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ABSTRACT:

Confusion matrix and derived global indices (kappa, overall accuracy, producer accuracy) are widely accepted as a standard method
for the accuracy assessment of land use/land cover maps. In order to build the confusion matrix, the ground truth labels of samples
are crossed with the map labels. Most of the time, the sampling strategies are simply based on the spatial distribution of sample points
(systematic, random or stratified random sampling). They do therefore not account for existing objects in the map. In this study, an
object-based sampling strategy is compared with classical (pixel-based) sampling. Instead of selecting pixels on the basis of their
coordinates, a random sampling was performed in the list of objects and the sampling probability was proportional to the object size.
The central point of selected objects was used to create the confusion matrix, which differs from the standard confusion matrix by the
fact that the weight of each object was on average proportional to its area.The performance of the two sampling strategies was quantified
thanks to two sets of simulation : map alterations and sampling repetitions. An existing land cover map was regarded as ground truth
and was spatially and/or thematically altered. Errors in the test maps were generated by blundering boundaries and/or changing object
labels, respectively. The bias (difference between average estimate and the truth) and the variance of the overall accuracy estimates
were then measured as an indicator of the robustness of the confusion matrix. Pixel- and object-based sampling did not lead to the
same measure of accuracy. The former evaluated the global accuracy (influenced by boundary errors) while the latter measured the
thematic accuracy (only influenced by labeling errors). The other big difference between the two sampling strategies was a smaller
confidence interval on the accuracy estimates with the object-based strategy. For a given confidence interval, object-based strategy
could thus reduce the sampling effort. The proposed object-based sampling strategy was easy to implement and could help to reduce
the costs of map validation. Further work is needed to determine a priori the number of object samples necessary to fulfill a given level
of confidence.

1 INTRODUCTION

Land use/land cover maps are of paramount importance in var-
ious applications such as change monitoring, land use planning,
hydrological modelling or natural ressource management. Thanks
to remote sensing, those maps are now produced from local to
global scales. In order to use these products in an appropriate
way, map users need reliable data quality information. Object-
based image analyses yields two types of products : detection of
a specific land cover class (for instance, crop field delineation)
or classification of the whole image. In the first case, the quality
assessment consists in comparing delineated objects with refer-
ence objects. In the second case, the thematic map content should
be subject to a statistically robust thematic accuracy assessment.
According to (Stehman and Czaplewski, 1998), the three basic
components of a thematic accuracy assessment are: 1) the sam-
pling scheme and sampling unit used to select reference samples;
2) the response design used to obtain the reference land-cover
classification for each sampling unit and 3) the estimation and
the analysis procedure.

The sampling unit is the link between a spatial location on the
map and the corresponding spatial location on the reference. The
commonly used sampling unit is the pixel, which is also the most
appropriate when the pixels are classified independently (Franklin
et al., 1991). Pixel blocks are more likely to be used when post-
classification filters (smoothing or morphology) are applied on
the classification results. Finally, polygons are used in studies
where reference information was particularly difficult to obtain
(George, 1986, Warren et al., 1990). Other strategies can also be
used to reduce the sampling effort. Cluster sampling is a typical

way to reduce the travel cost, but in this case the spatial correla-
tion between samples of the same cluster must be accounted for.

The analysis of the validation results is usually based on the con-
fusion matrix matching, for a large number of samples, classi-
fication result to reference information (Congalton, 1991). The
confusion matrix is often summarized by global indices, such as
the overall accuracy index or Cohen’s Kappa (Foody, 2002, Con-
galton, 1991, Stehman, 1997). The former is the proportion of
agreement between a map and the truth. The latter is the propor-
tion of agreement corrected by chance. While kappa can be used
to compare the performance of classification algorithms, over-
all accuracy provides more meaningful information to end users
(Stehman, 1997).

The response design is often the main source of error in quality
control (Congalton and Green, 1993). Most of the time, it is either
based on field survey or on more precise remote sensing data, the
latter being less accurate due to interpreters errors but also less
expensive. The error risk can be reduced using appropriate pro-
tocols for the validation crew or by repeating the interpretation
and merging the results. On the other hand, it was shown that
the sampling strategy could strongly influence the results of the
accuracy assessment. Simple probabilistic sampling was indeed
shown to be sensitive to the planimetric precision of the map and
to the fragmentation of the landscape. Planimetric errors can be
reduced by considering sample location away from object bound-
aries (Warren et al., 1990, Wulder et al., 2006). With pixel-based
classification, the use of homogeneity contraints on sampling unit
location (Plourde and Congalton, 2003, e.g.) leads to optimistic
bias (Hammond and Verbyla, 1996) because the probability to



sample edge pixels becomes null while they are proned to more
frequent errors (Stehman and Czaplewski, 1998, Powell et al.,
2004). However, this is not the case with objects because they
are intrinsically homogeneous so that the location inside each ob-
ject can be arbitraly chosen (George, 1986).

