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ABSTRACT: 
 

After a disaster not necessarily all buildings in affected areas are damaged. Therefore, a building damage analysis does not only have 

to distinguish different damage types. In fact, unchanged buildings have to be identified correctly with a high reliability, too. For this 

purpose, a building damage detection and classification method based on airborne LIDAR data is applied to data of two Swiss 

villages which did not change between the acquisition dates of pre- and post-event data. The aim is to verify the correct classification 

of unchanged buildings. The achieved results which are very satisfying are presented in this paper. In its current state, this building 

damage detection and classification method analyses only changes inside reference building contours. In order to integrate also 

changes outside the reference building contours into the approach, different preprocessing steps are necessary. One of them – the 

elimination of vegetation in the post-event LIDAR data – is explained in this paper. It is necessary because remaining vegetation in 

the surroundings of a building could erroneously be interpreted as debris and might, therefore, cause misclassifications. Different 

procedures for eliminating vegetation are described. Investigations showed that their suitability depends on the vegetation’s foliation 

state. Thus, in summer when trees are leafy it is very helpful to have additional multispectral data. In this case, the Normalised 

Difference Vegetation Index (NDVI) in combination with the near infrared can be used. In winter, when trees are bare and, therefore, 

at least partially penetrable for the laser beam differences of first and last echo LIDAR data proved to be suitable. 
 

 

1. INTRODUCTION 

After a disaster like an earthquake, people are often trapped in 

collapsed buildings and have to be rescued. A building damage 

analysis identifying the damage types of buildings can support 

search and rescue teams in using the available resources as 

efficiently as possible. The correct classification of unchanged 

buildings is essential for such a damage analysis. For detecting 

different damage types, pre-event building models can be 

compared to post-event data. It is assumed that the reference 

data set contains no 3D objects except the reference buildings. 

Therefore, the post-event data should also contain only 

buildings, building parts and debris caused by collapsed 

reference buildings because other objects like vegetation or cars 

located near a reference building could erroneously be 

considered as debris and cause a misclassification of the 

building’s damage type. 
 

For this reason, one important aspect is to eliminate the 

vegetation from the original post-event data. The topic of 

detecting vegetation in airborne laser scanning (ALS) and 

multispectral data was often investigated in the last years. 

Therefore, many publications exist and a brief overview is given 

here. Approaches based exclusively on LIDAR data utilise 

parameters indicating surface roughness (Brunn and Weidner, 

1998), height texture (Maas, 1999), differences of first and last 

echo data or laser intensity (Tóvári and Vögtle, 2004). In 

contrast to this, multispectral data can be used. In this case, the 

Normalised Difference Vegetation Index (NDVI) is a frequently 

employed parameter if near infrared (NIR) data are available 

(Vögtle and Steinle, 2000). If only an RGB image is available, 

Bretar and Chehata (2007) propose a Hybrid-NDVI calculated 

by substituting the NIR value of an optical image by the LIDAR 

intensity. Moreover, some approaches use features extracted 

from both LIDAR height data and multispectral data 

(Rottensteiner et al., 2005; Matikainen et al., 2007).  
 

For the verification process, an existing building damage 

detection and classification method (Rehor, 2007; Rehor and 

Voegtle, 2008) based on ALS data is applied to data of two 

unchanged villages. A problem of this building damage analysis 

is the missing extension on the areas around the reference 

buildings contained in the pre-event data. For integrating the 

surroundings of these reference buildings additional features 

like the increase of volume within buffers around the reference 

buildings have to be determined (Hommel, 2009), for example 

by adding the volumes of all objects located within these 

buffers in the post-event data. As mentioned above, vegetation 

has to be eliminated from the post-event data in this case. 

Otherwise, vegetation objects located within the buffer around a 

reference building which are considered as debris would cause a 

non-existing increase of volume. This in turn could result in 

misclassifications since this volume increase would support the 

decision for particular damage types and contradict other ones. 

