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ABSTRACT:

In contrast to conventional airborne multi-echo laser scanner systems, full-waveform (FW) lidar systems are able to record the entire
emitted and backscattered signals of each laser pulse. Instead of clouds of individual 3D points, FW devices provide 1D profiles of
the 3D scene, which allows gaining additional and more detailed observations of the illuminated surfaces. Indeed, lidar waveforms
are signals consisting of a train of echoes where each of them corresponds to a scattering target of the Earth surface or a group of
close objects leading to superimposed signals. Modelling these echoes with the appropriate parametric function is necessary to retrieve
physical information about these objects and characterize their properties. Henceforth, the extracted parameters can be useful for
subsequent object segmentation and/or classification. This paper presents a stochastic based model to reconstruct lidar waveforms in
terms of a set of parametric functions. The model takes into account both a data term which measures the coherence between the
proposed configurations and the waveforms, and a regularizing term which introduces physical knowledge on the reconstructed signal.
We search for the best configuration of functions by performing a Reversible Jump Markov Chain Monte Carlo sampler coupled with
a stochastic relaxation. Finally, the algorithm is validated on waveforms from several airborne lidar sensors, showing the suitability of
the approach even when the traditional assumption of Gaussian decomposition of waveforms is invalid.

1 INTRODUCTION

Airborne laser scanning is an active remote sensing technique
providing range data as georeferenced 3D point clouds. It en-
ables fast, reliable, accurate, but irregular mapping of both ter-
rain and elevated features such as the tree canopy and the ground
underneath. The new technology of full-waveform lidar systems
permits to record the backscattered signal for each transmitted
laser pulse. FW lidar data yield more than a basic geometric rep-
resentation of the Earth topography. Instead of clouds of individ-
ual 3D points, lidar devices provide 1D profiles of the 3D scene,
which allows gaining further physical observations of the illu-
minated surfaces by morphological analysis (Mallet and Bretar,
2009). Indeed, each signal consists of a series of temporal modes
(called echoes), where each of them corresponds to the reflection
from a unique object or a superposition of the signal of several
elements (called scatterers).
Since small-footprint laser scanners with waveform digitizers are
becoming increasingly available, many studies have already been
carried out to perform advanced signal processing and analysis.
The advantage of off-line waveform processing is twofold. By
designing its own signal fitting algorithm, an end-user can:
(i) Maximize the detection rate of relevant peaks within the wave-
forms. Additional echoes can be extracted in a more reliable way.
Therefore, range measurements are more accurately determined
and close objets better discriminated (Jutzi and Stilla, 2006, Bar-
ber and Mills, 2007, Kirchhof et al., 2008).
(ii) Decompose the waveforms by modelling each echo with a
suitable parametric function. It was found that in general small-
footprint lidar waveforms can be well modelled with a sum of
Gaussian pulses (Wagner et al., 2006). The Gaussian assumption
is a suitable trade-off between simplicity and uniqueness solu-
tion. The echo shape (amplitude and width) can be retrieved,
providing relevant features for tree segmentation (Reitberger et
al., 2008), classification in urban areas (Mallet et al., 2008), or