In this study, an object-based validation for land-use/land cover
(LULC) maps produced by object-based classification is proposed
and discussed. The method is compared with point-based valida-
tion with regard to the true error measured from simulated maps.
First, we look at the effect of systematic boundary errors on the
overall thematic accuracy estimates. Second, we assess the effi-
ciency of the estimates in a case without planimetric errors.

2 METHOD

The diversity of existing accuracy assessment methods clearly
shows that there is no single best method due to different user
needs and producer constraints. The proposed method meets the
two following requirements:

• To provide a reliable and cost-effective estimate of the over-
all accuracy. In other words, the validation scheme should
provide an unbiased estimate of the overall accuracy with a
small variance of prediction.

• To evaluate the thematic accuracy of the map. In other words,
the overall accuracy should not be sensitive to registration
and delineation errors on the map nor on unprecise sample
positions.

2.1 Sampling unit and response design

Response design and sampling units should be tightly related to a
consistent LULC typology and a few concepts need to be clarified
beforehand.

For the multinational Africover project, Food and Agriculture Or-
ganization (FAO) has developed a conceptual framework to de-
fine in a flexible but standard way any land cover typology suited
to the local, national or global needs. This Land Cover Clas-
sification System (LCCS) (Di Gregorio and Jansen, 2000) was
also selected for the Global Land Cover 2000 initiative (Fritz et
al., 2003) and for the ESA 2005 Globcover product (Defourny
et al., 2006). It becomes more and more popular because of its
efficiency for class definition and is well adapted to object-based
classification and multi-scale processing (Gamanya et al., 2007).
The visual interpretation is naturally a qualitative multiscale ap-
proach. Object-based classifications are convenient for a multi-
scale approach but in a quantitative and fully-documented way.

The combination of the multiscale segmentation and object-based
classification process actually requires the distinction of three
concepts: the Elementary Processing Unit (EPU), the Smallest
Legend Unit (SLU) and the well-known Minimum Mapping Unit
(MMU).

The EPU corresponds to the smallest delineated object that can
be classified. Theoretically, it can be as small as a pixel, but it is
most often made of several pixels. Its size depends on the seg-
mentation algorithm and its parameters, as well as on the image
structure and local contrasts. Though, parametric segmentation
algorithm allows the user to infer the mean object size but seldom
the EPU. Post-processing algorithms, such as morphological fil-
ters, are therefore needed when the classification process requires
a minimum number of pixels for statistical consistency.

The SLU is the minimum size of object for labeling. It is a the-
matic constraint that should be defined prior to the classification
process depending on the LULC typology. The SLU can be as
small as the EPU in the case of simple legend but is often signif-
icantly larger. It then corresponds to objects produced either by
an upper level of segmentation or by the a posteriori aggregation
of smaller objects. These larger objects can consist in i) parent
classes in a hierachical classification, ii) composite classes arising
from contextually meaningful object combination or iii) mosaic
classes including a mixture of unrelated classes. For this last case,
the respective proportion of the smaller objects discriminated by
the classification process enables the user to precisely label the
SLU according the LULC mosaic. Furthermore, an a posteriori
distribution analysis of the elements belonging to a given class
could document the composition and the internal spatial pattern
of this class.

The well-known MMU is the smallest element to be represented
on the mapping output and must be set according to cartographic
standards. The MMU is of course larger or equal to the SLU.
However, the increasing use of numeric vector databases reduces
the interest in a crisp MMU. MMU should be viewed more as a
display constraint for paper maps or WebGIS application while
EPU and SLU are directly linked to the database.

These concepts defined in the context of multiscale segmenta-
tion and object-classification clearly fit in the LCCS framework.
Indeed, the LCCS drives the user to combine well-defined el-
ementary descriptors to explicitly define each land cover class
from several elements mixed in a given proportion. For instance,
broadleaved deciduous trees higher than 5 m with their canopy
covering at least 40 % of the ground surface typically describes a
”Closed deciduous broadleaved forest”. Besides the local name
given by the user to the class, a comprehensive LCCS code doc-
uments the composition of elements included in the class and
their respective quantitative proportion. LCCS rules can also de-
fine a ”cartographic mixed unit” where two specific elements are
present, for instance a Mosaic class of cropland (50-70 %) and
natural and semi-natural vegetation (grassland) (20-50 %). In
both cases, the class is quantitatively described by its components
thus allowing aggregating them in a different way to make them
compatible with other land cover typology.

