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ABSTRACT:

A recognition-driven variational framework was developed for automatic three dimensional object extraction from remote sensing data.

The essence of the approach is to allow multiple 3D priors to compete towards recovering terrain objects’ position and 3D geometry.

We are not relying, only, on the results of an unconstrained evolving surface but we are forcing our output segments to inherit their 3D

shape from our prior models. Thus, instead of evolving an arbitrary surface we evolve the selected geometric shapes. The developed

algorithm was tested for the task of 3D building extraction and the performed pixel- and voxel-based quantitative evaluation demonstrate

the potentials of the proposed approach.

1 INTRODUCTION

Although, current remote sensing sensors can provide an updated

and detailed source of information related to terrain analysis, the

lack of automated operational procedures regarding their process-

ing impedes their full exploitation. By using standard techniques

based, mainly, on spectral properties, only the lower resolution

earth observation data can be effectively classified. Recent auto-

mated approaches are not, yet, functional and mature enough for

supporting massive processing on multiple scenes of high- and

very high resolution data.

On the other hand, modeling urban and peri-urban environments

with engineering precision, enables people and organizations in-

volved in the planning, design, construction and operations life-

cycle, in making collective decisions in the areas of urban plan-

ning, economic development, emergency planning, and security.

In particular, the emergence of applications like games, naviga-

tion, e-commerce, spatial planning and monitoring of urban de-

velopment has made the creation and manipulation of 3D city

models quite valuable, especially at large scale.

In this perspective, optimizing the automatic information extrac-

tion of terrain features/objects from new generation satellite data

is of major importance. For more than a decade now, research

efforts are based on the use of a single image, stereopairs, multi-

ple images, digital elevation models (DEMs) or a combination of

them. One can find in the literature several model-free or model-

based algorithms towards 2D and 3D object extraction and recon-

struction [ (Hu et al., 2003),(Baltsavias, 2004),(Suveg and Vossel-

man, 2004),(Paparoditis et al., 2006),(Drauschke et al., 2006),(Rot-

tensteiner et al., 2007),(Sohn and Dowman, 2007),(Verma et al.,

2006),(Lafarge et al., 2007),(Karantzalos and Paragios, 2009) and

the references therein]. Despite this intensive research, we are,

still, far from the goal of the initially envisioned fully automatic

and accurate reconstruction systems (Brenner, 2005),(Zhu and

Kanade (Eds.), July, 2008),(Mayer, 2008). Processing remote

sensing data, still, poses several challenges.

In this paper, we extend our recent 2D prior-based formulations

(Karantzalos and Paragios, 2009) aiming at tackling the prob-

lem of automatically and accurately extracting 3D terrain objects

(a) Satellite Image (b) Ground Truth

(c) DEM (d) Extracted 3D Buildings

(e) Reconstructed Scene

Figure 1: 3D Building Extraction through Competing 3D Priors

from optical and height data. Multiple 3D competing priors are

considered transforming reconstruction to a labeling and an esti-

mation problem. In such a context, we fuse images and DEMs

towards recovering a 3D prior model. We are experimenting with

buildings but, similarly, any other terrain object can be modeled.

Our formulation allows data with the higher spatial resolution to

constrain properly the footprint detection in order to achieve the

optimal spatial accuracy (Figure 1). Therefore, we are proposing

a variational functional that encodes a fruitful synergy between

observations and multiple 3D grammar-based models. Our mod-

els refer to a grammar, which consists of typologies of 3D shape

priors (Figure 2). In such a context, firstly one has to select the
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(a) Prior Building Models (Φ̃i,j): i determines the shape of the footprint

and j the roof type

(b) The family Φ̃1,j which has a rectangular footprint (i = 1).

(c) Building’s main height hm and roofs height

hr(x, y)

Figure 2: Hierarchical Grammar-Based 3D Prior Models. The

case of Building Modeling: Building’s footprint is determined

implicitly from the E2D . hm and hr(x, y) are recovered for ev-

ery point (E3D) and thus all the different type of roofs j are mod-

eled.

most appropriate model and then determine the optimal set of

parameters aiming to recover scene’s geometry (Figure 1). The

proposed objective function consists of two segmentation terms

that guide the selection of the most appropriate typology and a

third DEM-driven term which is being conditioned on the typol-

ogy. Such a prior-based recognition process can segment both

rural and urban regions (similarly to (Matei et al., 2008)) but is

able, as well, to overcome detection errors caused by the mislead-

ing low-level information (like shadows or occlusions), which is

a common scenario in remote sensing data.

