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ABSTRACT: 
 
This paper presents work on the development of automatic feature extraction from multispectral aerial images and lidar data based 
on test data from two different study areas with different characteristics. First, we filtered the lidar point clouds to generate a Digital 
Terrain Model (DTM) using a novel filtering technique based on a linear first-order equation which describes a tilted plane surface, 
and then the Digital Surface Model (DSM) and the Normalised Digital Surface Model (nDSM) were generated. After that a total of 
22 uncorrelated feature attributes have been generated from the aerial images, the lidar intensity image, DSM and nDSM. The 
attributes include those derived from the Grey Level Co-occurrence Matrix (GLCM), Normalized Difference Vegetation Indices 
(NDVI) and slope. Finally, a SOM was used to detect buildings, trees, roads and grass from the aerial image, lidar data and the 
generated attributes. The results show that using lidar data in the SOM improves the accuracy of feature detection by 38% compared 
with using aerial photography alone, while using the generated attributes as well improve the detection results by a further 10%. The 
results also show that the following attributes contributed most significantly to detection of buildings, trees, roads and grass 
respectively: entropy (from GLCM) derived from nDSM; slope derived from nDSM; homogeneity (from the GLCM) derived from 
nDSM; and homogeneity derived from nDSM. 
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1. INTRODUCTION 

Research on automated feature extraction from aerial images 
and lidar data has been fuelled in recent years by the need for 
data acquisition and updating for GIS. The high dimensionality 
of aerial and satellite imagery presents a challenge for 
traditional classification methods based on statistical 
assumptions. Artificial Neural Networks (ANNs) on the other 
hand may represent a valuable alternative approach for land 
cover mapping for such highly dimensional imagery. ANNs 
require no assumption regarding the statistical distribution of 
the input pattern classes (Hugo et al., 2007) and they have two 
important properties: the ability to learn from input data; and to 
generalize and predict unseen patterns based on the data source, 
rather than on any particular a priori model. The Self-
Organizing Map is one of the most commonly used neural 
network classifiers. It can be adjusted to adapt to the probability 
distribution of the inputs (Seto and Liu, 2003). 

 
In this paper we applied the SOM algorithm for combining 
multispectral aerial imagery and lidar data so that the individual 
strengths of each data source can compensate for the weakness 
of the other. The low contrast, occlusions and shadow effects in 
the image were compensated by the accurately detected planes 
in the lidar data. However, edges of features are not located 
accurately in lidar point clouds because of the lidar’s system 
discrete sampling interval of 0.5m to 1m, (Li and Wu, 2008).  
Therefore, we have derived 22 attributes from both aerial image 
and lidar data by a number of algorithms to alleviate this 
problem. To evaluate the contribution of the lidar data and the 
generated attributes in the detection process, three separate 

SOM classification tests were carried out using different input 
data to determine the accuracy of feature detection against a 
reference map:  
 

1. The aerial image, the lidar data and the derived 
attributes,  

2. The aerial image and the lidar data,  
3. The aerial image only as input data for the SOM. 

 
Finally, the contributions of the individual attributes to the 
quality of the classification results were evaluated. 

 
 

2. RELATED WORK 

There have been many research efforts on the application of 
aerial images and lidar data for building extraction. 
Rottensteiner et al., (2005) evaluated a method for building 
detection by the Dempster-Shafer fusion of lidar data and 
multispectral images. The heuristic model for the probability 
mass assignments for the method was validated, and rules for 
tuning the parameters of this model were discussed. Further, 
they evaluated the contributions of the individual cues used in 
the classification process to the quality of the classification 
results, which showed that the overall correctness of the results 
can be improved by fusing lidar data with multispectral images.  
 
Matikainen et al., (2007) used a classification tree approach for 
building detection. A digital surface model (DSM) derived from 
last pulse laser scanner data was first segmented into classes 
‘ground’ and ‘building or tree’. Different combinations of 44 



 

input attributes were used. The attributes were derived from the 
last pulse DSM, first pulse DSM and a colour aerial ortho 
image. In addition, shape attributes calculated for the segments 
were used. Compared with a building reference map, a mean 
accuracy of almost 90% was achieved for extracting buildings.  