This kind of precise typology is a first step toward a robust re-
sponse design. As the Legend Unit may include complex and
heterogeneous classes which are difficult to assess on the field,
the Processing Unit is more appropriate because these elementary
objects can be assumed to be homogeneous at this level. With this
assumption in mind, any location within the object can be arbi-
trarly chosen, and the object center should be preferred as it helps
avoiding edge effects. Moreover, the validation crew should be
aware of the EPU in order to ignore too small gaps in the object.

2.2 Sample selection and result analysis

As a matter of fact, a sample of objects (i.e. groups of pixels)
covers a larger area than a sample of pixels with the same num-
ber of elements. However, the contribution of each sample in the
confusion matrix must be adjusted in order to avoid an inaccu-
rate estimate of the overall accuracy. To our knowledge, none of
the previous studies using polygons as sample unit addressed this
issue.

The analytical solution for adjusting sample weights is complex
because it depends on the distribution of the size of the objects.
While it is trivial if all objects have the same area (in which case
there is no adjustment needed), it is necessary to account for the
fact that misclassifying a large object has more impact on the



overal accuracy than misclassifying a small object. On the other
hand, weigthing each sampled object based on its area yields an
overall accuracy estimate that depends on the distribution of size
of the misclassified objects. On average, this method may thus
over- or underestimate the true overall accuracy, contrary to the
point-based simple probabilistic sampling, which is always unbi-
ased.

The proposed method is to build an object-based sampling in ac-
cordance with the simple point-based probabilistic sampling un-
der the hypothesis that objects are homogeneous at the scale of
the map. The sample of objects is created by iteratively selecting
objects with a drawing probability directly proportional to their
area. The iteration ends when the user-defined sample size, S,
is reached. The number of times each object i is selected, ni, is
kept in memory and is used as the weight for each correspond-
ing object in the confusion matrix. In this sense, the object-based
validation is thus close to a point-based simple random sampling
of

∑S

i=1
ni (≥ S) sampling units.

3 CASE STUDY

Test maps were simulated for the quantitative assessment of the
different sampling strategies. In order to make these simulations
as realistic as possible, all these maps were derived from a real
LULC map which was taken as reference. The map template is
a subset of the CORINE Land Cover map in Southern Belgium,
which was produced by photointerpretation. Figure 1 shows the
actual map, which includes 34 different LULC classes, with a
simplified symbology. Despite this variety of LULCtypes, it is
worth noting that more than 80 percents of the total map area are
covered by only 7 land cover classes.

0 5 102.5 Km

Figure 1: Subset of CORINE Land Cover used as reference

Let us assume that the test maps to be validated were produced
by classification of homogeneous object. In other words, the land
cover enclosed by each object is unique. Test maps were simu-
lated by introducing thematic (bad object labeling) and planimet-
ric errors (bad object delineation) into the reference template. On
one side, thematic errors were simulated by changing the label of
a random selection of objects so that a given percentage of the to-
tal map area received bad labels. These selections were repeated
10 times for each category (around 5 and around 25 percent of
thematic errors) and the exact thematic accuracy was measured
by dividing the area of correctly labeled object by the total map
area. On the other side, the simulation of planimetric errors were
based on combination of accuracy and precision errors. A sys-
tematic planimetric error was obtained after shifting the database
by 0, 10 and 20 m to mimic bad registration. The edge quality

was reduced by converting the map into a raster of lower reso-
lution (1, 5, 10, 20, 30 and 40 m) to mimic image spatial res-
olution and object delineation errors, that is the precision of the
edges. The combination of these planimetric disturbances yielded
18 test maps which were crossed with the reference map to mea-
sure the exact overall accuracy. These maps were also divided
into 16 smaller maps to assess the effect of landscape structure.
The combined effect of landscape structure and edge precision on
the thematic accuracy was evaluated thanks to the proportion of
the map covered by a buffer on the map boundaries with a buffer
distance proportional to their planimetric precision.

The number of samples was chosen based on equation 1(Plourde
and Congalton, 2003) for a simple point-based probabilistic sam-
pling. For the sake of comparison, the sample size of the object-
based validation was identical to the point based validation. Each
sampling was reproduced 10 times so as to measure the bias
and standard deviation of the overall accuracy estimate. In the
present case study, a confidence of 95 % (b = 0.05) required
778 points in the worst case (maximum number of points). These
points were selected on the map thanks to ”Hawth’s tools” (Beyer,
2004).

n = maxi

{
B Pi (1− Pi) /b2

}
, (1)

where Pi is the proportion of the class i.