Our goal was to develop a single generic framework (with no

step-by-step procedures) that is able to efficiently account for

multiple 3D building extraction, no matter if their number or

shape is a priori familiar or not. In addition, since usually for

most sites multiple aerial images are missing, our goal was to

provide a solution even with the minimum available data, like a

single panchromatic image and an elevation map (produced either

with classical photogrammetric multi-view stereo techniques ei-

ther from LIDAR or INSAR sensors), contrary to approaches that

were designed to process multiple aerial images or multispectral

information and cadastral maps (like in (Suveg and Vosselman,

2004),(Rottensteiner et al., 2007),(Sohn and Dowman, 2007)),

data which much ease scene’s classification. Doing multiview

stereo, using simple geometric representations like 3D lines and

planes or merging data from ground sensors was not our interest

here. Moreover, contrary to (Zebedin et al., 2008), the proposed,

here, variational framework does not require as an input dense

height data, dense image matching processes and a priori given

3D line segments or a rough segmentation.

2 MODELING TERRAIN OBJECTS WITH 3D PRIORS

Numerous 3D model-based approaches have been proposed in lit-

erature. Statistical approaches (Paragios et al., 2005), aim to de-

scribe variations between the different prior models by measuring

the distribution of the parameter space. These models are capable

to model building with rather repeating structure and of limited

complexity. In order to overcome this limitation, methods using

generic, parametric, polyhedral and structural models have been

considered (Jaynes et al., 2003),(Kim and Nevatia, 2004),(Su-

veg and Vosselman, 2004),(Dick et al., 2004),(Wilczkowiak et

al., 2005),(Forlani et al., 2006),(Lafarge et al., 2007). The main

strength of these models is their expressional power in terms of

complex architectures. On the other hand, inference between the

models and observations is rather challenging due to the impor-

tant dimension of the search space. Consequently, these models

can only be considered in a small number. More recently, proce-

dural modeling of architectures was introduced and vision-based

reconstruction in (Muller et al., 2007) using mostly facade views.

Such a method recovers 3D using an L-system grammar (Muller

et al., 2006) that is a powerful and elegant tool for content cre-

ation. Despite the promising potentials of such an approach, one

can claim that the inferential step that involves the derivation of

models parameters is still a challenging problem, especially when

the grammar is related with the building detection procedure.

Hierarchical representations are a natural selection to address com-

plexity while at the same time recover representations of accept-

able resolution. Focusing on buildings, our models involve two

components, the type of footprint and the type of roof (Figure 2).

Firstly, we structure our prior models space Φ̃ by ascribing the

same pointer i to all models that belong to the family with the

same footprint. Thus, all buildings that can be modeled with a

rectangular footprint are having the same index value i. Then,

for every family (i.e. every i) the different types of building tops

(roofs) are modeled by the pointer j (Figure 2b) Under this hierar-

chy Φ̃i,j, the priors database can model from simple to very com-

plex building types and can be easily enriched with more complex

structures. Such a formulation is desirously generic but forms a

huge search space. Therefore, appropriate attention is to be paid

when structuring the search step.

