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ABSTRACT:

Today, one of the main applications of multi-source aerial data is the city modelling. The capability to automatically detect objects of
interest starting from LiDAR and multi-spectral data is a complex and an open problem. The information obtained can be also used for
city planning, change detection, road graph update, land cover/use. In this paper we present an automatic approach to object extraction
in urban area; the proposed approach is based on different sequential stages. The first stage basically solves a multi-class supervised
pixel based classification problem (building, grass, land and tree) using a boosting algorithm; after classification, the next step provides
to extract and filter land areas from classified data; the last step extracts roundabouts by the Hough transform and linear roads by a novel
approach, which is robust to noise (sparse pixels); the final representation of extracted roads is a graph where each node represents a
cross between two or more roads. Results on a real dataset of Mannheim area (Germany) using both LiDAR (first - last pulses) and
multi-spectral high resolution data (Red - Green - Blue - Near Infrared) are presented.

1 INTRODUCTION

TODAY the availability of high spatial resolution LiDAR and
multi-spectral data collected by aerial vehicles (manned or

unmanned) traces new ways for the possible applications. City
modeling, object extraction (e.g., buildings, roads, bridges, . . . ),
urban growth analysis, land use/cover, developing 3D models,
are the main studied applications. Usually the analysis of data is
made by a human operator; traditional photo-interpretation is a
slow and expensive process that requires specialized experts; ac-
curacies similar to those of man-made maps can now be reached
by automatic object extraction and classification approaches, but
with considerably less wasted time and money, thus allowing high
update rates.

The ability to automatically classify data starting from a set of
heterogeneous features is fundamental to design an automatic ap-
proach. One of the first method used to classify LiDAR data was
the height threshold to a normalized DSM (nDSM) (Weidner and
Forstner, 1995); using this method it is possible to extract objects
as buildings, but its has a lot of well-known drawbacks: high-
density canopy can be classified as building and it is not possible
to distinguish low height objects as lands or roads. Multi-spectral
data allow to extend the set of classified objects producing higher
accuracy. Many machine learning approaches were adopted to
solve the problem of object extraction from multi-source data;
Bayesian maximum likelihood method (Walter, 2004), Dempster-
Shafer (Lu et al., 2006), boosting using AdaBoost (Frontoni et al.,
2008).

Common objects as buildings or roads are the main interesting
features that can be extracted from the classified data; road ex-
traction is a classical problem of remote sensing, but not com-
pletely solved. A really interesting overview (updated to 2003)
can be found here (Mena, 2003). Using only multi-spectral data
(Bacher and Mayer, 2005), road extraction is an extremely diffi-
cult task especially in urban area also using high-resolution im-
agery as IKONOS or SPOT. Problems as occlusion (due to the
presence of trees), noise inducted by vehicles or object shadows,

influence the quality of road extraction; moreover, spectral sepa-
rability of road respects to other objects (e.g. bituminous roofs)
is not always guaranteed. Snakes/active contours are classical
methodological tools; different version of standard snake (Kass et
al., 1987) were developed to solve the problem of road extraction
especially in not urban area (Marikhu et al., 2006). Moreover this
approach requires a wide set of good seed points, which are often
user defined. The fusion of LiDAR and multi-spectral data is a
powerful tool for road extraction; LiDAR helps to distinguish be-
tween high objects as buildings or canopies, while multi-spectral
data allow to distinguish between land/road and grass or other
low profile objects (Clode et al., 2005). SAR imagery can be
also useful for road extraction with results comparable with Li-
DAR (Guo et al., 2007). However the goodness of LiDAR and
multi-spectral data fusion approaches allows to obtain interesting
results in building / road extraction.

In this paper, a classification approach, using boosting classifier
to fuse LiDAR and multi-spectral data, is presented. The Ada-
Boost technique with CART classifier as weak learner, classifies
data distinguishing among four classes: building, grass, land and
tree; the ReliefF (Liu and Motoda, 2008) feature selection algo-
rithm allows to consider only meaningful features to minimize the
misclassification. The result of classification stage is then used to
extract buildings, roads and roundabouts; the approach here pro-
posed extracts and clusters a set of linear roads using a pyramidal
representation to reduce time and memory usage. The procedure
is totally automatic and requires only a minimum interaction with
user; a user-defined training set is necessary to train the classifier
and control the learning accuracy; the training set often can be di-
rectly accessible by a web-GIS or a photo-interpretation process
over a very small portion of global area; we use a training set that
covers less than 0.5% of total area.

