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ABSTRACT: 
 
We present proximity graphs based approach to hierarchical image segmentation and vectorization. Our method produces an 
irregular pyramid that contains a stack of vectorized images of successively reduced levels of detail. We are jumping off from the 
over-segmented image represented by polygonal patches, which are attributed with spectral information. We employ constrained 
Delaunay triangulation combined with the proximity and closure principles known from the visual perception to extract the initial 
polygonal patches. They are built upon a triangular mesh composed of irregular sized triangles. We then represent the image as a 
graph with vertices corresponding to the polygons and edges reflecting polygon relations. This is followed by the iterative graph 
contraction based on Minimum Spanning Tree. The graph contractions merge the polygonal patches based on spectral differences 
between neighboring polygonal patches. The approach can be generalized to the multi-criteria MST to integrate other factors 
important for polygon agglomeration, in addition to spectral proximity considered in this investigation. An important characteristic 
of the approach is that initial and agglomerated polygonal patches are built in a way to retain spatial relationships among spectral 
discontinuities present in the original image. 
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1. INTRODUCTION 

The concept of “object” plays one of central roles in image 
interpretation. However, the determination of what constitutes 
an object is extremely difficult. The major challenge to 
segmentation of the object-oriented pixel patches, which shape 
resembles the shape of real-world objects, is the high variability 
of relationships between the object and image context 
(background). While there has been considerable effort in the 
development of image segmentation, this problem remains 
great challenge for computer vision. This also has impact on the 
reliability of object recognition, which requires good whole-
object segmentation. The presented approach aims at improving 
the quality of image segmentation via iterative process of 
polygonal patches agglomeration based on the combination of 
proximity graphs and ideas inspired by the Gestalt school of 
psychology. 
 
Early in the 20th century the Gestalt school of psychology has 
shown the importance of the problem of perceptual 
organization for image interpretation. Wertheimer approached 
the problem by postulating principles that affect perceptual 
grouping and can be used for image segmentation (Wertheimer, 
1958). The most known principle is proximity: all else being 
equal, the closer objects grouped strongly together. The other is 
similarity: the most similar elements in color, size, and 
orientation tend to be grouped together. Inspired by the visual 
psychology considerable progress has been achieved, and many 
image segmentation methods have been developed (e.g. Boyer, 
2000; Sarkar, 2000). Many of them try to partition the image by 
optimizing a suitable cost function that encodes different 
perceptual characteristics and relationships between image 
elements. 
 

Examples of global optimization based approaches include 
figure-ground separation methods developed by Herault and 
Horaud (Harault, 1993), Bhandarkar and Zeng (Bhandarkar, 
1999). Harault and Horaud researched the use of simulated 
annealing, mean field annealing, and microcanonical annealing; 
Bhandarkar and Zeng investigated the use of genetic algorithm. 
They built cost function constructed out of terms based on 
cocircularity, proximity and smoothness to balance image 
element interactions. Recently an important development has 
been achieved in the area of graph-theoretic approach to the 
image segmentation and perceptual grouping problems. 
According to this approach, image structures such as pixels, 
pixel patches, and edges are described using graph, and the 
grouping is formulated as a graph-partitioning problem. 
Grouping is achieved based on spectral graph theory through 
minimizing some measure of the similarity between the 
different partitions relative to the similarity within each 
partition. The state-of-the-art is mostly represented by graph-
cuts based approaches (e.g., Shi, 2000; Boykov, 2001; Yu, 
2004). However, building the appropriate cost function and 
affinity matrices, capturing salient relationships among the 
image elements, and making optimization computationally 
tractable remains a challenge. 
 
Another category of algorithms seeks optimal image 
partitioning through a sequence of computations that are done 
locally and involve elements within a relatively small regions. 
We emphasize approaches that are based on the use of 
proximity graphs, specifically Minimum Spanning Tree (MST). 
One of the initial MST based approaches is represented in the 
work of Zahn (Zahn, 1971). It is difficult to quantify the 
performance of the algorithm as it employs number of different 
heuristics, which can not be generalized. Felzenszwalb and 
Huttenlocher proposed to use Kruskal’s MST reconstruction 
algorithm to partition the image (Felzenszwalb, 1998), while 



 

Kropatsch and Haxhimusa use Boruvka’s MST reconstruction 
algorithm (Kropatsch, 2007; Haxhimusa, 2003). These 
approaches have shown better segmentation results than 
approaches based on regular pyramids. Besides, they have also 
provided better computational performance in spite of the fact 
that they both start from a raw pixel set. 
 