Given the set of footprint priors, we assume that the observed

building is a homographic transformation of the footprint. Given,

the variation of the expressiveness of the grammar, and the de-

grees of freedom of the transformation, we can now focus on the

3D aspect of the model. In such a context, only building’s main

height hm and building’s roof height hr(x, y) at every point need

to be recovered. The proposed typology for such a task is shown

in Figure 2. It refers to the rectangular case but all the other

families can respectively be defined. More complex footprints,

with usually more than one roof types, are decomposed to sim-

pler parts which can, therefore, similarly recovered. Given an im-

age I(x, y) at domain (bounded) Ω ∈ R2 and an elevation map

H(x, y) -which can be seen both as an image or as a triangulated

point cloud- let us denote by hm the main building’s height and

by Pm the horizontal building’s plane at that height. We proceed

by modeling all building roofs (flat, shed, gable, etc.) as a combi-

nation of four inclined planes. We denote by P1, P2, P3 and P4

these four roof planes and by ω1, ω2, ω3 and ω4, respectively, the

four angles between the horizontal plane hm and each inclined

plane (Figure 2). Every point in the roof rests strictly on one of

these inclined planes and its distance with the horizontal plane is

the minimum compared with the ones formed by the other three

planes.figure

With such a grammar-based description the five unknown param-

eters to be recovered are: the main height hm (which has a con-

stant value for every building) and the four angles ω. In this way

all -but two- types of buildings tops/roofs can be modeled. For

example, if all angles are different we have a totally dissymmetric

roof (Figure 2b - Φ̃1,5), if two opposite angle are zero we have a
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(a) Detected Buildings (b) Ground Truth

(c) Horizontal True Positives (HTP) (d) Horizontal False Positives (HFP) (e) Horizontal False Negatives (HFN)

Figure 3: Horizontal Qualitative Evaluation: The recognition-driven process efficiently detects, in an unsupervised manner, scene

buildings and recovers their 3D geometry.

gable-type one (Φ̃1,4) and if all are zero we have a flat one (Φ̃1,1).

The platform and the gambrel roof types can not be modeled but

can be easily derived in cases where the fit energy metric is as-

sumed on local minima. The platform one (Φ̃1,2), for instance,

is the case where all angles have been recovered with small val-

ues and a search around their intersection point will estimate the

dimensions of the rectangular-shape box above main roof plane

Pm. With the aforementioned formulations, instead of searching

for the best among ixj (e.g. 5x6 = 30) models, their hierarchical

grammar and the appropriate defined energy terms (detailed in the

following section) are able to cut down effectively the solutions

space.

3 MULTIPLE 3D PRIORS IN COMPETITION

EXTRACTING MULTIPLE OBJECTS

Let us consider an image (I) and the corresponding digital eleva-

tion map (H). In such a context, one has to separate the desired

for extraction objects from the background (natural scene) and,

then, determine their geometry. The first segmentation task is ad-

dressed through the deformation of a initial surface φ : Ω →R+

that aims at separating the natural components of the scene from

the man-made parts. Assuming that one can establish correspon-

dences between the pixels of the image and the ones of the DEM,

the segmentation can be solved in both spaces through the use

of regional statistics. In the visible image we would expect that

buildings are different from the natural components of the scene.

In the DEM, one would expect that man-made structures will ex-

hibit elevation differences from their surroundings. Following

the formulations of (Karantzalos and Paragios, 2009), these two

assumptions can be used to define the following segmentation

function

Eseg(φ) =

∫

|∇φ(x)| dx

+

∫

Ω

Hǫ(φ) robj (I(x)) + [1−Hǫ(φ)] rbg (I(x)) dx

+ ρ

∫

Ω

Hǫ(φ) robj (H(x)) + [1−Hǫ(φ)] rbg (H(x)) dx

(1)

where H is the Heaviside, robj and rbg are object and background

positive monotonically decreasing data-driven functions driven

from the grouping criteria. The simplest possible approach would

involve the Mumford-Shah approach that aims at separating the

means between the two classes. Above equation can be straight-

forwardly extended in order to deal with other optical or radar

data like for example in cases where multi- or hyper-spectral re-

mote sensing data are available.

Furthermore, instead of relying only on the results of an uncon-

strained evolving surface, we are forcing our output segments to

inherit their 2D shape from our prior models. Thus, instead of

evolving an arbitrary surface we evolve selected geometric shapes

and the 2D prior-based segmentation energy term takes the fol-

lowing form:

E2D(φ, Ti,L) =

m−1
∑

i=1

∫
(

Hǫ(φ(x))−Hǫ(φ̃i (Ti(x)))

σi

)2

xi(L(x))dx +

∫

λ
2
xm(L(x))dx + ρ

m
∑

i=1

∫

|∇L(x)|dx

(2)

with the two parameters λ, ρ > 0 and the k-dimensional label-

ing formulation able for the dynamic labeling of up to m = 2k

regions.