ground discrimination, leading to more accurate Digital Terrain
Models (Doneus et al., 2008).
Nevertheless, two main drawbacks can be noticed with a Gaus-
sian assumption. Peaks may be asymmetric and therefore cannot
be correctly adjusted. The attenuation of the laser beam within
the tree canopy leads to an asymmetric backscattered pulse in
case of large or medium-footprint lidar sensors. The geometry
of solid targets (sloped building roof with micro-geometry) or
two very close objects can have a similar effect when analyzing
small-footprint lidar waveforms in urban areas. Moreover, the
full-waveform Gaussian observables directly link to the backscat-
ter target cross-section but may be inefficient or less discrimi-
native for object segmentation compared with traditional spatial
features. For segmenting surfaces (same coarse geometry but
with distinct roughnesses), unusual modelling parametric func-
tions are bound to provide discriminative features.
The aim of this study is to investigate further lidar waveform pro-
cessing by taking these two issues into account.
Non-linear least-squares methods (Hofton et al., 2000) or max-
imum likelihood approach using the Expectation Maximization
(EM) algorithm (Persson et al., 2005) are typically used to fit the
signal to a mixture of Gaussian functions. However, the gradi-
ent computation required in such models limits both the intro-
duction of physical knowledge on the waveforms and the type
of the chosen function. Stochastic approaches are very promis-
ing for addressing the issue of reconstructing lidar waveforms.
These models have shown good potentialities for many applica-
tions in remote sensing data analysis such as the extraction of
road networks (Lacoste et al., 2005), facade reconstruction (Rip-
perda, 2008) or 3D building reconstruction (Lafarge et al., 2008).
Our method hypothesize mixtures of various parametric functions
representing the reconstructed echos. An energy is associated to
each configuration and the global minimum is then found using
a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algo-
rithm (Green, 1995). Our model presents several interesting char-
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acteristics compared to conventional waveform modelling tech-
niques mentionned above:
• Multiple function types - It allows to deal with various types
of parametric functions. By using a library of shapes, more ac-
curate estimates are performed compared to classical approaches
(Salas-González et al., 2009).
• Lidar physical knowledge integration - Complex prior informa-
tion on lidar waveform characteristics can be introduced in the
energy without having problems of convexity or/and continuity
restrictions in the formulation of these interactions.
• Efficient exploration of configuration spaces - A RJMCMC
sampler with relevant proposition kernels allows to avoid exhau-
tive explorations of continuous configuration spaces, and is par-
ticularly efficient when the number of functions is unknown. Gen-
erally speaking, the MCMC samplers offer good potentialities in
signal reconstruction (Punskaya et al., 2002), e.g., lidar waveform
estimate, for counting and locating the reflected returns from sur-
faces (Hernández-Marı́n et al., 2007).
The proposed model is formulated in Section 2 as well as the opti-
mization procedure. Section 3 presents and motivates the chosen
library for fitting lidar echoes. The algorithm is then validated
on waveforms from various airborne lidar sensors and results are
shown in a urban area in Section 4. Finally, conclusions and per-
spectives are drawn.

2 THE PROPOSED MODEL

A stochastic framework is used to model lidar waveforms by pre-
defined parametric functions. Each configuration x of parametric
functions is measured by an energy U(x). This energy computes
the consistence between the configuration x and the observed li-
dar waveform, and takes into account complex interactions be-
tween the parametric functions xi (called objects) of the config-
uration x. The energy minimization is complex in such a case
since (i) we do not know the number of objects in the configura-
tion, (ii) the objects are defined by a different number of parame-
ters because there are various object types, and (iii) the energy is
not convex. Most of conventional optimization algorithms cannot
be performed in such conditions. A stochastic sampler detailed
further is used to find the global minimum of U .

2.1 Energy formulation

The energy U(x) measuring the quality of a configuration x is
composed of both a data term D(x) and a regularization one
R(x) such as:

U(x) = β D(x) + (1− β)R(x) (1)

where β ∈ [0, 1] tunes the trade-off between the data and the
prior terms.

2.1.1 Data energy D This term helps the model to best fit to
the lidar waveforms. The likelihood can then be obtained by com-
puting a distance between the given signal Sdata and the estimated
one Sx, which depends on the current objects on the configura-
tion x.

D(x) =

s
1

|K|
Z
K

(Sx − Sdata)2 (2)

where K is the signal support. This term measures the quadratic
error between both signals. It allows to be sensitive to high vari-
ations corresponding to local strong errors in signal estimates.

2.1.2 Prior R(x) introduces interactions between objects of
x, and favors or penalizes some configurations. For airborne lidar
waveforms, the prior knowledge is set up by physical limitations

in the backscatter of lidar pulses. These limitations are modelled
by three terms R1, R1, and R3.