The paper is organized as follows. Section 2 introduces the method-
ology for classification and object extraction; Section 3 explains
the data set used for experiments, the adopted classifer and the
classification results on a four class problem. Section 4 presents
the method and obtained results in road extraction; in Section 5
conclusions and future work are outlined.
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2 METHODOLOGY

Building and road extraction, as mentioned above, require com-
plex elaborations of multi-source data; we followed a multi-step
procedure. The procedure here proposed consists of four sequen-
tial steps; the output of each module is the input for the following.

Step 1 - Feature generation. It calculates LiDAR and radio-
metric additional features for the classification stage; a total
of seven mixed-features are currently adopted.

Step 2 - Classification. Using AdaBoost with a tree classifer
as weak learner, it distinguishes among four main classes; a
simple training set is adopted to train the classifer.

Step 3 - Object Extraction. It extracts buildings and/or roads
from the classified data; in this paper we focus on road ex-
traction and pre-filtering techniques;

Step 4 - Clustering. It is fundamental to model the extracted
objects.

A graphical representation of discussed methodology is shown in
Fig.1.

Figure 1: Methodology. The object extraction procedure has a hi-
erarchical structure that simplifies the phase of result evaluation;
different approaches can be easily tested without compromising
the overall methodology

In the following sections, the results of each stage are presented;
for completeness a deep results evaluation of building extraction
is reported to evidence the quality of classification process; stan-
dard metrics are used to make in evidence the performance of
AdaBoost classifier.

3 CLASSIFICATION

3.1 Dataset

The methodology presented in previous section, was validated in
an urban area: LiDAR and multi-spectral data refer to the centre
of the German city of Mannheim. This area is characterized with
large buildings, mostly attached forming building blocks of dif-
ferent heights, many cars and little vegetation. Mannheim dataset
has a resolution of 0.25m for the images and 0.5m for the range
data; the total grid dimension is 1808 x 1452 (width x height).

The aerial images are orthorectified and four spectral bands are
available: Red, Green, Blue, and Near InfraRed; laser range data
consist of first and last pulse recordings acquired by an airborne
laser scanner. Additional features were added to expand the fea-
ture space; main motivation is that using a feature weighting al-
gorithm, is easy to find the best feature combination. Normal-
ized Difference Vegetation Index (NDVI) and Green Normalized
Difference Vegetation Index (GNDVI) were calculated. These
indexes are useful to distinguish between some critical classes
which LiDAR data cannot easily distinguish. Two pairs are criti-
cal: building/tree and land/grass. NDVI is a compact index which
allows to better discriminate inside each cited pair. It is well
known that canopies and grass have a NDVI value usually greater
than 0.15, while for building and land classes is usually around or
below zero. As introduced in the previous sections, we identified
four main classes; for each class, we selected eight representative
polygons. The total area of training set is below the 0.5%; it is
useful to remark that the selection of these polygons is a low-time
consuming activity that can be easily performed using a web-GIS
or photo-interpretation (easy owing to the reduced number and
kind of classes). The training set and a 3D view of the input data-
set are shown in Figures 2 and 3.

Figure 2: Data and Training set. Red stands for building, yellow
for land, blue for grass and green for tree

Figure 3: A 3D view of dataset; height of objects are obtained
using the first pulse laser range data

The selected features used for classification are:

LiDAR: ∆h is the height difference between the last pulse DSM
and the DTM and ∆p is the height difference between the
first pulse and the last pulse DSM

Spectrals: R,G,B,NIR and NDVI (GNDVI is omitted because
the weight associated to this feature was low)
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The algorithm used for feature weighting was the ReliefF (Liu
and Motoda, 2008); features with highest weights are ∆h, ∆p
and NDVI; G B R and NIR have low weights; the goodness of
selection is also demonstrated by the obtained results varying the
set of features in the classification phase. The Weights obtained
by the ReliefF algorithm are shown in Fig. 4.
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Figure 4: Results of ReliefF algorithm applied to the set of seven
features; the n parameter represents the number of nearest in-
stances from each class.

Analyzing the weight of each feature, it is evident as the LiDAR
features ∆p and ∆h and the NDVI have the higher values; pure
radiometric features do not allow to classify data correctly due to
the lack of spectral separability.