 
The numbers of studies that have utilized ANNs for highly 
spectrally dimensional image analysis are limited. Jen-Hon and 
Din-Chang (2000) applied the self-organized map classification 
(SOM) method for SPOT scene land cover classification. Hugo 
et al. (2007) assessed the potential of the SOM neural network 
to extract complex land cover information from medium 
resolution satellite imagery using MERIS Full Resolution data.  

 
 

3. STUDY AREA AND DATA SOURCES  

Two test data sets of different characteristics were used in this 
study. The first area is a part of the University of New South 
Wales campus; Sydney Australia, covering approximately 
500m x 500m. It is a largely urban area that contains residential 
buildings, large Campus buildings, a network of main roads as 
well as minor roads, trees and green areas. Lidar data were 
acquired over the study area in April 2005, using an Optech 
ALTM 1225 with a pulse repetition frequency (PRF) of 25kHz 
at a wavelength of 1.047µm. The multispectral imagery was 
captured by film camera by AAMHatch on June 2005 at 1:6000 
scale. The film was scanned in three colour bands (red, green 
and blue) in TIFF format, with 15µm pixel size (GSD of 0.09m) 
and radiometric resolution of 16-bit as shown in Figure 1(left).  
 
The second study area is a part of Bathurst city; NSW Australia, 
covering approximately 1000m x 1000m. It is a largely rural 
area that contains small sized residential buildings, road 
networks, trees and green areas. Lidar data was acquired over 
the area by a Leica ALS50 sensor in August 2008, operating 
with a PRF of 150kHz at a wavelength of 1.064µm. The multi-
spectral imagery was captured by a Leica ADS40 sensor on 
October 2007. Three colour band (red, green and blue) images 
were collected at 50cm GSD as shown in Figure 1(right).  

Figure 1. Orthophotos for UNSW (left), Bathurst (right). 
 

4. METHODOLOGY 

Feature extraction of the study area was implemented in several 
stages as follow: 
 
4.1 Filtering of lidar point clouds   

Filtering is the process of separating on-terrain points (DTM) 
from points falling onto natural and human made objects. 
Axelsson (2000) developed an adaptive Triangulated Irregular 
Network (TIN) method to find ground points based on selected 
seed ground measurements. Whitman et al., (2003) used an 
elevation threshold and an expanding search window to remove 

non-ground points. Abo Akel et al., (2004) used a robust 
method with orthogonal polynomials and road network for 
filtering of lidar data in urban areas. 
 
The basic assumption of the approach adopted in this paper is 
that the height of a ground point is lower than the heights of 
neighbouring non-ground points and the terrain can be 
described using a simple tilted plane within small areas. The 
method started by dividing the data into small 50m x 50m 
square patches.  In principle, the patch should be larger than the 
largest building within the test area in such a way that no object 
within the study area can totally cover the patch. Otherwise, 
points falling over buildings will be classified as on-terrain 
points. Then, the algorithm constructed a matrix, A (m, n), 
where m and n are the number of patches in both X and Y 
directions respectively, see figure 2(left). Then, the lower left 
and the upper right coordinates for each patch were determined 
and stored. Data from both the first and the last pulse echoes 
were used in order to obtain denser terrain data and hence a 
more accurate filtering process. For each patch we fitted tilted 
plane surfaces to the terrain points using equation (1): 
 
 

cx*baZ ++=                                     (1) 
 
 

where  X, Y and Z = coordinates of lidar point clouds.    
 
The process of plane surface construction started with the 
detection of two points, one on each patch border, in the Y 
direction, which represent the minimum elevations on these 
borders. The two points were then shifted in X directions by a 
reasonable value, for example 1000m, while Z values remained 
constant, see figure 2(middle). The reason behind the shifting 
process is to create a new set of two points to construct a 
comparison plane, see figure 2(right), which includes the four 
detected points (two old and two new) and represents the 
general slope of the patch. The main assumption here was that 
the surface varies slowly from region to region over the patch 
of interest. The four points were then used to determine the best 
estimates of the coefficients of the plane by a least squares 
solution. Based on the computed coefficient values of a, b and 
c, equation (1) was applied for each individual point i with 
coordinates Xi, Yi in the lidar point clouds to find the Z value of 
its corresponding point on the plane. From a comparison of the 
elevation of each data point with its corresponding elevation on 
the generated plane surface, all points below, on or above this 
plane within the threshold t (=15cm), were classified as on-
terrain points.  Threshold t was equal to the lidar system 
accuracy. Figure 2 demonstrates the steps of the filtering 
process, while figure 3 shows a part of the results for UNSW 
data.  