In our view, to achieve better segmentation performance both 
in terms of computational efficiency and quality of 
segmentation it is necessary to replace pixels with intermediate 
level structures. If such structures (chunk knowledge) preserved 
information about spatial relations of image elements, and 
avoided excessive grouping of pixels during their 
reconstruction, they could be used as an initial data set for 
segmentation algorithms instead of pixels. This would improve 
overall outcome of the grouping process leading to better image 
segmentation. This is the problem we are trying to address with 
our approach. 
 
We present a hierarchical image segmentation framework that 
derives hierarchy of attributed geometric primitives, such as 
polygonal patches, from raw pixel sets, and takes steps towards 
object-oriented image segmentation and high-level analysis. 
The framework incorporates combination of constrained 
Delaunay triangulation and the Gestalt principles of visual 
perception, such as proximity and closure, and exploits 
structural information on spectrally detected image edges and 
their spatial relations. This produces an initial set of polygonal 
patches. A polygonized image is then represented as a graph 
and initial polygonal patches are iteratively grouped into larger 
chunks using Boruvka’s MST algorithm. We show our results 
and discuss opportunities to improve the proposed approach. 
 
 

2. HIERARCHICAL IMAGE VECTORIZATION 

The first step is an extraction of object-oriented pixel patches 
based on salient image elements which constrain agglomeration 
of pixels into polygons. Selected salient elements are spectrally 
detected edges. Sought object-oriented patches are 
reconstructed by processing of detected edges. We use the 
image vectorization approach of (Prasad, 2006) to process 
edges and group pixels into polygons. The image vectorization 
starts with edge detection, e.g based on Canny edge detection 
(Canny, 1986) (Fig. 1b). It is followed by a constrained 
Delaunay triangulation (CDT) (Shewchuk, 1996) where the 
detected edges are used as constraints for Delaunay 
triangulation (Fig. 1c). CDT is followed by filtering the CDT 
generated triangle edge set, where the filtering keeps 
constraints and filters out the generated triangle edges based on 
a pre-specified set of rules inspired by principles of visual 
perception from the Gestalt psychology [Wertheimer, 1958]. 
The edge filtering is relied on the rules of proximity, closure, 
and contour completion (Figs. 2a, 2b). Proximity filters out the 
triangle edges using thresholding based on edge sizes (Fig. 2a). 
As a result, the spectrally detected edges that are spatially close 
to each other are linked by the kept triangle edges. Otherwise, 
spectrally detected edges are disconnected. The closure rule is 
responsible for filtering out the triangle edges that are bounded 
by the same spectral edge (Fig. 2b) or the same pair of spectral 
edges. Contour completion keeps the shortest triangle edge 
connecting end point of one spectral edge to interior point of 
another spectral edges, if this triangle edge meets proximity 
requirement (Fig. 2a). The triangle edge filtering results in a set 
of preserved edges: kept triangle edges and spectrally detected 

edges. Finally, a graph traversal algorithm (e.g., depth-first 
search or breadth-first search) is used to group triangles, which 
are not separated by the preserved edges. This process groups 
triangles into polygonal patches bounded by closed contours 
consisting of the spectral and triangle edges. These polygonal 
patches are assigned median spectral characteristics based on a 
sampling of pixels. Pixel sampling is performed by sampling 
triangles the polygonal patches built from. The result is a 
segmented image that is represented as a set of spectrally 
attributed polygonal patches: a vector image (Fig. 1d).  
 
The technique produces visually appealing results (Figs. 3a-b, 
4a-b, 5a-b) and reduces the amount of data, number of pixels to 
number of generated polygons, by 20-80 times depending on 
the image content. However, it does not produce a triangle 
grouping that can be directly utilized for object recognition or 
for interactive image segmentation; the vector image is still 
over-fragmented. This is due to lack of capability to extract and 
process really salient edges instead of all the detected ones, and  

 

 
 

 

 

Figure 1a. Original image 
containing road fragment. 

Figure 1b. Result of edge 
detection; edges are shown 

in white. 
 

 

 

 
 

Figure 1c. Result of 
constrained Delaunay 

triangulation of the 
spectrally detected edges 

(shown in purple). 
 

Figure 1d. Result of 
vectorizing image 1a. 

Polygons (white 
boundaries) built by 
grouping triangles. 

 

 

 
Figure 2a. Light blue 
triangle edges, linking 

different spectral edges, are 
preserved as the shortest 

links between spectral edges 
(in red), while blue triangle 

edges are filtered out. 