In this case, it might be possible that the correct damage type is 

excluded because of the misconceived increase of volume. Due 

to similar characteristics of vegetation and debris (surface 

roughness), the techniques listed above cannot necessarily be 

used without adaption for distinguishing them. 
 

In order to describe the verification of the building damage 

analysis and possibilities for eliminating vegetation from post-

disaster data, the paper is structured as follows. In Section 2 the 

used data are described. Section 3 contains a short summary of 

the tested damage classification method and the presentation 

and analysis of the achieved results. Different possibilities for 

discriminating vegetation and debris using different features 

like NDVI, reflectance values in NIR, or differences of first and 

last echo measurements are described in Section 4. In Section 5 

the results of the verification process are summarised and the 

dependency of the suitability of the methods for eliminating 

vegetation on the foliation state of trees and bushes is discussed. 
 

 

2. DATA 

For the development of the building damage detection and 

classification method, ALS data of the test site ‘Epeisses’ were  



 

 

 

Figure 1.  Multispectral scanner image (RGB, June) of Gennecy. 
 
 

acquired – a training area of the Swiss Military Disaster Relief 

located close to Geneva which contains several undamaged and 

damaged buildings. Therefore, two flights were carried out 

using the TopoSys (Germany) Falcon II system – the first in 

June 2004, the second in November 2004. The point clouds 

were interpolated in a raster with 1 m pixel size. Moreover, the 

influence of the terrain was removed by generating normalised 

digital surface models (nDSM). During each flight multispectral 

data (0.5 m pixel size on ground) were acquired simultaneously 

with the RGB/NIR line scanner integrated in Falcon II in four 

spectral bands (B: 450-490 nm, G: 500-580 nm, R: 580-

660 nm, NIR: 770-890 nm). 
 

Additionally to the test site ‘Epeisses’ there are two villages 

lying within the acquired area – Gennecy and Avully. In 

Gennecy there are especially larger houses with gable roofs 

which are arranged very regularly (Figure 1). Most of these 

buildings have no dormers and there are also only few small 

buildings like garages or sheds. In contrary, Avully mainly 

consists of smaller houses with many dormers (Figure 2). 

Furthermore, there are many small garages and sheds. 

Moreover, the buildings are not regularly arranged and their 

shape is often not a simple rectangle (i.e. adjacent walls are not 

necessarily perpendicular). 

3. APPLICATION OF A BUILDING DAMAGE 

ANALYSIS TO UNCHANGED AREAS 

3.1 Building damage detection and classification method 

The building damage detection and classification method 

verified in this contribution was presented in detail in Rehor 

(2007) and Rehor and Voegtle (2008). Therefore, only a short 

summary will be given here.  
 

In order to detect and classify changes in building geometry, 

pre- and post-event data are compared. Therefore, it is assumed 

that reference building models or at least their roof planes exist. 

In a first step, planar surfaces are extracted from nDSMs 

derived from post-event ALS data. These planar surfaces and 

their corresponding roof planes of the reference buildings are 

superposed. In this way, new segments are created on which the 

fuzzy logic classification can be based on using the features 

volume and height reduction, change of inclination, and size. In 

this approach eleven different damage types are distinguished: 

unchanged, inclined plane, multi-layer collapse, outspread 

multi-layer collapse, pancake collapse of one storey, pancake 

collapse of more than one storey, heap of debris on uncollapsed 

storeys, heap of debris, heap of debris with vertical elements, 

overturn collapse (separated), and inclination. For the 

distinction between heaps of debris with and without vertical  

 

Figure 2.  Multispectral scanner image (RGB, June) of Avully. 
 

 

elements the standard deviation of the segment’s median filtered 

height texture values determined with the Laplace filter is used. 

During the extraction of planar surfaces not every pixel can be 

assigned to one of these planes. Some pixels do not fit in any of 

the planes and remain unsegmented. These pixels are clustered 

and afterwards these clusters are also classified using the 

volume reduction, the minimum height difference, and the 

contrast of the segment’s height values as features. In this case, 

only five classes are distinguished: unchanged, heap of debris 

on uncollapsed storeys, heap of debris, heap of debris with 

vertical elements, destroyed with preserved roof structure. 
 