3.2 Thresholding Normalized DSM

Thresholding Normalized DSM is a simple technique that allows
to classify LiDAR data; only few objects can be extracted, mainly
buildings. Problems which afflict this approach are the ambiguity
of high density canopies and the impossibility to distinguish be-
tween land and grass. nDSM is defined as the subtraction of the
DTM from the DSM of the same scene. A normalized DSM con-
tains objects on a plane of height zero. Assuming that buildings
in the scene have a known range of height, and that the heights of
all other objects fall outside this range, buildings can be detected
by applying appropriate height thresholds to the nDSM.

3.3 AdaBoost

AdaBoost (short for ”adaptive boosting”) is presently the most
popular boosting algorithm. The key idea of boosting is to create
an accurate strong classifier by combining a set of weak classi-
fiers. A weak classifier is only required to be better than chance,
and thus can be very simple and computationally inexpensive.
Different variants of boosting, e.g. Discrete AdaBoost, Real Ada-
Boost (used in this paper), and Gentle AdaBoost (Schapire and
Singer, 1999), are identical in terms of computational complex-
ity, but differ in their learning algorithm. The Real AdaBoost
algorithm works as follows: each labelled training pattern x re-
ceives a weight that determines its probability of being selected
for a training set for an individual component classifier. Starting
from an initial (usually uniform) distribution Dt of these weights,
the algorithm repeatedly selects the weak classifier ht (x) that re-
turns the minimum error according to a given error function. If a
training pattern is accurately classified, then its chance of being
used again in a subsequent component classifier is reduced; con-
versely, if the pattern is not accurately classified, then its chance
of being used again is raised. In this way, the idea of the algorithm
is to modify the distribution Dt by increasing the weights of the
most difficult training examples in each iteration. The selected

weak classifier is expected to have a small classification error on
the training data. The final strong classifier H is a weighted ma-
jority vote of the best T (number of iterations) weak classifiers
ht (x):

H (x) = sign

(
T∑

t=1

αtht (x)

)

It is important to notice that the complexity of the strong classi-
fier depends only on the weak classifiers. The AdaBoost algo-
rithm has been designed for binary classification problems. To
deal with non-binary results we used a sequence of binary clas-
sifiers, where each element of such a sequence determines if an
example belongs to one specific class. If the binary classifier re-
turns a positive result, the example is assumed to be correctly
classified; otherwise, it is recursively passed to the next element
in this sequence; this techniques is known as ”one against all”.
As weak classifer in this paper, a Classification And Regression
Tree (CART) with three splits and T = 35 was used.

The CART method was proposed by (Breiman et al., 1984). CART
produces binary decision trees distinguished by two branches for
each decision node. CART recursively partitions the training data
set into subsets with similar values for the target features. The
CART algorithm grows the tree by conducting for each decision
node, an exhaustive search of all available features and all possi-
ble splitting values; the optimal split is determined by applying
a well defined criteria as Gini index or others ones (Duda et al.,
2000).

3.4 Classification Results

In order to extract objects of interest from the previous described
dataset, all the data were classified. In Fig. 5, the best result
(in terms of detection rate) of classification using AdaBoost is
shown. Moreover to evaluate correctly the quality of classifica-
tion, a ground truth for buildings was manually created (see Fig.
6); the ground truth for the remaining classes actually is not avail-
able but it is planned to cover all the area to analyse exactly the
classifier performance.

Figure 5: Results of classification using AdaBoost and the train-
ing set of 32 polygons; red stands for building, yellow for tree,
blue for land and green for grass

In Table 1 the results for building extraction with different sets
of features are highlighted; according to the weighting algorithm,
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Figure 6: Ground truth used to evaluate the classification results;
white pixels are buildings, blacks one are remaining objects

the combination of ∆h, ∆p and NDVI has the best performance
in different indexes. A detailed description of indexes is1:

DR - Detection Rate: DR = TP/(TP + FN + UP )

FPR - False Positive Rate: FPR = FP/(TN + FP + UN)

FNR - False Negative Rate: FNR = FN/(TP +FN +UP )

UPR - Unclassified Positive Rate: UPR = UP/(TP +FN +
UP )

OA - Overall accuracy: OA = (TP + TN)/(TP + TN +
FP + FN)

R - Reliability: R = TP/(TP + FP )

TUR - Total Unclassified Rate: TUR = (UP + UN)/(TP +
TN + FP + FN + UP + UN)

Classifier DR FPR FNR UPR
nDSM 94,49 10,69 5,51 0,00
AdaBoost 3F 87,44 1,33 7,31 5,25
AdaBoost 5F 91,17 3,95 7,08 1,75
AdaBoost 7F 88,84 1,57 4,76 6,40