In this way, during optimization the number of selected regions

m = 2k depends on the number of the possible building segments

according to φ and thus the k-dimensional labeling function L

obtains incrementally multiple instances. It should be, also, men-

tioned that the initial pose of the priors are not known. Such a

formulation Eseg + E2D allows data with the higher spatial res-

olution to constrain properly the footprint detection in order to

achieve the optimal spatial accuracy. Furthermore, it solves seg-

mentation simultaneously in both spaces (image and DEM) and

addresses fusion in a natural manner.figure

3.1 Grammar-based Object Reconstruction

In order to determine the 3D geometry of the buildings, one has

to estimate the height of the structure with respect to the ground

and the orientation angles of the roof components i.e. five un-

known parameters: the building’s main height hm which is has

a constant value for every building and the four angles ω of the
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(a) 3D View of the Extracted Buildings (b) 3D View of the Ground Truth

(c) Vertical/Hypsometric Difference (absolute values) (d) Vertical Difference among the HTP (absolute values)

(e) Vertical Difference (f) Vertical Difference among the HTP

(g) Vertical False Positives among the HTP (h) Vertical False Negatives among the HTP

Figure 4: Vertical/Hypsometric Difference between the Extracted Buildings and the Ground Truth

roof’s inclined planes (Θi = (hm, ω1, ω2, ω3, ω4)). These four

angles (Figure 2) along with the implicitly derived dimensions of

every building’s footprint (from E2D ) can define the roof’s height

at every point (pixel) hr(x, y):

hr(x, y) =

min [D(P1, Pm);D(P2, Pm);D(P3, Pm);D(P4, Pm)]

= min [d1 tan ω1; d2 tan ω2; d3 tan ω3; d4 tan ω4]

(3)

where D: is the perpendicular distance between the horizontal

plane Pm and roof’s inclined plane P1:4. The distance for e.g.

between P1 and Pm in Figure 2 is the actual roof’s height at that

point (x, y) and can be calculated as the product of the tangent

of plane’s P1 angle and the horizontal distance d1 lying on plane

Pm. D(P1, Pm) is, also, the minimum distance in that specific

point comparing with the ones that are formed with the other three

inclined planes.

Utilizing the 3D information fromH -either from point clouds or

from a height map- the corresponding energy E3D that recovers
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our five unknowns for a certain building i has been formulated as

follows:

E3D(Θi) =

m
∑

i=1

∫

Ωi

(hmi
+ hri

(x)−H(x))2 dx (4)

Each prior that has been selected for a specific region is forced

to acquire such a geometry so as at every point its total height

matches the one from the available DEM. It’s a heavily con-

strained formulation and thus robust. The introduced, here, recog-

nition driven framework now takes the following form in respect

to φ, Ti, L and Θi:

Etotal = Eseg(φ) + µE2D(φ, Ti,L) + µE3D(Θi) (5)

The energy term Eseg addresses fusion in a natural way and

solves segmentation φ in both I(x) and H(x) spaces. The term

E2D estimates which family of priors, i.e which 2D footprint i,

under any projective transformation Ti best fit at each segment

(L). Finally, the energy E3D recovers the 3D geometry Θi of

every prior by estimating building’s hm and hr heights.

4 QUALITATIVE AND QUANTITATIVE ASSESSMENT

OF THE PRODUCED 3D MODELS

The quality assessment of 3D data ( (Meidow and Schuster, 2005),(Sar-

gent et al., 2007) and their references therein) involves the assess-

ment of both the geometry and topology of the model. During

our experiments the quantitative evaluation was performed based

on the 3D ground truth data which were derived from a man-

ual digitization procedure. The standard quantitative measures of

Completeness (detection rate), Correctness (under-detection rate)

and Quality (a normalization between the previous two) were em-

ployed. To this end, the quantitative assessment is divided into

two parts: Firstly, for the evaluation of the extracted 2D bound-

aries i.e. the horizontal localization of the building footprints

(Figure 3) and secondly, for the evaluation of the hypsometric

differences i.e. the vertical differences between the extracted 3D

building and the ground truth (Figure 4).

In order to assess the horizontal accuracy of the extracted build-

ing footprints the measures of Horizontal True Positives (HTP),

Horizontal False Positives (HFP) and Horizontal False Negatives

(HFN), were calculated.

2D Completeness =
area of correctly detected segments

area of the ground truth

=
HTP

HTP + HFN

2D Correctness =
area of correctly detected segments

area of all detected segments

=
HTP

HTP + HFP

2D Quality =
HTP

HTP + HFP + HFN

Moreover, for the evaluation of the hypsometric differences be-

tween the extracted buildings and the ground truth the measures

of Vertical True Positives (VTP), Vertical False Positives (VFP)

and Vertical False Negatives (VFN) were, also, calculated. The

VTP are the voxels among, the corresponding Horizontal True

Positive pixels, that have the same altitude with the ground truth.