After creation of segments and clusters – but before the 

classification step – segments smaller than 20 % of the average 

segment size of the current building are merged with the largest 

neighbouring segment or cluster. This procedure solves the 

problem of misclassification of small segments among 

otherwise correctly classified segments (Rehor, 2007) at least 

partially. In order to optimise the results, a new step is carried 

out now. After classification of segments and clusters a statistic 

of the occurring damage types is calculated for each building. If 

one damage type makes up less than a given minimum 

percentage of a building’s footprint (in this study 5 %), it is 

merged with that damage type having the longest edge with it. 
 

3.2 Results 

In order to verify that the described building damage detection 

and classification method works well for unchanged areas, it 

was applied to the data of the two villages Gennecy and Avully. 

The visual comparison of the multispectral scanner data for the 

two acquisition dates shows no major changes for the existing 

buildings.  
 

The reference buildings were extracted from the ALS data 

acquired in June 2004 using the method described in Vögtle 

and Steinle (2000). As exclusively the roof planes of the 

reference buildings are necessary for the comparison with the 

post-event data, no complete 3D building models were 

generated. In fact, only their roof planes were determined from 

the ALS data with the region growing algorithm for automatic 

plane detection described in Rehor et al. (2008). 
 

Overviews over the results achieved before and after the new 

postprocessing step described in Section 3.1 are given in Table 

1 and Table 2. They show that most of the buildings are 

classified as unchanged. In Gennecy all larger residential 

buildings are classified correctly. Misclassifications occur only 

for small buildings representing garages, summerhouses, or 

sheds (cf. Figure 3). This can be explained by slight 

displacements in the post-event data (compared to the reference  



 

 

Before new step After new step 

Damage type Area   

(m²) 

Percen-

tage 

Area   

(m²) 

Percen-

tage 

Unchanged 15621 95.86 % 16219 99.53 % 

Inclined plane 339 2.08 % 4 0.02 % 

Heap of debris 154 0.95 % 23 0.14 % 

Heap of debris with 

vertical elements 
71 0.44 % 15 0.09 % 

Destroyed with pre-

served roof structure 
99 0.61 % 34 0.21 % 

Inclination 2 0.01 % 0 0.00 % 

Unclassified 10 0.06 % 1 0.01 % 

Table 1.  Classification results for Gennecy. 

 
data) due to the sensor, the terms of acquisition, and the raster 

interpolation. These cause height and volume differences at the 

building borders. Hence, these regions are often classified as 

heap of debris or heap of debris with vertical elements. For 

large buildings these misclassified regions make up a very small 

percentage referring to the area of the whole building. Thus, 

they are merged with the main damage type of the building 

during the new postprocessing step (cf. Section 3.1). Another 

damage type occurring in Gennecy is destroyed with preserved 

roof structure. The reason is that for small buildings often no 

planar surfaces exceed a given minimum size (here 3 m × 3 m). 

Therefore, many pixels of small buildings remain unsegmented. 

They are clustered and analysed as such clusters. If the volume 

or minimum height reduction is a little bit too large – for 

example due to pixels at the building edge for which the effect 

described above occurs – the segment is classified as destroyed 

with preserved roof structure instead of as unchanged. 
 

In Avully there are more misclassifications than in Gennecy (cf. 

Figure 4) due to a completely different architecture of the 

buildings. The large amount of dormers causes many 

unsegmented pixels during the extraction of planar surfaces. 

Thus, the effect occurs which appeared in Gennecy for small 

buildings only. Furthermore, the roof planes in Avully are 

mostly smaller or interrupted by dormers, so planar surfaces 

cannot be estimated as reliably as they would be if they were 

covered by more points. This causes minor changes in 

inclination of corresponding pre- and post-event planes and, 

therefore, the discrimination between damage types unchanged 

and inclined plane is impaired. 
 

