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ABSTRACT:

In times of higher market prices of fossil fuels and to meet the increasingly environmental and economic threads of climate change
renewable energy must play a major role for global energy supply. This paper focuses on a new method for fully automated solar
potential assessment of roof planes from airborne LiDAR data and uses the full 3D information for both, roof plane detection and solar
potential analysis. An image based candidate region detection algorithm reduces the data volume of the point cloud and identifies
potential areas containing buildings with high completeness (97%). Three dimensional roof planes are extracted from the building
candidate regions and their aspect and slope are calculated. The horizon of each roof plane is calculated within the 3D point cloud and
thus shadowing effects of nearby objects such as vegetation, roofs, chimneys, dormers etc. are respected in a proper way. In contrast
to other objects such as walls or buildings vegetation is characterized by transparent properties. Thus, in a further step vegetation is
detected within the remaining non-roof points and transparent shadow values are introduced by calculating a local transparency measure
averaged per tree segment. The following solar potential analysis is performed for regularly distributed roof points and results in both,
(i) the annual sum of the direct and diffuse radiation for each roof plane and (ii) in a detailed information about the distribution of
radiation within one roof. By calculating a clear sky index,cloud cover effects are considered using data from a nearby meteorological
ground station.

1 INTRODUCTION

The increasing serious environmental and economic threatsof
climate change require new strategies concerning energy supply.
Renewable energy must play a major role for global energy sup-
ply and has a positive effect on both, air quality and energy se-
curity and employment. Additionally, in times of higher market
prices of fossil fuels, low-carbon alternatives will be competitive
and there will be a rising demand for cost effective sustainable
energy production.

In this contribution we present a new method for fully automated
solar potential assessment of roof planes from airborne LiDAR
data using the full 3D information of the point cloud for both, ob-
ject detection and solar potential analysis. We aim at improving
the methodology presented in Jochem et al. (2009) by introduc-
ing transparency for vegetation. By using the echo ratio of first-
last pulse laser data as a measure of transparency we assume that
vegetation is transparent if laser shots are reflected from within or
below it. The algorithms are fully implemented in a geographic
information system (GIS) and allow a combination of 2.5D raster
data and 3D point cloud data. This paper describes the whole
workflow, from object detection to solar radiation modelingin
detail. The results will show the effect of considering transparent
vegetation compared to the effect of considering vegetation solely
as a solid object. The conclusion then states the major findings as
well as future improvements, which can be introduced for solar
radiation modeling.

2 RELATED WORK

This section presents previous studies concerning building detec-
tion, building reconstruction and solar potential analysis using
LiDAR data.

In most cases building detection is performed on aggregated2.5D
grid data, which reduces the amount of the data of the 3D Li-
DAR data point cloud and makes processing less time consum-
ing by using a simple data model. The complexity of the 3D
space has not to be considered anymore but is irreversibly lost.
By subtraction of a Digital Terrain Model (DTM) from a Dig-
ital Surface Model (DSM) a normalized Digital Surface Model
(nDSM) is produced from which buildings are detected (e.g. To-
vari and Vögtle, 2004; Abdullatif and James, 2002). Other au-
thors identify buildings in the DSM using features such as local
height jumps, curvature, height differences, local homogeneity of
surface normals etc. (e.g. Matikainen et al., 2003; Rutzinger et
al., 2006; Rottensteiner et al., 2005).
Buildings can also be detected in the 3D point cloud and the max-
imum achievable accuracy is maintained. Dorninger and Pfeifer
(2008) assume that buildings are composed by a set of planar
faces and developed a 3D segmentation algorithm, which detects
planar faces in the point cloud. Building outlines are derived by
projecting the detected points on the horizontal plane and apply-
ing a regularization algorithm. A combined raster and pointcloud
based analysis approach is utilized by Rutzinger et al. (2008). In
a first step the advantages of the raster domain are used to extract
building outlines, in order to reduce the data volume of the point
cloud. The following 3D roof facet delineation is performedin
the point cloud to provide the highest accuracy.