 

Figure 2. Dividing the area into small square patches (left), 
detecting and shifting the lowest two points of the 
patch (middle) and constructing the tilted plane and 
removing the non-ground features (right). 



 

   
Figure 3. Points filtered as on-terrain points in green colour 
 (left) compared to  the aerial image (right). 
 
Finally, the filtered lidar points were converted into an image 
DTM, the DSM was generated from the original Lidar point 
clouds (first and last pulses) and the nDSM was generated by 
subtracting the DTM from the DSM, see figures 4. These are 
grey scale images where tones range from dark for low 
elevations to bright for high elevations. 

Figure 4. DSM (left), DTM (middle) and the nDSM (right). 
 
In order to analyze the produced filtering errors, a sample of 
100 well distributed filtered points has been selected, overlaid 
on the orthophoto and classified visually as ground and non-
ground. Compared to those results, our algorithm has achieved 
commission errors, classifying non-ground points as ground 
points, and omission errors, classifying ground points as non-
ground points, of about 3.1% and 5.2% for UNSW case study 
and 5.9% and 9.4% respectively for Bathurst case study. 
Compared with other methods, this technique is simple and 
requires no work tuning parameters except for the patch size. 
Also, fitting a simple tilted plane into a small square area 
effectively removes most of the non-ground points especially 
those on low vegetation. 

 
4.2 Generation of attributes 

Features or attributes commonly used for feature extraction 
from aerial images and lidar data include height texture (Maas 
and Vosselman, 1999) or surface roughness (Brunn and 
Weidner, 1998) of the lidar data, reflectance information from 
aerial images (Vögtle and Steinle, 2000) or lidar data (Hug, 
1997), the difference between first and last pulses of the lidar 
data (Alharthy and Bethel, 2002). The attributes calculated for 
predefined segments or single pixels are presented as input data 
for a classification method. Before generating the attributes, the 
aerial photographs (already orthorectified by AAMHatch) were 
registered to the lidar intensity image using a projective 
transformation. The Root Mean Square (RMS) errors from the 
modelling process were 0.01m and 0.01m in X and Y 
respectively and the total RMS error was 0.02m, indicating an 
accurate registration between image and lidar data and 
demonstrating that most of the geometric distortions had 
already been removed by the orthorectification process. 
Following the transformation, the image was resampled to 
30cm x 30cm and 50cm x 50cm cell size in case of UNSW and 
Bathurst respectively to match the resolution of the lidar data. A 
bilinear interpolation was used for resampling, which results in 
a better quality image than nearest neighbour resampling and 
requires less processing than cubic convolution. 

In our test, a set of 78 possible attributes were selected as 
shown in Table 1. Because of the way the texture equations 
derived from the GLCM (Haralick, 1979) are constructed, many 
of them are strongly correlated with one another. Clausi (2002) 
analysed the correlations among the texture measures to 
determine the best subset of measures and showed that 
Contrast, Correlation and Entropy used together outperformed 
any one of them alone. If only one can be used, he 
recommended choosing from amongst Contrast, Dissimilarity 
or Homogeneity. Based on these experiments, only 22 of the 78 
possible attributes were uncorrelated and hence available for the 
classification process as shown in the shaded cells of Table 1. 
The attributes include those derived from the GLCM, 
Normalized Difference Vegetation Indices (NDVI), standard 
deviation of elevations, slope and the polymorphic texture 
strength based on the Förstner operator (Förstner and Gülch, 
1987).  
 