Altogether the results for the two test sites Gennecy and Avully 

are very satisfying. It was verified that unchanged buildings can 

be identified very reliably with the current building damage 

detection and classification method only analysing the situation 

within the contours of reference buildings. As some damage 

types cannot be identified if changes outside the reference 

building contour are not taken into account, the following 

procedure is suggested for a fast damage analysis: The current 

classification method is used to determine if a building has 

changed or not. The buildings classified as unchanged by this 

method are eliminated from further analysis. Afterwards, all 

other buildings are examined in more detail including their 

surroundings in order to identify their correct damage types.  
 

 

4. ANALYSIS OUTSIDE BUILDING CONTOURS 

For extending the analysis to changes outside the reference 

building contours (Hommel, 2009), the vegetation has to be 

eliminated from the post-event data first. Otherwise, increases 

of volume caused by vegetation could lead to wrong 

Before new step After new step 

Damage type Area   

(m²) 

Percen-

tage 

Area   

(m²) 

Percen-

tage 

Unchanged 14808 93.17 % 15379 96.76 % 

Inclined plane 286 1.80 % 98 0.62 % 

Multi-layer collapse 49 0.31 % 4 0.03 % 

Heap of debris 185 1.16 % 69 0.43 % 

Heap of debris with 

vertical elements 
478 3.01 % 340 2.14 % 

Destroyed with pre-

served roof structure 
49 0.31 % 4 0.03 % 

Inclination 2 0.01 % 0 0.00 % 

Outspread multi-layer 

collapse 
1 0.01 % 0 0.00 % 

Pancake collapse of 

one storey 
2 0.01 % 0 0.00 % 

Unclassified 34 0.21 % 0 0.00 % 

Table 2.  Classification results for Avully. 
 

 

 

Figure 3. Partially misclassified buildings of test site Gennecy 

(colours of frames correspond to the rectangles in 

Figure 1; legend: grey: unchanged, dark blue: 

inclined plane, green: multi-layer collapse, orange: 

heap of debris, dark red: heap of debris with vertical 

elements, light blue: destroyed with preserved roof 

structure).  
 

 

Figure 4. Subset of classification results (yellow rectangle in 

Figure 2) for test site Avully (legend cf. Figure 3). 



 

 

assumptions and consequently result in misclassifications (cf. 

Section 1). In the following subsections different possibilities 

are described for eliminating vegetation from post-disaster data 

depending on the available data types and the vegetation’s state 

of foliation. Subsection 4.1 acts on the assumption that 

multispectral data are available whereas in Subsection 4.2 only 

lidar data are used. The data acquired in June were obtained 

under leaf-on conditions, the data acquired in November under 

leaf-off conditions. The problem of classifying vegetation in 

post-disaster data in contrary to non-disaster data are the similar 

characteristics of debris and vegetation in some cases (e.g. 

concerning their surface roughness). 
 

4.1 Using multispectral data 

The restriction of multispectral data for detecting vegetation is 

the fact that it cannot always be acquired during a laser 

scanning flight. As laser scanning is an active measurement 

technique, it has the big advantage that data can be acquired 

independently of time of day. Multispectral data in contrary can 

only be acquired in the daytime what is a major limitation. 
 

4.1.1 Leaf-on conditions: In case of leafy trees and available 

multispectral data the NDVI = (NIR – R) / (NIR + R) can be 

used to detect vegetation, where NIR represents the value of the 

near infrared channel and R the value of the red channel. The 

NDVI is based on the characteristics of leaves which have a 

high reflectance in the near infrared and a low one in the visible 

red. Therefore, the NDVI has high values for vegetation and 

small values for other materials. Furthermore, in shadow 

regions also high values are obtained for the NDVI since NIR as 

well as R are small. Hence, an additional condition has to be 

used for distinguishing vegetation and shadows: Not only the 

NDVI has to be greater than a given threshold tNDVI but also the 

NIR has to be greater than another threshold tNIR. 
 