Building reconstruction can be performed using either (i) the mod-
el driven or (ii) the data driven approach. The model driven ap-
proach uses a predefined model library of basic building shapes
and searches the most appropriate model among them (e.g. Maas
and Vosselman, 1999; Tarsha-Kurdi et al., 2007). Thus, models
are always topologically correct but complex shapes can notbe
reconstructed in a proper way because they are not included in the
library. This approach is commonly applied for low point densi-



ties. The data driven approach allows to reconstruct buildings (re-
gardless of its shape) without having a specified library (Tarsha-
Kurdi et al., 2007) and is generally used for high point densities.
A building is generated by identifying and intersecting neigh-
boring roof segments, which are detected by segmentation algo-
rithms (Dorninger and Pfeifer, 2008). Oude Elberink (2008)
uses dense airborne LiDAR data (average point density of 25
points/m2) to focus on problems related to the reconstruction of
building parts.

There are many models performing solar potential analysis on ba-
sis of rasterized data and hardly any using the full 3D information
of the point cloud. But with the arising of algorithms classifying
and segmenting 3D LiDAR point cloud data automatically solar
potential analysis can also be performed on a higher level ofde-
tail concerning the selection of suitable areas for the installation
of solar panels. Kassner et al. (2008) mask roof contours within
the LiDAR point cloud data by using building outlines. The re-
maining points are interpolated to a raster and analyzed according
to slope, aspect and shaded areas.
Jochem et al. (2009) detect roof planes in the 3D point cloud and
calculate aspect, slope and area of each roof facet. Solar potential
analysis is performed for each plane using the full 3D informa-
tion of the point cloud, without aggregating the 3D points toa
2.5D raster.

3 STUDY AREA AND DATASETS

The study area is located in the city of Feldkirch (Vorarlberg,
Austria) and covers about 0.3 km2 of urban settlement. The area
is characterized by single houses and block buildings with mainly
ridged roofs and vegetation of different crown shape and species.
Roofs are overlapped by nearby vegetation in several cases.This
can lead to challenges distinguishing between roofs and vege-
tation within the point cloud. The airborne LiDAR data were
acquired under leaf-on conditions with a Leica ALS-50 scanner
with a wavelength of 1064 nm, a pulse repetition frequency of57
kHz, a maximum swath width of 75◦ and maximum scan rates
of 75 Hz. The average point density within the study area is 17
points/m2. Additionally, a Digital Terrain Model (DTM) and a
Digital Surface Model (DSM) with 1m resolution each are avail-
able. The DTM is provided by the Federal State of Vorarlberg.
The DSM is produced in GRASS GIS by aggregating the 3D
point cloud to 2.5D raster cells, where the maximum elevation
is chosen as cell value. A Digital Cadastral Map (DCM) is avail-
able as reference data set for evaluation of the building candidate
region detection process.

4 METHODOLOGY

4.1 Workflow

Before performing solar potential analysis roof planes andveg-
etation have to be detected within the LiDAR data. An imaged
based candidate region detection algorithm (Höfle et al., 2009)
identifies coarse outlines of regions containing buildings. 3D
roof planes are detected within these regions. In contrast to ob-
jects such as buildings vegetation is characterized by transparent
properties. Hence, vegetation has to be detected and transparent
shadow values are introduced. To respect shadows in a proper
way the horizon of each detected roof point is calculated within
the 3D point cloud. The workflow is shown in Figure 1. Detailed
descriptions of each step are given below.
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Figure 1: Workflow for object detection in 3D point cloud for
solar potential assessment.

4.2 Candidate region detection

The candidate region detection algorithm was introduced byHöfle
et al. (2009) and uses a GIS based raster analysis to find potential
areas containing buildings. A slope-adaptive Echo Ratio (sER)
value, which is a significant parameter for objects with low sur-
face roughness (e.g. buildings) is derived for each laser point.
The ER is defined as follows:

Echo Ratio [%] = n3d /n2d · 100 (1)

n3d. . . number of points found in a fixed search distance measuredin 3D
n2d. . . number of points found in same distance measured in 2D

By dividing the initial 3D distance by the cosine of the localslope
the sER is derived and a high value is guaranteed on steep solid
surfaces. A sER raster layer is generated by aggregation of the
derived values into regular cells whereas the mean sER valueis
taken per cell, in order to remove vegetation areas. Candidate
regions are detected using a nDSM and the sER raster as input.
By applying an object height and a sER threshold seed regions
are identified, which are grown simultaneously to a defined max-
imum distance to include missing building parts such as dormers,
chimneys or parts covered by vegetation. Finally, an object-based
classification using a threshold on average laser point surface
roughness is applied to remove non-building regions. Achieving
full completeness (97%) of all buildings is favored over full cor-
rectness (59.6%), because the following roof plane detection is
performed within the candidate regions. Figure 2 shows detected
candidate regions compared to the DCM.