Classifier OA R TUR
nDSM 91,24 83,95 0,00
AdaBoost 3F 96,13 97,50 8,16
AdaBoost 5F 94,66 93,18 4,30
AdaBoost 7F 96,97 97,10 8,96

Table 1: Results of pixel-based classification using different sets
of features and metrics

AdaBoost 3F, 5F and 7F differ for the set of features; 3F classifier
uses ∆h, ∆p and NDVI, 5F adds Green and Blue; AdaBoost 7F
classifies data using all features (excluding GNDVI). The Ada-
Boost 3F guarantees the best performance if compared with Ada-
Boost 5F/7F; adding more features other than ∆h, ∆p and NDVI,
the classifier misclassifies data due lack of spectral separability
(confirmed by ReliefF). All the classified data are also used for
the road extraction; in particular the binary image obtained by
considering land (bit set to one) and remaining classes (bit set
zero) represents the input for roundabout and road extraction; the
approach and results are presented in the following section.

1TP/FP = true/false positive TN/FN = true/false negative UP/UN =
unclassified positive/negative

4 ROAD EXTRACTION

In this section we present preliminary results on road/roundabout
extraction starting from classified data; the proposed approach
works fine when the area is urban; modern cities often grows
around main ancient perpendicular roads (cardus-decumanus). The
key idea behind the algorithm is the “line growing”; more details
about algorithm are discussed in next sub-sections.

4.1 Filtering

Filtering is a preliminary process before road extraction; this ac-
tivity is necessary for two main reasons: the first one is the pres-
ence of noisy classified data, because pixel-based classification
suffers of noise; other approaches based on regions (object-based
classification) can reduce it. The second problem that influences
the quality of road extraction is the presence of trees/canopies;
the chosen approach is a non-linear filter; if pixels that appertain
to tree class have neighbours classified as “land”, then they are
assigned to land class. The advantage of using this filter, is the
reduction of effect produced by occlusions. In Fig. 7 the result of
the filtering process is shown.

Figure 7: Filtering. In the top image white pixels are classified as
land; classification is noisy due to the presence of small objects
as vehicles; in the bottom, the non-linear filter allows to reduce
significantly the effect of noise and occlusions

Non-linear filter consists of two steps: the first one is the reduc-
tion of noise using morphological operators. We applied three
algorithms: opening to remove small objects, morphological re-
construction to retrieve boundaries and closing to fill small holes;
the structuring element used was disk of size two. Second step is
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to reduce the effect of canopy occlusions. The non-linear filter is
a moving kernel of 7x7 that substitutes pixels classified as “tree”
if and only if neighbours are “land”. In Fig. 7 red blobs put in
evidence the reduction of occlusions due to the presence of trees.

4.2 Roundabout Extraction

After filtering, before extract roads, roundabouts are identified us-
ing a Hough transform applied to circular shapes. Hough trans-
form is useful to extract well-defined shapes as lines, circles or
ellipse; the major drawback is the computational time, which is
high especially for complex shapes (in terms of number of pa-
rameters) as ellipses. In Fig. 8, a roundabout extracted from
Mannheim dataset is shown.

Figure 8: Hough transform applied to Mannheim dataset to find
circular shapes as roundabouts

The Hough transform usually tends to overfit the real number of
circular shapes; we use a double thresholding (min - max) to fil-
ter the output of Hough. Roundabout shown in Fig. 8 is cen-
tred on x = 1194, y = 378 with a radius of 47 pixels (about
22m); min-max values are determined from typical values for
small and/or large roundabouts. The input image for the Hough
transform is obtained by the classified data; in Fig.7 the binary
image is shown; the approach was tested also on different im-
ages to validate the extraction procedure; it is also possible to
extract more complex roundabouts (e.g., elliptical) using the Ran-
domized Hough Transform also in presence of partial occlusions
(Hahn et al., 2007). The roundabouts identified with Hough trans-
form mask the filtered data supporting the next step: line extrac-
tion and clustering.