R(x) = R1(x) +R2(x) +
X
xi∼xj

R3(xi, xj) (3)

where xi ∼ xj constitutes the set of neighboring objects in the
configuration x. This neighborhood relationship ∼ is defined as
follows:

xi ∼ xj = {(xi, xj) ∈ x / |µxi − µxj | ≤ r} (4)

where µxi (resp. µxj ) represents the mode (position of the max-
imum amplitude of the echo) of the associated function to object
xi (resp. xj), and r is linked to the lidar sensor range resolution.

(i) Echo number limitation From our own observations, even
for complex targets like forested areas, a waveform empirically
reaches a maximum of seven echoes and it is rare to find more
than four echoes. In urban areas, most of the targets are rigid,
opaque structures like buildings and streets. Thus, more than two
echoes are usually found in non dense trees. We then aim to favor
configurations with a limited number of objets with an energy
given by:

R1(x) = − log Pcard(x) with
∞X
n=0

Pn = 1 (5)

where Pn is the probability for the waveform to have n echoes.
The probabilities are empirically set up by a coarse mode estimate
on a urban test area (112M waveforms over 40 km2). Here, we
have: P1 = 0.6, P2 = 0.27, P3 = 0.1 and P46n67 = 0.01. For
n > 7, R1(x) = +∞: it prevents the algorithm from choosing
such configurations.

(ii) Backscattered energy limitation A laser scanning system re-
ceives a signal with a bounded energy. This upper bound depends
on the emitted energy (which is commonly unknown), the target
reflectance, and scattering properties. This reference power Eref

can be set empirically to
√

2πAmaxσmax. Amax and σmax are upper
bounds respectively for the amplitude and the width of echoes
within the waveforms over the area of interest. Only waveforms
with superior energy are as follows penalized.

R2(x) = ωe 1{E(x)>Eref}(E(x)− Eref)
2 (6)

where 1{.} is the characteristic function, E(x) =
R
K
Sx is the

intensity of the configuration x, compared to the given reference
power.

(iii) Sensor resolution limitation We aim to penalize objects
closer than the sensor range resolution. Such energy is given by:s

R3(xi, xj) = ωm exp

 
r2 − |µxi − µxj |2

σ2

!
(7)

It also favors configurations with a small number of objects. In-
deed, a single pulse can be fitted by an important number of
peaks that will not represent physical scatterers. Nevertheless,
such configuration does not reflect the reality, and leads to results
useless for target discrimination.
Physical and weight parameters can be distinguished in the en-
ergy. Physical parameters are r and σ. Small-footprint airborne
topographic sensor specifications lead to r = 5 ns and we set σ
to 0.01 ns. Thus, R3(xi, xj) → +∞ when µxi → µxj Data
and regularization terms are weighted one compared to the other,
respectively with a factor β set to 0.5. The two prior weights ωe
and ωm are tuned by “trial-and-error” tests.
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Model Generalized Gaussian Weibull Nakagami Burr
Parameters I, s, σ, α I, s, k, λ I, s, µ, ω I, s, a, b, c

Expression I exp(− (x−s)α2

2σ2 )
I k
λ
(x−s
λ

)k−1 I 2µµ

ωΓ(µ)
(x−s
ω

)2µ−1 I bc
a

(x−s
a

)−b−1

× exp(−(x−s
λ

)k)) × exp(−µ(x−s
ω

)2) × (1 + (x−s
a

)−b)−c−1

Shape

I=1, s=3, σ=2, α=3 I=1, s=0, k=2, λ=1 I=1, s=0, µ=2, ω=1 I=1, s=0, a=1, b=2, c=1

Table 1: Library of models. I and s are common parameters to all functions, respectively for amplitude and shift or location.