Attributes Attribute R G B I DSM NDSM 
Mean ● ● ● ● ● ● 

St. Deviation ● ● ● ● ● ● 
 

Spectral 
Strength ● ● ● ● ● ● 
Contrast ● ● ● ● ● ● 

Dissimilarity ● ● ● ● ● ● 
Homogeneity ● ● ● ● ● ● 

A.S.M ● ● ● ● ● ● 
Entropy ● ● ● ● ● ● 
Mean ● ● ● ● ● ● 

Variance ● ● ● ● ● ● 

 
 
 
 

GLCM 

Correlation ● ● ● ● ● ● 
SD ● ● ● ● ● ● Height 

Slope ● ● ● ● ● ● 

Table 1. The full set of the attributes; attributes available for the 
 classification are shown by shading. 

 
4.3 Land cover classification  

The SOM (Kohonen, 1999) was used for classifying the images. 
Figure 5 illustrates the basic architecture of an SOM. The input 
layer represents the input feature vector and thus has neurons 
for each measurement dimension. In our study, we applied a 
separate neuron for each band.  Therefore, the SOM has 29 
input neurons which are: 22 generated attributes, 3 image bands 
(R, G and B), intensity image, DTM, DSM and nDSM. For the 
output layer of an SOM, we used a 15 x 15 array of neurons as 
an output for the SOM. This number was selected because, as 
recommended by Hugo et al. (2007), small networks result in 
some unrepresented classes in the final labelled network, while 
large networks lead to an improvement in the overall 
classification accuracy. Each output layer neuron is connected 
to all neurons in the input layer by synaptic weights. 

 

 
Figure 5. Example of SOM with a 4 neurons input layer and 
 an equally spaced 5x5 neurons output layer. 
 
 

Input layer 

Input feature vector 

Output layer 

Synaptic weights 



 

During the training period, each neuron with a positive activity 
within the neighbourhood of the winning neuron participates in 
the learning process. A winning processing element is 
determined for each input vector based on the similarity 
between the input vector and the weight vector (Jen-Hon and 
Din-Chang, 2000). Let X= (x1, x2, x3…, xn) be a vector of 
reflectances for a single pixel input to the SOM. We took the 
previously mentioned 29 values (22 generated attributes, 3 
image bands, R, G and B, intensity image, DTM, DSM and 
nDSM) as the vector of reflectances of each pixel. Initially, 
synaptic weights between the output and input neurons were 
randomly assigned (0-1). The weight vector, Wji, corresponding 
to output layer neuron j can be written as in equation (2): 
 

N...,,3,2,1jT]jpw.......2jw1jw[jiw ==            (2)              

 
 
The distances between a weight vector and an input feature 
vector were then calculated, and the neuron in the output layer 
with the minimum distance to the input feature vector (known 
as the winner) was then determined as in equation (3): 
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Where    t
ix  = the input to neuron i at iteration t 

               t
jiw = the synaptic weight from input neuron i to          

output neuron j at iteration t.  
 
The weight of the winner and its neighbours within a radius γ 
were then altered (while those outside were left unaltered) 
according to a learning rate αt as shown in equations (4, 5): 
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where  tα = the learning rate at iteration t  
 

jwinnerd = the distance between the winner and 

 other neurons in the output layer.  
 

tα was calculated from equation (6): 
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The parameter values for our test were selected according to the 
suggestions proposed by Vesanto et al. (2000) to improve the 
classification accuracy without giving any computer memory 
constrains, see table 2. Figure 6 shows the classification results. 

Input Neurons Out put 
neurons 

Initial 
γ 

Min. 
α 

Max. 
α 

22 225 (15*15) 25 0.5 1 

Table 2. SOM parameters used for the test. 

 
Figure 6. Results of the SOM classification for UNSW (left) and 
 Bathurst (right). Red: buildings, green: trees, black: 
 roads and grey: grass. 

 
 

5. RESULTS AND ANALYSIS 

5.1 Evaluation of the classification results 

To evaluate the contribution of lidar data and attributes to the 
classification accuracy, the SOM was performed three times. 
By using the aerial image alone on the UNSW data, many 
buildings were classified as roads because they have the same 
spectral reflectance and the classification accuracy was 49% 
(Figure 7b). The use of the lidar data along with the aerial 
image increased the classification accuracy to about 87% due to 
its ability to detect planes accurately but still some errors 
occurred due to the poor horizontal accuracy of edge detection 
in the lidar data (Li and Wu, 2008) (Figure 7c). The use of the 
UNSW aerial imagery, lidar data and extracted attributes 
improved the classification accuracy again to about 98% since 
the attributes compensated for the weakness of lidar for edge 
detection (Figure 7d). The classification accuracies for the 
Bathurst case study for the three different cases were 52%, 85% 
and 94% respectively. 