Figure 2b. Blue triangle 
edges are filtered out as 
they are bounded by the 

same spectral edge (in red). 

  



 

the use of a pre-specified set of edge filtering rules which 
mostly rely on proximity and closure. An exploitation of all the 
edges (strong and weak ones) produces too many small 
polygons. We are currently addressing this problem through the 
iterative MST-based agglomeration of polygons. The 
agglomeration reduces number of edges by merging polygonal 
chunks, and preserves stronger edges if neighbouring chunks 
are spectrally  very different. However, it is necessary to detect 
salient edges prior to the agglomeration as salient edges may be 
weak; thus they may be lost by the agglomeration and 
excessive grouping of polygonal chunks may take a place.  
 
While the produced polygons fall short of representing real-
world objects, they can be used as seeds to initiate their 
grouping into larger polygonal chunks, which shape would 
better resemble the shape of real-world objects. We use these 
polygons as seed objects for the hierarchical image 
segmentation. The advantage is that boundaries of these 
polygons reflect important discontinuities in image 
characterization, namely their boundaries are built along the 
spectrally detected edges. In turn, polygon grouping will be 
constrained in a sense that boundaries of agglomerated 
polygonal chunks will also be built along image spectral 
discontinuities. This is in contrast with other approaches, where 
selection of good seed pixel locations or good seed pixel 
patches is quite challenging. The problem is due to the fact that 
pixel itself, taken without any relationships to the image 
content, does not carry any object-oriented information. This 
uncertainty may have detrimental impact on the rest of 
segmentation process.  
 
Once the over-fragmented vectorized image is created, we have 
an irregular polygonal grid, which structure is adapted to the 
image content. We then represent the vectorized image as a 
graph. Polygons are represented as graph nodes, and graph 
edges reflect their dissimilarities. We are currently using only 
polygons pairwise spectral dissimilarities to attribute the edges. 
We pre-specify a spectral threshold that guides the merging of 
polygons, and we also pre-specify maximum number of 
merging (graph contraction) iterations. Number of other 
schemes are available (e.g., Felzenszwalb, 1998) to characterize 
differences between image elements, and to control the 
agglomearion as a function of polygons internal and external 
variation. Another option is to consider strength of the edges 
separating the polygons. 
 
Once the graph representation is created, we iteratively group 
polygons, starting from the fine level of detail (0th level) 
produced by initial vectorization process, into larger polygonal 
chunks using Boruvka’s algorithm of Minimum Spanning Tree 
extraction.  Boruvka’s algorithm proceeds in a sequence of 
stages, and in each stage it identifies a forest F consisting of the 
minimum-weight edge incident to each vertex in the graph G, 
then forms the graph G1 = G\F as the input to the next stage. 
G\F denotes the graph derived from G by contracting edges in 
F. Boruvka’s algorithm takes O(ElogV) time, where E is 
number of edges and V is number of vertices. This MST 
algorithm successively group polygons into larger chunks until 
reaching the maximum number of graph contractions or 
approaching the threshold on dissimilarity between polygonal 
chunks. 
 
The currently used color similarity of the polygonal chunks is 
measured in Munsell (HVC) color space. The HVC color space  

 
 

Figure 3a.  Original image, 490×727 pixels. 
 

 
 

Figure 3b. Fine, 0th, level of detail: 12,518 polygons. 
 

 
 

Figure 3c.  Result of vectorizing image 3(a).  
4th level of detail (result of 3 contraction iterations): 303 

polygonal chunks. Contours of polygonal chunks are shown in 
white. 

 

  



 

 
 

Figure 4a.  Original image, 145×141 pixels. 
Source: DigitalGlobe.com. The plane was cropped out of the 

Digitalglobe's image of Le Bourget air show. 
 

 
 

Figure 4c.  1st level of detail: 156 polygonal chunks. 
 

is  perceptually uniform. Given a pair of polygonal chunks of 
colors (H1, V1, C1) and (H2, V2, C2) their spectral difference is 
computed using the equation (Miyahara, 1988): 
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where  ∆H = |H1−H2|,  
 ∆C = |V1−V2|, and 
 ∆V = |C1−C2|. 
 
 

3. EXPERIMENTAL RESULTS 

Figures 3 through 5 show some of the results of processing 
ground-based (Fig. 3) and satellite imagery (Figs. 4, 5) using 
the presented algorithmic framework. Figs. 4 and 5 are small  

 
 

Figure 4b.  Result of vectorizing image 4(a).  
Fine, 0th, level of detail: 598 polygons. 