4.3 Roof plane detection

By selecting solely points within the candidate regions (Sect. 4.2)
for roof plane detection the amount of point cloud data is drasti-
cally reduced (>80% reduction for the current test site). Roof
planes are detected by decomposing the remaining point cloud



into homogeneous areas describing planar patches. To perform
reliable solar potential analysis slope, aspect and area ofeach de-
tected segment are calculated. In the following an overviewof
each step is given. Detailed descriptions can be found in Jochem
et al. (2009).

Figure 2: Detected candidate regions (red polygons) compared
to the DCM (blue outlines). The black dashed rectangle indi-
cates the location, which is examined in detail in the following
sections.

4.3.1 Feature calculation: Assuming that roofs are composed
of one or more planar patches the surface normal of each pointis
a good feature to subdivide the point cloud into homogeneousar-
eas. By fitting an orthogonal regression plane to each point and
its 3D k nearest neighbors the normal vector can be estimated.
Points belonging to the same planar region must have similarnor-
mal vectors. Additionally, a surface roughness of each point is
calculated to check its local planarity. It is defined as the stan-
dard deviation of the orthogonal fitting residuals.

4.3.2 Seed point selection and region growing: All points
are sorted ascending by roughness. Only those points havinga
roughness value below a defined threshold are selected as poten-
tial seed points. The lower the roughness value the more likely
the point lies on a planar face. The following region growing
process is performed by checking candidate points (3Dk nearest
neighbors) by (i) similarity of normal vectors and (ii) 3D distance
between current point and candidate point. A post processing
step is introduced to detect points lying on roof ridges. Fixed dis-
tance (e.g. 1m) neighbors of each detected point on a roof plane
(query point) are selected within the potential non-roof points.
The orthogonal distance of each selected potential non-roof point
is checked to the plane the query point belongs to. A point is
assigned to a plane if it is within a defined distance threshold. If
a point fulfills the distance criterion to one or more planes it is
assigned to that plane to which the distance is the minimum. As
one can see in Figure 3 also roof ridges are attached.

4.3.3 Calculation of slope, aspect and areaThe slope of
each roof plane is defined as the angle between the horizontal
plane (xy-plane) and the roof plane, which is fitted to the cur-
rent segment. Aspect can be determined by projecting the normal
vector of the segment on the xy-plane and calculating the angle
(clockwise) from the y-axis. 2D Alphashapes (Edelsbrunnerand
Mücke, 1994) can be used to derive the outlines of an unorga-
nized set of data points in 2D (Höfle et al., 2007; Da, 2006) and
thus to calculate the area of a segment. The 3D points of a seg-
ment are projected orthogonal on its orthogonal regressionplane
followed by a projection on the xy-plane by maintaining the real
size of the current segment.

4.4 Vegetation detection

Vegetation is detected within the non-roof points (i.e. points
within and outside candidate regions that are not assigned to a
roof plane after post processing) by using a segmentation pre-
sented by (Höfle et al., 2008). It is based on the assumptions
that (i) vegetation can be distinguished from other objectsby its
convex shape, (ii) the normalized height of the vegetation exceed
a defined threshold and (iii) a certain vertical distribution within
vegetation occurs. The segmentation is performed on 2.5D raster
and uses a nDSM and an ER raster (Sect. 4.2) as input. An edge
based segmentation is processed by calculating the curvatures
of the DSM and thresholding it to detect concave areas, which
separate trees or groups of trees from each other. The degree
of canopy structure detail is determined by the chosen window
size (5x5) and the applied threshold on curvature. The final edge
map, which represents the potential most exterior boundaries of a
segment is intersected with those regions lying above the height
threshold (>2 m) and echo ratio (≥70%) threshold. A minimum
number of points (100 points) per segment is applied to remove
points that are recognized as vegetation but belong to part of a
roof and have not been detected by the roof detection algorithm
i.e. small dormers, roof edges, chimneys etc. In Figure 3 a 3D
view of detected vegetation and detected roof planes is shown.