2.2 Optimization by Monte Carlo sampling

We aim to find the configuration of objects which minimizes the
non convex energy U in a variable dimension space. Indeed, the
number of objects is unknown and function types are defined by
different number of parameters (see Table 1). Such a space can
be efficiently explored using a Reversible Jump Markov Chain
Monte Carlo (RJMCMC) sampler (Green, 1995) coupled with a
stochastic relaxation. One of the advantage of this iterative al-
gorithm is that it does not depend on the initial state. Object
configurations are sampled according to families of moves called
proposition kernels and denoted by Qm where m represents the
family of moves. The sampler performs a move from an object
configuration x to y according to a probability Qm(x → y).
Then, the move is accepted with the following probability:

min

„
1,
Qm(y → x)

Qm(x→ y)
exp− (U(y)− U(x))

T

«
(8)

where T is the relaxation parameter. We use three different fam-
ilies of moves (m = {1, 2, 3}):
• Perturbation kernel Q1: a parameter of an object belonging
to the current configuration x is modified;
• Birth-and-death kernel Q2: an object is added or removed
from the current configuration x and
• Switching kernel Q3: the type of an object belonging to x is
switched with another type of the library.
The probabilities of choosing each move are equal since no as-
sumption can be made on which move is more relevant at the cur-
rent state. More details concerning this optimization technique
are given in (Green, 1995).

3 SET OF MODELLING FUNCTIONS

The contents of the library is a key point since the function pa-
rameters will be used afterwards for classifying 3D point clouds.
The Gaussian and Generalized Gaussian (GG) models have been
shown to fit most of the echoes of small-footprint lidar waveforms
in urban areas (Wagner et al., 2006, Chauve et al., 2007). Nev-
ertheless, this assumption is not always sufficient. Non unique
asymmetric echoes are observed within waveforms correspond-
ing to echoes slightly skewed by roof materials, ground surface or
tree canopy. The GG model gives the amplitude, width, and shape
for symmetric echoes. Amplitude and width are useful for dis-
criminating ground, vegetation and buildings (Gross et al., 2007,
Wagner et al., 2008) but fail segmenting different kinds of sur-
faces such as grass, gravel and asphalt (Mücke, 2008), even when
the pulse shape is available (Mallet et al., 2008). The backscat-
tered cross-section gives slightly better discrimination (Mücke,
2008).
Two kinds of functions must therefore be included: functions

able to fit asymmetric peaks and those which can simulate both
skewed and non-skewed echoes with other parameters than pro-
vided by the Gaussian/GG models.
Thus, three new functions are introduced. The Weibull distri-
bution provides a scale and a shape parameter offering the pos-
sibility to simulate symetric or asymmetric peaks with two new
parameters. The Nakagami distribution is a generalization of
the Chi distribution and can simulate right-skewed distributions
with a skewness parameter. Finally, the Burr function simulates
specifically asymmetric modes with two shape parameters. Ta-
ble 1 summarizes the analytical expressions as well as the pa-
rameters of each distribution of the library. Weibull and Nak-
agami functions are traditionally used to model Synthetic Aper-
ture Radar (SAR) images to estimate their amplitude probability
density functions as well as for subsequent classification (Tison
et al., 2004). For airborne lidar waveforms, there is no physical
background justifying their use. Despite this fact, these models
may outperform the Gaussian assumption in many cases and en-
hance lidar waveform analysis and classification.
This library is not exhaustive. The final choice of modelling
functions will depend on the relevance of their parameters for
the selected classes. A parameter is relevant whether it improves
classification results. This choice is totally independant of the
stochastic approach presented here (feature selection step).

4 RESULTS

The algorithm has been carried out on different kinds of air-
borne lidar signals. A waveform-by-waveform evaluation to both
estimate its quality and the correctness of the echo detection
would be highly time-consuming. Thus, it has been rather eval-
uated by computing the correlation coefficient ρ and the relative
Kolmogorov-Smirnov distance KS between the raw and the esti-
mated signals. KS is a L∞ norm based indicator, used to detect
missing echoes and defined as follows:

KS(Sdata,Sfinal) =

sup
K
|Sdata − Sfinal|
max
K
Sdata

(9)

where Sfinal is the final estimated signal.