As example, Figure 5a shows a colour infrared (CIR) image of a 

building and five trees acquired in June. In Figure 5b the NDVI 

values for this subset are calculated: The brighter the grey value 

of a pixel the higher is its NDVI. Figure 5b shows very clearly 

that shadow areas also have a high NDVI. Figure 5c illustrates a 

binary image achieved for tNDVI = 0.176 and tNIR = 60, i.e. black 

pixels fulfil both conditions: NDVI > tNDVI and NIR > tNIR. The 

values of tNDVI and tNIR were determined experimentally. 

Obviously, the trees are very well detected in these data. In 
order to eliminate the single separated vegetation pixels and to 

close wholes within trees, mathematical morphology is used 

(here: an opening followed by a closing). This means that the 

black regions are firstly eroded, afterwards dilated twice and 

then eroded again. The result of this processing step is the 

vegetation mask shown in Figure 5d. 
 

4.1.2 Leaf-off conditions: As mentioned above, the NDVI is 

not suitable if there are no leaves on the trees and bushes. This 

gets clear with the following example. 
 

The CIR image illustrated in Figure 6a is taken from the same 

subset as Figure 5a but for the leaf-off data acquired in 

November. Analogue to Figure 5, Figure 6b, 6c, and 6d contain 

the NDVI, the binary image obtained with the same thresholds 

tNDVI and tNIR as in Section 4.1.1, and the vegetation mask after 

applying morphological filters, respectively. In Figure 6b the 

trees are darker than the surrounding grass implying that their 

NDVI is less than the NDVI of the grass. Figure 6c and Figure 

6d show that not both NDVI and NIR exceed the given 

thresholds tNDVI and tNIR for the trees. Therefore, the trees are 

not identified as vegetation by this method. 
 

4.1.3 Conclusion: The comparison of Figure 5 and Figure 6 

makes clear that the combination of NDVI and NIR is very 

suitable for the elimination of vegetation if multispectral data 

are available under leaf-on conditions. In contrary, this method 

cannot be used in case of bare trees and bushes. 
 

4.2 Using differences of first and last echo data 

As mentioned in Section 4.1, multispectral data are not always 

available for eliminating vegetation and, moreover, they cannot 

be used in case of defoliated vegetation. Hence, another method 

was investigated using only first and last echo LIDAR data. 
 

The use of differences between first and last echo measurements 

for distinguishing vegetation from buildings works well because 

roofs normally are continuous and not penetrable by ALS. 

Hence, only small first/last echo differences occur inside

 
 

                                           
                    a                                                      b                                                       c                                                      d 
 

Figure 5. a) Multispectral scanner image (CIR) of a building and 5 trees acquired in June; b) NDVI of a); c) binary image: black: 

NDVI > 0.176 and NIR > 60; d) vegetation mask derived from c) by applying mathematical morphology. 
 

                                           
                    a                                                        b                                                     c                                                       d 
 

Figure 6. a) Multispectral scanner image (CIR) of a building and 5 trees acquired in November; b) NDVI of a); c) binary image: 

black: NDVI > 0.176 and NIR > 60; d) vegetation mask derived from c) by applying mathematical morphology. 



building contours. Vegetation in contrary is often at least 

partially penetrable for laser beams and, therefore, first/last echo 

differences are large. Of course, along building borders there 

are also large first/last echo differences, but for vegetation they 

occur rather area-wide. For identifying vegetation by means of 

first/last echo differences the following procedure is used. 

Firstly, an image containing the first/last echo differences is 

binarised using a threshold tFLE where all pixels exceeding this 

threshold are classified as foreground. Secondly, for eliminating 

single or linearly arranged pixels caused by building borders or 

other small objects, two morphological operations are carried 

out namely an opening followed by a closing (cf. Section 4.1.1). 
 

