, since all kinds of queries may be posed on it. Thus, a
further processing activity is the analysis of the integrated model.
This activity is not mentioned in the feature diagram in figure 2,
since it is carried out as part of nearly every other integrated
model processing activity. All tests concerning existing model
elements and/or their properties or relationships are model anal-
ysis steps. There can also be transversal analyses, regardind co-
herences of a whole model, a part of a model (e.g. one building)
or a special view to a model (e.g. geometry). Using the TGraph
structure traversal and analysis of the integrated model is done
repeatedly during runtime using the graph API and/or GReQL
queries. Transversal analyses are particularly supported by the
graph API. For example it offers iterators for all nodes or edges
of a special type (and it subtypes) in the whole model.

Listing 1: Building analyser results.
B u i l d i n g 1

Id : 2
Name : Example b u i l d i n g
D e s c r i p t i o n : Example b u i l d i n g model f o r t e s t i n g .

Year o f c o n s t r u c t i o n : n o t known
Year o f d e m o l i t i o n : n o t known

Number o f a p p e a r a n c e s : 0
Number o f b u i l d i n g i n s t a l l a t i o n s : 0
Number o f b u i l d i n g p a r t s : 0

Number o f boundary s u r f a c e s : 9
Number o f w a l l s u r f a c e s : 4
Number o f r o o f s u r f a c e s : 4
Number o f ground s u r f a c e s : 1
Number o f o p e n i n g s : 6
Number o f d o o r s : 1
Number o f windows : 5

Number o f 3d f a c e s : 15
Number o f 3d p o i n t s : 34

Lowest 3d p o i n t : P o i n t 1 : ( 0 . 0 , 0 . 0 , 0 . 0 )
H i g h e s t 3d p o i n t : P o i n t 9 : ( 2 . 0 , 1 . 0 , 4 . 0 )
He ig h t : 4
Width : 4
Depth : 5
Volume : 68

To demonstrate the usage of querying with GReQL an additional
component BuildingAnalyser was developed, that writes in-
formation about all buildings of the integrated model into a .txt-
file. The file contains different kinds of information. At first there
is semantic attribute information like name, description and year
of construction/demolition of the building. Moreover there is se-
mantic entity information like the number of wall, ground and
roof surfaces, the number of doors and windows, and so on. Fur-
thermore there are geometric information like the count of points
and faces of the building geometry or the lowest and highest point
of a building. And there is inferred semantic information com-
puted using semantic background knowledge in combination with
geometry information, like the building height, the building vol-
ume, and so forth (listing 1).

5 CONCLUSIONS AND FUTURE WORK

This paper showed how geometric, topological, semantic and ap-
pearance information can be integrated in one integrated graph
model. The class of models was defined by an integrated model
schema. Graph representation gives rise to all kinds of algorith-
mic processing, some examples of which were given, including
model creation, improvement, transformation, analysis and ex-
port. Using a lightweight Java component model some example

components were implemented and illustrated based on a simple
example.

Though the example has toy character, it should suffice to demon-
strate the wide range of manipulation possibilities given by an
internal integrated graph representation for the enhancement of
urban object models. Since TGraph technology is easily applica-
ble to graphs containing millions of elements, the approach scales
to a wide range of applications.

The integrated model was developed in the context of a project
for object-recognition (Falkowski et al., 2009). It forms the basis
for the application of efficient graph-matching algorithms in this
context.

The integrated model schema is still under construction. But it
is easily modifiable and each of the three parts can be replaced
by different variants. Further goals are the enhancement of the
schema for the full CityGML base profile (CityGML[full]) and
the support for other urban object description languages, like KM-
L/COLLADA (section 1.1). Here the tasks are the change and en-
largement of the integrated model schema and the adaption of all
existing processing components. Some of the described activi-
ties could be splitted to more processing steps. A lot of them can
be composed to interesting combined processing activities. And
there could even be interactive processing components.

Further research topics could be the supplement of more com-
plex model parts to an existing integrated model or the integra-
tion of two different integrated models. Another interesting field
is the inference of semantics from geometric, topological and/or
appearance information.
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