4.1 Experiments on simulated signals

The algorithm has been first applied on signals with a higher
complexity than real lidar waveforms to assess its effectiveness.
Longer signals with more echoes than physically expected, with
distorted and overlapping modes as well as corrupted with noise
have been fitted with our method. The prior physical parameters
have just to be tuned to extend the energetical formulation to other
kinds of signals. To deal respectively with very close echoes and
with large overlapping ones, the interaction between objects can
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be changed by decreasing and increasing r and σ. To reconstruct
signals with higher energy, Eref can be tuned. To fit signals with
more modes, the echo number limitation can be modified by ac-
cepting more echoes within the signal and, for instance, with the
same probability.
Figure 1 shows that good fitting results can be achieved on simu-
lated waveforms, even corrupted with Gaussian noise. The wave-
form is composed of nine peaks: three single echoes and three
pairs of overlapping echoes. The nine echoes are retrieved and
their locations accurately found. However, small differences be-
tween the reference and the estimated signals can be locally no-
ticed, especially with noisy signals. The algorithm has more dif-
ficulties to find the exact maxima and fit the upper parts of the
modes (e.g., 2nd and 4th echoes in Figure 1).

Figure 1: Results of complex waveform fitting on a simulated sig-
nal with nine echoes (above) and on the same signal with Gaus-
sian noise (below). The dotted black line and the continuous grey
one are respectively the raw and the reconstructed signals.

4.2 Experiments on waveforms from different lidar sensors

Several lidar sensors provide signals of backscattered laser
pulses. Their specifications can be found in (Mallet and Bretar,
2009). Such waveforms can be reconstructed and their echoes
modelled with our approach showing its flexibility. One just has
to tune the prior parameters. Depending on the surveyed area, the
echo number limitation term of the energy can be discarded or
become more restrictive. Moreover, the range resolution param-
eters (r and σ) can be changed according to the sensor specifi-
cations and the adopted classification strategy. For instance, with
medium or large-footprint waveforms, it should be sufficient to fit
overlapping echoes with a single function to retrieve a “global“
return of the tree canopy or the ground.

4.2.1 Bathymetric waveforms Green lidar waveforms are
used in bathymetry for accurate sea/river-depth estimates. They
are ideally composed of two echoes corresponding respectively
for the first and second echoes to the air-water boundary and the
seafloor. First echoes are skewed due to the scattering and spread-
ing of pulse at the sea surface. For second echoes, the received
power from the bottom decreases exponentially with the water
depth and the attenuation coefficient, and thus cannot be fitted
with a Gaussian model. They can be represented by an exponen-
tial decaying function that should be introduced in future works.
Our algorithm has been tested on waveforms acquired in June
2005 on a near-shore area of 300 km2 of the Morbihan Gulf
(France), using a SHOALS 1000T device. The waters are partic-
ularly shallow. Thus, the provided signals consist of one or two
overlapping peaks. Table 2 summarizes the modelling statistics

on 190 waveforms. The quality measures ρ and KS show that the
signals are correctly reconstructed and only few peaks are missed.
They correspond to superimposed peaks. First echoes of two-
mode waveforms are modelled both by the GG and Nakagami
functions. However, first and second peaks are too close located
to deduce that they correspond to symmetric echoes. Moreover,
the second peaks are mainly adjusted by asymmetric models. The
Weibull function has been barely selected by the algorithm. No
conclusions can be drawn on the fitted waveforms since such
model has a similar behaviour to the Nakamagi one.

Echo ρ KS GG Weibull Naka. Burr
First 0.97 0.1 55.5 0.5 39.2 4.8

Second 3.8 0.1 54.4 41.7

Table 2: Fitting quality measures and statistics on echo modelling
for 190 bathymetric waveforms (SHOALS 1000T).