4.3 Linear Road Extraction

Segment extraction approach starts from the filtered data masked
with roundabouts. Proposed method is similar to region growing
technique usually applied in image segmentation; starting from
a seed point of size one, classified as “land” the algorithm ex-
pand regions (in this case a segment) adding one or more pix-
els of same class; growing process ends when the region meets
a set of N pixels classified as not-land. The main difference
with the classical region growing is the size of growing space.
In the case of image segmentation, growing space is 2D; in the
case examined in this paper, the expansion is one-dimensional;
next pixel (in both direction left and right) is calculated using
the line parameters in terms of angular value; the pseudo-code
of proposed algorithm is shown in Algorithm 1. The algorithm
has two parameters: T1 and T2. T1 is used to stop growing
process if T1 consecutive points (spurious pixels) classified as

Algorithm 1 Extraction of linear segments
Require: x vector of classified data

1: S vector of extracted segments
2: s vector of candidate pixels belonging to a segment
3: p vector of aligned pixels
4: for j = 0 to j < height do
5: for i = 0 to i < width do
6: for θ = −π/2 to π/2 do
7: p← calculate segment points(i, j, θ)
8: start← 0
9: s.clear

10: for k = 0 to k < p.size do
11: n = count spurious pixels(s, start, x)
12: if n > T2∨i == (width−1)∨j == (height−

1) then
13: if p.length > T1 then
14: S.add(s)
15: s.clear
16: start← k + 1
17: else
18: s.add(p[k])
19: end if
20: end if
21: k ← k + 1
22: end for
23: θ ← θ + 1
24: end for
25: i← i + 1
26: end for
27: j ← j + 1
28: end for

not-land are encountered. T2 is a criteria to specify the mini-
mum length of segment; the values of these parameters were set
to T1 = 2 and T2 = 30; a pyramidal down-scaling (factor 0.5) is
performed on filtered data to reduce the complexity of computa-
tion. The calculate segment points(j, i, θ) function, given an
origin (j, i) in the image reference system, and an orientation θ,
returns a list of pixels that belongs to the parametrized line, while
the count spurious pixels(s, start, x) returns the number of
spurious pixels (classified as not land) along the segment. The
add function adds a segment to vector S or adds a pixel p[k] to
the vector of candidate pixels belonging to a segment. In Fig.9 an
example of segment extraction on a synthetic image is shown; the
best segment orientation is chosen as the angular value that min-
imizes the number of segments extracted; if thresholds T1 and
T2 are set properly, the minimum point is not strongly afflicted
by the presence of noise.

Figure 9: Segment extraction. Top image represent an ideal seg-
ment extraction while in the bottom it is tested a noisy image

17

    In: Stilla U, Rottensteiner F, Paparoditis N (Eds) CMRT09. IAPRS, Vol. XXXVIII, Part 3/W4  ---  Paris, France, 3-4 September, 2009 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



The best orientation for a road is chosen by minimizing the num-
ber of extracted segments (as shown in Fig.9); a road can be de-
fined as the minimum set of segments with a length greater than
T2 and same angular value. The set of segments which forms
a road is created applying a clustering algorithm; the DBSCAN
(Ester et al., 1996) is adopted to group the set of extracted seg-
ments. A segment belongs to a cluster if and only if the distance
between the initial point of segment and the nearest neighbour is
under a threshold; if this geometric criteria is satisfied the lengths
of clusterized segments are also checked. If the length are compa-
rable (in terms of distance from the mean value of the cluster) the
set of cluster is labelled as road and the centerline is calculated.
In Fig.10 a series of tests on Mannheim data-set for different
orientations is shown. Tests put in evidence that the algorithm,
owing to the clustering, does not consider incoherent segments
(Fig.10c).

Figure 10: Road extraction for three different angles; segments
are the thick red lines (bottom), while raw ones are shown in top

The extracted geo-referenced and vectorial road graph with the
proposed technique is shown in Fig.11; some roads are not cor-
rectly identified due to presence of high density canopies.

Figure 11: Road graph for Mannheim data-set

5 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a complete methodology to solve the
problem of automatic extraction of urban objects from multi-
source aerial data. The procedure, which consists of sequential
steps, takes advantage of classified data with a powerful machine
learning algorithm as AdaBoost with CART as weak learner. The
capability of distinguishing among four classes in an urban area
as Mannheim increases the set of possible applications; two test
cases were presented: building and road extraction. In the case of
building extraction, the fusion of spectral data with LiDAR data
using AdaBoost overtakes the limits of a simple nDSM thresh-
olding especially when canopies have a high density. The pro-
posed road extraction method allows to reduce the effect of oc-
clusions;roads, extracted with the “line growing” approach en-
hanced with clustering, well match with a photo-interpretation

process. As future works, more tests on more complex data with
curved lines will be performed; moreover different weak learners
based on RBF Neural Networks will be tested.
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