However, if there is debris the situation is more complicated 

because e.g. for single still standing walls the first/last echo 

differences are also large. And if there are several such walls 

within the area of a building, the first/last echo differences are 

also large across the area. For this purpose, the assumption is 

made that there is no vegetation within the reference building 

contours. Therefore, the reference buildings are masked out in 

the first/last echo difference image. Outside the reference 

building contours there are usually no remaining walls or 

building parts causing area-wide large first/last echo differences 

because walls are typically overturned if they occur beyond the 

original building contour. Heaps of debris located outside 

building footprints are normally rather convex-shaped. 

Therefore, no larger height differences caused by debris appear 

area-widely outside reference building contours. Figure 7 shows 

an example. Figure 7a and 7b contain the RGB images of an 

area with a damaged building and a tree acquired in June and 

November, respectively. Except Figure 7a, all other images of 

Figure 7 refer to the data acquired in November. The RGB 

image of June was integrated due to a better recognisability of 

the tree. Figure 7c and 7d visualise the first and last echo data. 

In Figure 7e the first/last echo differences can be seen. Figure 7f 

also shows the first/last echo differences, but in this case the 

reference buildings are masked out. Carrying out a binarization 

of Figure 7f using tFLE = 1.00 m results in Figure 7g. The final 

vegetation mask in Figure 7h is obtained by applying the 

morphological operations described above.  

 

Another problem occurring if only fist/last echo differences are 

used is the non-reliable penetration of dense vegetation by the 

laser beam (leaf-on). If there are leaves on the trees and bushes, 

it is reflected completely at the treetop and does not reach the 

lower tree parts or the ground. Hence, the first/last echo 

differences are small and, therefore, some trees are not detected 

as vegetation (Figure 8). In contrary, leaf-off data in which 

vegetation is bare produced quite satisfying results (Figure 9). 
 

 

5. CONCLUSION 

In order to verify the results for unchanged buildings, a building 

damage detection and classification method was applied on 

ALS data of two unchanged villages. The results achieved are 

very satisfying since classification rates of about 99 % 

(regularly arranged buildings) and 96 % (irregularly arranged 

buildings) were obtained.  
 

Different methods for identifying vegetation in post-event 

LIDAR data were described. The elimination of vegetation is 

necessary if the situation around a reference building is 

integrated into the damage analysis. The investigations showed 

that a combination of NDVI and NIR is very suitable in case of 

available multispectral data and foliated vegetation. If the 

vegetation is defoliated, the use of first/last echo differences 

proved to be more suitable. These were only some first 

approaches on this topic. In future, further studies should be 

carried out with the objective to find adaptive approaches which 

can be used depending on the available data (only LIDAR or 

also multispectral) and the vegetation’s state of foliation. Also 

the combination of both multispectral and LIDAR data may be 

used to distinguish vegetation and debris in a better way. Or it 

might be suitable to carry out a segmentation first and classify 

these segments afterwards. 
 

 

ACKNOWLEDGEMENTS 

The presented work has been funded by the Deutsche 

Forschungsgemeinschaft (DFG) under project no. BA 686/18.  

 

                                       
                      a                                                       b                                                      c                                                      d 
 

                                       
                     e                                                       f                                                      g                                                      h 
 

Figure 7. a) Multispectral scanner image (RGB) of a tree (top right) and a damaged building (down left) acquired in June; b) RGB 

image of the same subset as in a) acquired in November; c) first echo data of November; d) last echo data of November; 

e) first/last echo differences of November data; f) first/last echo differences of November data where buildings are masked 

out; g) binary image: black: first/last echo difference of f) > 1.00 m; h) vegetation mask derived from g) by applying 

mathematical morphology. 



 

 

                                   
                             a                                                                          b                                                                          c 
 

                                  
                            d                                                                           e                                                                          f 
 

Figure 8. a) Multispectral scanner image (CIR) of a building and several trees acquired in June; b) first echo data; c) last echo data; 

d) differences of first and last echo data; e) binary image of d): black: (first echo – last echo) > 1.00 m; f) vegetation mask 

derived from e) by applying mathematical morphology. 
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Figure 9. a) – f) correspond to cases in Figure 8 but for the data acquired in November. 
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