4 RESULTS

In this section, pixel- and object-based validations are compared
in terms of conservative bias (average difference between overall
accuracy estimates and true thematic accuracy) due to planimetric
errors and variance of prediction computed a posteriori.

The effect of planimetric errors was negligible for object-based
validation due to the size of objects with respect to the magnitude
of the planimetric errors,. For the pixel-based validation, how-
ever, the conservative bias was larger than 5 percents in the worst
case. Figure 2 shows that even a small systematic position shift
between the reference data and the test map could lead to under-
estimate the thematic accuracy. Moreover, in the absence of shift,
there is a strong linear relationship between the alteration of the
edge planimetric precision and the bias. Eventually, the effects of
the shift stacked with the effect of the edge blundering, but only
when the amplitude of the latter was larger than the former.
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Figure 2: Combined effects of map shift and boundary alteration
on the bias of the point-based thematic accuracy estimate

It is further shown that the planimetric errors due to the precision
of edge delineation depend on the fragmentation of the landscape.
It is indeed directly proportional (R2 = 0.99) to the percentage
of the map covered with the buffer area around the boundaries,
and independent of the number of sampling points. When the



buffer distance is equal to the edge blundering amplitude (the
resolution of the degraded raster in our case), the sampling er-
rors can be estimated with a 0.02 % RMSE by taking 1/8 of the
buffer area percentage as a rule of thumb (fig 3).
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Figure 3: Relationship between conservative bias due to plani-
metric errors and map fragmentation

On the test maps without planimetric errors, both point-based and
object-based validation provided unbiased estimates of the the-
matic accuracy. However, there was a better confidence interval
on the errors with object-based validation scheme than with the
point-based sampling, as shown by the smaller standard deviation
on figure 4.
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Figure 4: Standard deviation of pixel-based and object-based
samplings (n=10)

5 DISCUSSION

As a matter of fact, there is no single definition of map quality be-
cause maps can be used for different purposes. In this study, map

accuracy was decomposed in planimetric and thematic compo-
nents. It was shown that probabilistic point-based sampling eval-
uates the global map accuracy while object-based sampling eval-
uates the thematic accuracy. Planimetric errors for the edges are
linked to many scale related effects such as pixel size, orthorecti-
fication accuracy, segmentation algorithm, edge post-processing
and edge generalisation e.g. (Congalton and Green, 1993). In
other cases, the line representation of interface between different
LULC types is inappropriate e.g. (Ranson et al., 2004) because
it corresponds to a gradual land-cover change (ecotone). On the
other hand, the precision of the ground truth samples can also be
an issue as poorly located sample points lead to the same error
than poorly delineated boundaries. These kind of global errors
do not affect the topology of the map nor the average area es-
timates. Nevertheless, systematic class specific edge errors do
influence the area estimates, so that edge quality assessment can
bring useful complementary information in some cases (Radoux
and Defourny, 2007). Unfortunately, information on edge quality
is costly so that a global quality control could be advantageous
when edge quality is difficult to evaluate.

The lower variance obtained with object-based sampling demon-
strates its usefulness as it means that the sampling effort (number
of samples) can be reduced. However, object-based validation
has its drawbacks which could compensate the gain from sam-
pling effort reduction. First, the extent of image-objects may
not correspond to the extent of real world objects. This is not
a problem in the case of over-segmentation as the land cover
can then be unambiguously identified, but it is a real issue in the
case of under-segmentation. When under-segmentation cannot be
avoided, a fuzzy validation scheme is necessary, which increases
the cost of the analysis and the cost per sample point. Second,
object-based validation is more sensitive to labelling errors than
point-based validation. A clear and well understood definition of
each land cover class is therefore of paramount importance and
the labelling of each sample point could suffer from this. Finally,
there is no simple analytical solution to calculate the number of
samples necessary to fullfill a given precision of accuracy asses-
ment. This may increase the cost of the planning as map simula-
tions are needed to estimate the variance.

6 CONCLUSIONS

Object-based validation can provide accurate and precise esti-
mate of the confusion matrix in order to assess the thematic qual-
ity of a land use/land cover maps. Contrary to pixel-based valida-
tion, boundary errors can be consequently reduced without affect-
ing the sample representativity. However, object-based quality
assessment is more sensitive to labelling errors than pixel-based
accuracy. The increased cost for the validation of a single ob-
ject may thus compensate the gain from the reduced number of
objects needed because of the lower prediction variance.

The proposed method proved to be better than pixel-based sam-
pling in terms of variance of the estimate. However, further stud-
ies are necessary to provide a generic analytical solution of the
prediction variance as it already exists for pixel-based validation.
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