Figure 3: Point cloud view of detected roof planes together with
detected vegetation (green). Arrows indicate roofs, whichare
possibly influenced by shadowing effects of nearby high vege-
tation.

5 SOLAR POTENTIAL ASSESSMENT

5.1 Theory

In this paper the global solar radiation of a point of interest is cal-
culated by the sum of the direct and the diffuse radiation. The di-
rect radiation is defined as the part of the radiation which reaches
the surface directly without being reflected by the atmosphere.
The diffuse radiation is reflected radiation reaching the surface.
Formulas estimating both, the direct and the diffuse radiation
are taken from Hofierka anďSúri (2002). The SOLPOS Code
which was developed by the National Renewable Energy Labo-
ratory (NREL, 2002) is used to calculate the position of the sun
and its incidence angle on the surface of interest. By calculating
a clear sky index (CSI), cloud cover effects are considered us-
ing data from a nearby meteorological ground station. The CSI
is used to correct the modeled global solar radiation and differs
from horizontal to inclined surfaces. On horizontal surfaces it is
defined as the ratio of the global radiation under overcast con-
ditions Gh and clear sky conditions Ghc. On inclined surfaces



the ratio of direct and diffuse radiation is different. Hence, these
components have to be treated separately and the CSI has be com-
puted for both, the direct and the diffuse radiation. Due to lack
of meteorological data the CSI, which is computed for horizontal
surfaces is also used to correct the values of inclined surfaces. It
is estimated for every single day of the year. Once it is determined
the global radiation of roof planes under overcast conditions can
be estimated.

5.2 Uniform distribution of points

A uniform distribution of the recorded laser points can not be gen-
erally assumed. The distance between the points and the point
density vary due to overlapping flight strips and changing air-
plane attitude. To avoid an over representation of a roof when
calculating the arithmetic mean we propose a discretization of
the derived roof planes. Thus, uniformly distributed points were
placed in 3D space within the boundaries of each roof segment.
In the following these points are calleduni-points.

5.3 Shadowing effects

The major aim of this paper is to improve solar potential assess-
ment of roof planes by respecting shadowing effects in a proper
way. This includes (i) shadows of nearby object, (ii) shadows
of the surrounding terrain and (iii) the introduction of transpar-
ent shadow values in order to take the transparent properties of
vegetation into account. In the following each of these points is
described in detail.

5.3.1 Shadowing effects of terrain: Shadowing effects of the
terrain are not respected directly. They are included in theCSI.
The global radiation under clear sky conditions on a horizontal
surface (very close to the meteorological ground station) is com-
puted by considering the shadows of a DTM. Values under over-
cast conditions are represented by 30-years measurements of the
global radiation of a nearby meteorological ground station. This
procedure is chosen, because on clear sky days the meteorolog-
ical ground station is also affected by shadowing effects ofthe
surrounding terrain. If one does not consider these shadowsin
the CSI, it will be underestimated. The CSI is calculated forev-
ery single day of the year.

5.3.2 Shadowing effects of nearby objects: Shadows of near-
by objects are variable for each roof plane and are respectedin a
proper way by determining the horizon of eachuni-point in the
original 3D point cloud. The modeling of the horizon for oneuni-
point is illustrated in Figure 4. In a first step all points, which are
found in a fixed search distance measured in 2D (e.g. 60 m) from
the currentuni-point (point of interest) are selected from the orig-
inal point cloud. The distance and the difference in height to each
of the selected points is checked in order to determine the angle
δ, which is enclosed by the horizontal plane and the connection
line between the currentuni-point and the current selected point.
The azimuth angle is defined as the angle (measured clockwise)
between the current connection line and the y-axis. The azimuth
angles are classified into classes of defined degree intervals (0.3).
Furthermore, it is assumed that each point from the originalpoint
cloud is of a defined size (e.g. 0.3 m). Therefore, twovirtual
points (having the same height as the selected one) are placed in
defined orthogonal distance (e.g. 0.15 m) to the connection line
on each side of the current selected point, whereas the line con-
necting the virtual points runs through the current selected point.
The angleδ, which is determined for the current selected point
will be assigned to the azimuth classes affected by the line con-
necting the left and the right virtual point. If the value of delta of
an azimuth class, which is currently affected is exceeded itwill