 
 

 
 

Figure 4d.  4rh level of detail: 23 polygonal chunks. 
 

portions of larger DigitalGlobe images available from the 
DigitalGlobe sample library. Note that it is difficult to 
distinguish the original raster images and their vector versions 
corresponding to the fine level of detail. This is achieved 
through the use of all the detected edges. This results in good 
texture representation. At the same time the data size reduction 
factor (the ratio of the number of pixels to number of polygonal 
chunks) at fine level of detail is equal to 28, 36, and 39 in Figs. 
3b, 4b, 5b correspondingly. First iteration of grouping that 
results in coarser level of detail, 1st level, continues to preserve 
visual quality of the original images, while reducing number of 
polygons about 3 times. Significant visual changes take place 
after 2nd contraction iteration. Note how a rooftop in Fig. 5d got 
merged with a road, while at previous level of detail they were 
different polygonal chunks. The reason is that they became 
spectrally close as the agglomeration was proceeding. This 
illustrates a need for more advanced criteria to reconstruct 
MST. Specifically, it is necessary to take into account structural 

  



 

 
 

Figure 5a.  Original image, 293×350 pixels. 
Source: DigitalGlobe.com. This example is part of the 

Digitalglobe's image of Ottawa, Canada. 
 

 
 

Figure 5c.  1st level of detail: 842 polygons. 
 

relationships of the edges separating polygonal patches. 
 
Prior to the MST grouping we detected image edges using 
Canny edge detection. We used the following Canny 
parameters:  σ = 1., hysteresis low threshold = 2.5, and 
hysteresis high threshold = 5. Color images were converted into 
gray-scale image I prior to edge detection by averaging their R, 
G, and B channels.  We set up spectral difference threshold to  

 
 

Figure 5b.  Result of vectorizing image 5(a).  
Fine, 0th, level of detail: 2,612 polygons. 

 
 

 
 

Figure 5d.  4th level of detail: 527 polygons 
 
3. The initial over-segmented vector images were processed by 
two-three contractions to produce coarser levels of detail.  
 
If an original image contains a lot of texture, then 
computationally most expensive step of the presented approach 
is CDT that has complexity of O(NlogN), where N is the 
number of points (such as detected edge points).  For instance, 
for an image of about 14000×14000 pixels, taken (by 

  



 

DigitalGlobe) over urban area, the MST-based extraction of 3 
vector levels of detail using an initial set of 4.8×106 polygons 
takes 2 minutes on 2.66 GHz machine. Extraction of this initial 
polygonal data set (of 4.8×106  polygons) takes 2 hours 12 
minutes, of which 96% of the time is taken by CDT. Processing 
smaller image, such as 1000×1000 pixels, takes about 2 
seconds, of which CDT takes 12% of the time. 
 
We plan to make software implementing our approach to image 
vectorization and multi-scale image segmentation available for 
research purposes in the summer of 2008. 
 
 

4. CONCLUSIONS AND OUTLOOK 

We have demonstrated a proximity graphs based approach to 
extract hierarchy of image segmentations. This approach uses 
spectral dissimilarities as criterion to merge polygonal patches 
and consists of two stages: extraction of initial set of polygonal 
patches representing an over-segmented image; followed by a 
sequence of graph contractions based on Boruvka's MST 
extraction algorithm. Proximity graphs are used at both steps. 
First, constrained Delaunay triangulation is used to build initial 
small polygons using structural relations between the image 
edges. Second, Minimum Spanning Tree is used to merge 
polygons based on polygons' adjacency relationships. This 
combination of proximity graphs and polygonal patches 
distinguishes our approach from other segmentation methods, 
which start from grouping pixels. 
 
We are currently investigating more advanced schemes to 
exploit dissimilarities between polygonal chunks. These 
extensions include both spectral and structural relationships 
among the polygons, such as structural relations among the 
edges bounding polygonal chunks. It is also possible to apply 
object recognition techniques to chunks produced at each level 
of detail to prevent the chunks recognized as objects of interest 
from being merged with other polygons by the MST-based 
agglomeration process. In order to approach near real-time 
performance for processing large images it is necessary to 
integrate the presented approach with the detection of salient 
image edges. This would reduce number of edges that are used 
as constraints for CDT; thus it would speed up CDT step.  
 
One of interesting application avenues of the presented 
approach is the interactive image analysis and mapping 
applications on the Web using vector formats, such as Scalable 
Vector Graphics (SVG). SVG connects well with other 
emerging web GIS services such as the Open Geospatial 
Consortium Web Feature Service and Web Map Service 
standards.  
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