4.2.2 Airborne medium and large-footprint topographic
waveforms The return waveforms of large-sized footprint lidar
sensors give the record of the vertical distribution of intercepted
elements in a large conical region of the 3D space. This leads
to non Gaussian statistics of object elevations within the diffrac-
tion cone. Such right-skewed waveforms can also be noticed with
medium-footprint waveforms, especially in vegetated areas. This
is due to the attenuation of the laser beam within the tree canopy.
The Beer-Lambert law states the energy exponentially decreases
while increasing the target range and the absorption coefficients.
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Figure 2: Examples of adjusted (a-b) LVIS and (c-d) SLICER
waveforms.

Waveforms from SLICER and LVIS lidar sensors have been de-
composed and modelled with our approach (Figure 2). LVIS
waveforms have been acquired in March 1998 over a 800 km2

area of Costa Rica using 25 m-diameter footprints as part of the
pre-launch activities of the Vegetation Canopy Lidar (VCL) Mis-
sion1 (Hofton et al., 2002). Both fine and coarse fitting strategies
have been tested. The fine strategy consists in selecting r accord-
ing to the sensor resolution r = 20ns (10 bins). It leads to almost
perfect signal fitting but conclusions are difficult to draw since
the function selected for a given peak depends on the functions
of the neighboring echoes (Figure 2a). With the coarse solution, r
is set to 60 ns (30 bins) and σ to 0.001 ns. It prevents overlapping
or close echoes from being individually fitted. A unique global
peak is selected instead (Figure 2b), providing a general trend for
the first part of the signal. SLICER elevation profiles come from

1Data set available at https://lvis.gsfc.nasa.gov/index.php
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in the BOREAS Northern Study Area in Canada2, and have been
acquired in July 1996 (Harding, 2000).
Table 3 shows that signals from both sensors are correctly decom-
posed but with less accuracy than bathymetric and small-footprint
waveforms. Compared to the latter ones, SLICER and LVIS el-
evation profiles are much more complex since the sensor laser
beam integrates a significant number of distinct objets (see Fig-
ure 2b). With medium and large-footprint waveforms, the Gen-
eralized Gaussian model is no longer selected by the algorithm.
The three functions enabling to simulate asymmetric peaks are
equally preferred. The main noticeable results are that the GG
function is chosen for peaks with a small amplitude and that the
Nakagami one is mainly selected for the last echo, which corre-
spond to the ground and low above-ground objets.

Sensor
ρ KS GG Weibull Naka. Burr(# WFs)

SLICER 0.956 0.22 1.5 26.5 31.4 40.6(340)
LVIS 0.971 0.2 2.7 37.8 23.4 36.1(333)

Table 3: Medium and large-footprint waveform fitting and mod-
elling statistics. The fine solution has been adopted for the signal
decomposition.

4.3 Airborne topographic small-footprint lidar waveforms
in urban areas

Waveforms acquired from small-footprint airborne lidar systems
(Riegl LMS-Q560 and Optech 3100EA) over various kinds of
landscapes have been fitted using the stochastic approach. Fig-
ure 3 shows results both on urban and natural items. The right
number of echoes is found as well as the correct shape of the
waveform: single and multiple overlapping echoes are retrieved,
even in vegetated areas where the noise level is significant w.r.t.
the echo amplitudes (Figures 3a and b).
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Figure 3: Decomposed and modelled waveforms on (a-b) trees,
(c) a building roof, and (d) a hedge (Riegl LMS-Q560 sensor).