Figure 4: Schematic calculation of delta for one uni-point.

be overwritten. The default value for each azimuth class is zero.
This procedure is repeated for eachuni-point. Thus, one gets
the minimum solar elevation angle (i.e. maximum value ofδ)
for each azimuth direction, which is required so that the current
uni-point is not in the shadow. This procedure takes into account
that points being closer to the currentuni-point have a greater in-
fluence concerning shadowing effects (i.e. affect more azimuth
classes) than those points being in the far distance. Pointsthat
have no neighbors in a defined search distance because they were
reflected from e.g. birds, lanterns etc. are not considered to cal-
culateδ. This avoids that single points cast a shadow on theuni-
point like a high object. If there are powerlines within the area,
eigenvalues could be used to extract linear features (Pfeifer and
Briese, 2007) and exclude those points. Furthermore, a defined
minimum distance (e.g. 0.3 m) from the currentuni-point to a se-
lected point is required. This avoids points, which are veryclose
to theuni-point and differing in elevation due to noise casting a
shadow.

5.3.3 Transparent shadow values: Transparent shadow val-
ues are introduced to take the transparent properties of vegeta-
tion in contrast to other objects such as buildings, walls etc. into
account. We assume that vegetation is transparent if laser shots
were reflected from within or below it. Thus, the ER (Equation1)
can be used to derive transparency, which is defined as follows:

Transparency [%] = 100 − ER (2)

The mean transparency is calculated for each vegetation segment
(Sect. 4.4) using the ER values of the respective laser points.
A transparency value of zero is assigned to all non-vegetation
points, which are considered as solid objects.
Transparency of each point is checked during the calculation of
the horizon of eachuni-point (Sect. 5.3.2). If a point casts a
shadow its transparency value is stored as an additional feature.
Hence, one gets the required information for eachuni-point to
perform reliable solar potential analysis. This includes the mini-
mum solar elevation angle for any azimuth direction and its cor-
responding transparency value.

5.4 Solar potential analysis

Solar potential assessment is performed for eachuni-point of a
segment i.e. each point is treated separately. Alluni-points of a
segment are characterized by having equal inclination and aspect
angles (i.e. the roof plane inclination and aspect). Thus, noise



occurring during measurement is suppressed and does not influ-
ence the solar potential analysis. Furthermore, the fact that solar
panels are planar facets is also considered. The incoming global
solar radiation is calculated for each day of the year from sunrise
till sunset in one hour steps. Shadowing effects are checkedby
comparing the current solar elevation angle with the minimum re-
quired solar elevation angle (Sect. 5.3.2) for the current azimuth
direction. If the currentuni-point is within a shaded area the in-
coming direct radiation on that point is multiplied with thecorre-
sponding transparency value. The diffuse radiation remains un-
changed. As a result one gets the annual global radiation on each
uni-point. By multiplying the arithmetic mean of the global solar
radiation per roof segment with its size the available solarenergy
per roof segment is calculated.

6 RESULTS AND DISCUSSION

A fundamental result of this paper is that the full 3D information
of the point cloud can be used to model the global solar radia-
tion of roof facets. A candidate building detection algorithm is
applied to detect potential building areas, which serve to reduce
the amount of data of the point cloud for further processing.A
completeness of 97.0% and a correctness of 59.6% is achieved
by using the DCM as reference layer. The low correctness value
is due to several facts: (i) full completeness is favored over full
correctness (i.e. the regions are overestimated), (ii) theDCM con-
tains the building outlines represented by the walls, whereas Li-
DAR data contain the outlines represented by the roofs and (iii)
dense vegetation having a high sER is also recognized as build-
ing area. Roof plane detection is performed in 3D within the
candidate regions. The detection of vegetation in order to in-
troduce transparent shadow values and to calculate the horizon
in 3D are necessary steps to respect shadows in a proper way.
Using a nDSM to calculate shadow masks would lead to devia-
tions at roof overhangs, chimneys etc. due to rasterizationof the
point cloud. Figure 5 shows a result of the solar potential assess-
ment. The incoming global solar radiation is calculated by taking
transparency of vegetation into account. Parts that are covered by