Note that Horizontal True Positives may correspond (i) to voxels

with the same altitude as in the ground truth (VTP) and (ii) to

voxels with a lower or higher altitude than the ground truth (VFN

and VFP, respectively). Thus, the Vertical False Positives are the

2D Quantitative Measures

Completeness Correctness Quality

0.84 0.90 0.76

3D Quantitative Measures

Completeness Correctness Quality

0.86 0.86 0.77

Table 1: Pixel- and Voxel-Based Quality Assessment

voxels with an hypsometric difference with the ground truth, con-

taining all the corresponding voxels from the HFP and the corre-

sponding ones from the HTP (those with a higher altitude than the

ground truth). Respectively, the Vertical False Negatives are the

voxels with an hypsometric difference with the ground truth, con-

taining all the corresponding voxels from the HFN and the corre-

sponding ones from the HTP (those with a lower altitude than the

ground truth). To this end, the 3D quantitative assessment was

based on the measures of the 3D Completeness (detection rate),

3D Correctness (under-detection rate) and 3D Quality (a normal-

ization between the previous two), which were calculated in the

following way:

3D Completeness =
V TP

V TP + V FN

3D Correctness =
V TP

V TP + V FP

3D Quality =
V TP

V TP + V FP + V FN

The developed algorithm has been applied to a number of scenes

where remote sensing data was available. The algorithm man-

aged in all cases to accurately recover their footprint and over-

come low-level misleading information due to shadows, occlu-

sions, etc. In addition, despite the conflicting height similar-

ity between the desired buildings, the surrounding trees and the

other objects the developed algorithm managed to robustly re-

cover their 3D geometry as the appropriate priors were chosen

(Figure 1). This complex landscape contains a big variety of tex-

ture patterns, more than 80 buildings of different types (detached

single family houses, industrial buildings, etc) and multiple other

objects of various classes. Two aerial images (with a ground res-

olution of appx. 0.5m) and a the coarser digital surface model

(of appx. 1.0m ground resolution) were available. The robust-

ness and functionality of the proposed method is illustrated, also,

on Figures 3 and 4, where one can, clearly, observe the Horizon-

tal and the Vertical True Positives, respectively. The proposed

generic variational framework managed to accurately extract the

3D geometry of scene’s buildings, searching among various foot-

print shapes and various roof types. The performed quantitative

evaluation reported an overall horizontal detection correctness of

90% and an overall horizontal detection completeness of 84%

(Table 1).

In Figure 4c, the hypsometric/vertical difference between the ex-

tracted buildings and the ground truth is shown. With a red color

are the VFN voxels and with a green color the VFP ones. Sim-

ilarly, at Figure 4c where the -corresponding among the HTP

pixels- VFN and VFP voxels are shown. The performed quan-

titative evaluation reported an overall 3D completeness and cor-

rectness of appx. 86% (Table 1).
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5 CONCLUSIONS AND FUTURE WORK

We have developed a generalized variational framework which

addresses large-scale reconstruction through information fusion

and competing grammar-based 3D priors. We have argued that

our inferential approach significantly extends previous 3D ex-

traction and reconstruction efforts by accounting for shadows,

occlusions and other unfavorable conditions and by effectively

narrowing the space of solutions due to our novel grammar rep-

resentation and energy formulation. The successful recognition-

driven results along with the reliable estimation of buildings 3D

geometry suggest that the proposed method constitutes a highly

promising tool for various object extraction and reconstruction

tasks.

Our a framework can be easily extended to process spectral infor-

mation, by formulating respectively the region descriptors and to

account for other types of buildings or other terrain features. For

real-time applications, the labeling function straightforwardly al-

lows a parallel computing formulation by concurrently recover-

ing the transformations for every region. In order to address the

sub-optimality of the obtained solution, the use of the compressed

sensing framework by collecting a comparably small number of

measurements rather than all pixel values is currently under in-

vestigation. Last, but not least introducing hierarchical procedu-

ral grammars can reduce the complexity of the prior model and

provide access to more efficient means of optimization.
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