The Generalized Gaussian, Weibull and Nakagami functions have
been introduced to model the same kind of echoes. Thus, there
is no concluding whether the minimal configurations obtained are
composed of the right modelling functions. As expected, the Burr
model allows to fit slightly asymmetric echoes, especially the sec-
ond echo of two overlapping ones (Figures 3c and d).
Approximatively 3000 waveforms acquired with the Optech
3100EA sensor over a urban area have been analysed. The aim

is to assess the reliability of the method in heterogeneous land-
scapes and to show its local stability in homogeneous areas.
Three regions of interest have been selected: a flat harvested
field (Field), a flat mixed asphalt/grass surface with a single tree
(Ground), and a building with grass and pavements (Building).
All the waveforms have been acquired in the nadir view or with a
small angle of incidence. Table 4 shows that with small-footprint
waveforms (i.e., with signals composed of distinct echoes with
non complex shapes) the fitting accuracy is high (ρ > 0.99 and
KS<0.06). For flat areas, in the nadir view, the echoes are sym-
metric. Thus, as expected, the Generalized Gaussian function
is selected for most of the waveforms, except for some echoes
within the tree canopy for the Ground region. Nevertheless, since
for this area, the Burr function is almost never chosen (one wave-
form among 1535). It can be concluded that, in reality, all the
waveform have symmetric echoes. Asymmetric modelling func-
tions are therefore irrelevant for fitting echoes of small-footprint
waveforms in vegetated areas. The Gaussian function is therefore
sufficient and its parameters more convenient for modelling and
estimating the influence of hit targets on the ith echo of a wave-
form (Wagner et al., 2008). Finally, for the building region, both
symmetric and skewed peaks are retrieved. Asymmetric echoes
can be found on the building roof as well as on its edge, and
where small surface discontinuties exist (see Figure 4).

Area
ρ KS GG Weibull Naka. Burr(# WFs)

Field 0.996 0.032 99.7 0 0.2 0.1(936)
Ground 0.991 0.059 95.9 2.91 1.13 0.07(1535)
Building 0.995 0.039 54.3 0.9 30.1 14.7(544)

Table 4: Fitting results on three urban regions of interest (Optech
3100EA sensor).

Figure 4: 3D point cloud labelled with the model selected by the
stochastic approach (Building area). The colors are those of Ta-
ble 1.

5 CONCLUSIONS AND FUTURE WORK

We have proposed an original method for modelling lidar wave-
forms by complex parametric functions. The obtained results are
satisfactory and no lost of fitting accuracy is noticed compared
to a classical Gaussian waveform fitting scheme. The stochas-
tic approach is well adapted both to locate echoes in signals and
accurately describe them with parametric functions taken from
the extensible and tunable model library. The algorithm has been
successfully applied to waveforms from different lidar sensors,
showing its effectiveness and flexibility from various landscapes
and footprints. For medium and large-sized footprints, the chosen

2Data set available at http://core2.gsfc.nasa.gov/research/laser/slicer/browser.html
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functions allow to adjust asymmetric peaks when necessary. Fur-
thermore, the low rate of Gaussians can be noticed and justifies
the interest of the approach. For small-footprints, the skewness of
the echoes is less significant. All of the models, except the Burr
one are suitable. The potential advantages of this approach are
therefore twofold. 3D points can be generated over large areas,
on one hand, with shape descriptors that are the parameters of
the modelling functions. This is almost relevant for non overlap-
ping echoes which do not interact with each other in the energy
minimization process. On the other hand, the 3D points can be
labelled with their modelling function. By providing new fea-
tures, our approach offers the possibility to improve classical li-
dar point cloud classification algorithm. Depending on the latter
one, a feature selection step may be carried out to assess whether
the extracted attributes will be discriminative.
Finally, in future works, it would be interesting to estimate au-
tomatically the weighting parameters using for instance the EM
algorithm. Moreover, we should introduce in the energy formu-
lation firstly specific interactions between parametric functions
of different types in order to improve local signal adjustments.
Eventually, since consecutive small-footprint waveforms along a
scan line and in the orthogonal directions are likely to have simi-
lar shapes, spatial interactions should also be included in the reg-
ularization term of the proposed model.
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