Figure 5: Annual sum of incoming global solar radiation on roof
planes in kWh/m2 by considering transparent properties of vege-
tation.

shadows of e.g. vegetation or/and building parts receive less solar
energy than uncovered ones. Figure 6 shows the differences be-
tween the results of solar radiation modeling by considering and
by not considering transparent shadow values. It is clearlyvisible

Figure 6: Differences in global solar radiation modeling between
the results by respecting and by not respecting transparentprop-
erties of nearby vegetation. Gray colored areas are not influenced
by shadows of vegetation.

that parts of a roof, which are strongly influenced by shadowsof
vegetation receive far more energy by including vegetationobject
transparency than by considering vegetation as solid objects. The
increase in annual solar energy supply is around 696 kWh/m2 for
some roof parts (Figure 6 lower left roof). Hence, these roofparts
are possibly suitable for the installation of solar panels and are not
excluded a priori. Roof parts, which are only affected by shadows
of building parts remain unchanged. The northern roof planeof
the lower left roof in Figure 6 is mainly affected by shadows of
the overlying roofs. Shadows of vegetation play a negligible role.
Even if the height of the nearby vegetation is reduced this part
will not gain more solar energy, whereas other roof parts would
profit from it.

This paper is based on LiDAR data, which were acquired un-
der leaf-on conditions. Hence, the computed transparency val-
ues are only adequate during leaf-on periods. The dependency
of transparency of vegetation on time of the year is not con-
sidered yet. Improvements concerning transparency can still be
made. Having LiDAR data from the same region under both, leaf-
on and leaf-off conditions would lead to different transparencies
of deciduous trees in winter and the values can be adjusted. A
deciduous-coniferous tree classification (e.g. Liang et al., 2007)
can also be performed, in order to model changing transparency
of the corresponding vegetation. Deciduous trees would have in-
creased transparency in winter, whereas the value of coniferous
trees would remain constant. The ratio in transparency between
leaf-on and leaf-off conditions for deciduous trees can be calcu-
lated by e.g. using a Terrestrial Laser Scanner (TLS) in order to
estimate canopy gap fraction in winter and in summer (Dansonet
al., 2007).



The CSI, which is used to correct the modeled solar radiation
values of both, horizontal and inclined surfaces is calculated on
basis of a horizontal plane. By having more detailed data from a
nearby meteorological ground station, the CSI can be determined
for diffuse and direct radiation separately and will lead tobetter
results on inclined surfaces.

7 CONCLUSION AND OUTLOOK

In this paper object detection is carried out to perform reliable
solar potential analysis by using the full 3D information ofthe
point cloud. Although reference data of incoming solar energy
on selected roof planes is missing the presented approach shows
promising results concerning the modeling of shadowing effects
in the point cloud. The introduction of transparency valuesfor
vegetation is based on the assumption that vegetation has trans-
parent properties if laser shots were reflected from within or be-
low it. Thus, the Echo Ratio is used as a measure for trans-
parency. By including vegetation object transparency the results
of solar radiation modeling changed drastically in regionsthat
are strongly influenced by vegetation and thus, roof parts that are
covered by vegetation are not excluded a priori for the installa-
tion of solar panels. But improvements can still be made. Future
work will concentrate on (i) integrating the described improve-
ments (Sect. 6) in solar radiation modeling and on (ii) verifying
the modeled values of global solar radiation with referencedata
from selected roof planes in order to check its reliability.
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Hofierka, J. anďSúri, M., 2002. The solar radiation model for
open source gis: implementation and applications. In: Pro-
ceedings of Open source GIS - GRASS users conference 2002,
Trento, Italy.
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Kassner, R., Koppe, W., Schüttenberg, T. and Bareth, G., 2008.
Analysis of the solar potential of roofs by using official lidar
data. In: IAPRS, Vol. XXXVII (B4), Beijing, China, pp. 399
– 403.
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Tovari, D. and Vögtle, T., 2004. Object classification in laser-
scanning data. In: IAPRS, Vol. XXXVI (8/W2), pp. 45 – 49.