 
Figure 7. For UNSW data (a) The multispectral aerial image, (b) 
 The SOM classified image using aerial image only, (c) 
 The SOM classified image using aerial image and      
 lidar data, (d) The SOM classified image using aerial 
 image, lidar data and attributes. 
 
5.2 Contributions of the individual attributes 

Furthermore, we evaluated the contributions of the individual 
attributes to the quality of the classification results. The red, 
green and blue bands of the aerial image were considered as the 
primary data source and were available in each test. Figure 8 
shows that: intensity image and entropy derived from nDSM 
performed best for building detection with 73% and 83% 
average classification accuracies respectively; homogeneity, 
strength and slope derived from nDSM performed best for tree 
detection with 82%, 82% and 86% average classification 
accuracies respectively; nDSM, entropy and homogeneity 



 

derived from nDSM performed best for road detection with 
94%, 95% and 97% average classification accuracies 
respectively; intensity image and entropy and homogeneity 
derived from nDSM performed best for grass detection with 
68%, 72% and 77% average classification accuracies 
respectively. 
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Figure 8. Contributions of the individual attributes to the 
 quality of the classification results.  
 

5.3 Evaluation of building results 

Buildings as the most important features of the urban landscape 
were evaluated individually. First, building regions were 
retained if they were larger than the expected minimum 
building area (30 and 50m2 for UNSW and Bathurst 
respectively) and/or were adjacent to a larger homogeneous 
region by a distance less than 1m. Finally, building borders 
were cleaned by removing structures that were smaller than 8 
pixels and that were connected to the image border. In order to 
evaluate the classification accuracy, buildings were manually 
digitized in the multispectral images to serve as the reference 
data. Adjacent buildings that were joined but obviously 
separated were digitized as individual buildings. Otherwise, 
they were merged as one polygon. In comparison with the 
reference data 96% of all buildings were detected with well 
defined edges and also without holes.  Also to give a good 
insight to the behaviour of the building detection process, 
completeness and correctness of detection results, described in 
(Rottensteiner et al., 2005), were computed and figure 9 shows 
these values for detected buildings. For the UNSW case study, 
buildings around 50m2 were detected with completeness and 
correctness around 88% and 84% respectively and improving 
for increasing building size. For Bathurst case study, buildings 
around 30m2 were detected with both completeness and 
correctness around 73% and 70% respectively and improving 
for increasing building size. For both cases, all buildings larger 
than 70m2 were detected with both completeness and 
correctness over 90%. Similar accuracies have been reported in 
Rottensteiner et al. (2005). They evaluated a method for 
building detection by the Dempster-Shafer fusion of airborne 
laser scanner (ALS) data and multispectral images using 
different data sets. By Dempster-Shafer fusion, 95% of all 
buildings larger than 70m2 were correctly detected.  
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Figure 9. Completeness and correctness against building areas: 
 for UNSW (top) and Bathurst (bottom). 
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6. CONCLUSION 

A method for feature extraction based on Self-Organizing Map 
fusion of lidar, multispectral aerial images and 22 auxiliary 
attributes was presented. The attributes that were generated 
from the lidar data and multispectral images include: texture 
strength, Grey Level Co-occurrence Matrix (GLCM) 
homogeneity and entropy, Normalized Difference Vegetation 
Indices (NDVI) and slope. The approach significantly improves 
the accuracy of feature detection over approaches when only 
images and/or lidar data are used. The results show that using 
lidar data in the SOM improves the accuracy by 38% compared 
with using aerial photography alone, while using the generated 
attributes as well improve the result by a further 10%. An 
investigation into the contributions of the individual attributes 
showed that: entropy derived from nDSM performed the best 
for building detection; slope derived from nDSM performed the 
best for tree detection; homogeneity derived from nDSM 
performed the best for road detection; and homogeneity derived 
from nDSM performed the best for grass detection. In the 
future, we intend to construct a hybrid classifier based on 
multiple classifiers operating simultaneously to achieve a more 
effective and robust decision making process.  
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