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ABSTRACT:

Geographic Object-Based Image Analysis (GEOBIA) aims to better exploitearth remotely sensed imagery by focusing on building
image-objects resembling the real-world objects instead of using raw pixelsas basis for classification. Due to the recentness of the
field, concurrent and sometimes competing methods, terminology, and theoretical approaches are evolving. This risk of babelization
has been identified as one of the central threats for GEOBIA, as it could hinder scientific discourse and the development of a generally
accepted theoretical framework. This paper contributes to the definition of such ontology by proposing a general functional model of the
remote sensing image analysis. The model compartmentalizes the remote sensing process into six stages: (i) sensing the earth surface
in order to derive pixels which represent incomplete data about real-world objects; (ii) pre-processing the pixels in order to remove
atmospheric, geometric, and radiometric distortions; (iii) grouping the pre-processed pixels (prixels) to produce image-objects (grouped
pixels or grixels) at one or several scales; (iv) feature analysis to examine and measure relevant spectral, geometric and contextual
properties and relationships of grixels in order to produce feature vectors (vexcels) and decision rules for subsequent discrimination;
(v) assignation of grixels to pre-defined qualitative or quantitative land cover classes, thus producing pre-objects (preliminary objects);
and (vi) post-processing to refine the previous results and output the geographic objects of interest. The grouping stage may be analized
from two different perpectives: (i) discrete segmentation which produces well-defined image-objects, and (ii) continuous segmentation
which produces image-fields with indeterminate boundaries. The proposed generic model is applied to analyze two specific GEOBIA
software implementations. A functional decomposition of discrete segmentation is also discussed and tested. It is concluded that the
proposed framework enhances the evaluation and comparison of different GEOBIA approaches and by this is helping to establish a
generally accepted ontology.

1 INTRODUCTION

GEOBIA is a GIScience discipline devoted to developing au-
tomated methods to partition remote sensing (RS) images into
meaningful image-objects, and assessing their contextual and spec-
tral characteristics at different spatial and temporal scales (Hay
and Castilla, 2008). In recent years, successful application of
GEOBIA concepts, methods and tools has been reported in differ-
ent application domains (Blaschke et al., 2006) (Yan and Bauer,
2006). As an emerging discipline, GEOBIA lacks a unified and
shared theory of image-objects and geographic objects. Instead,
a competing number of definitions and methods are evolving and
much more attention seems to be paid to the application of current
software implementation and prototypes than to general concepts
and models able to promote geographic knowledge and intelli-
gence. In the absence of such a theory, a risk of babelization
is threatening GEOBIA future (Hay and Castilla, 2008). Hence,
there is a need for building a formal ontology of GEOBIA ob-
jects and processes which provides the basis for exchange of in-
formation and serves as a framework for cross-disciplinary col-
laboration between different domains of GIScience. This paper
attempts to establish a generic conceptual framework of the ge-
ographic object-based image analysis process. It focuses on the
transformation of the image’s constituent elements through the
different stages of the process, from the raw pixels to the final
structures representing geographic objects. This paper is orga-
nized as follows. Section 2, reviews ontological concepts for
geographic information. Section 3 discusses an ontology for re-
motely sensed images. Section 4 proposes a framework for geo-
graphic object-based image analysis. Section 5 discusses image
segmentation and section 6 concludes.

2 GEOGRAPHIC ONTOLOGIES

2.1 GEOBIA Ontology: a brief review

One of the main motivations for building GEOBIA is the increas-
ing need for an efficient extraction of information from remotely
sensed images and its integration into GIS databases. GEOBIA
approach may be seen as an improved image analysis method
in the continuum of classification methods. What makes GEO-
BIA special may be explained by two characteristics: (i) image
segmentation, at one or several scales, as part of the object rela-
tionship databases building; and (ii) image classification querying
both spectral and spatial image-objects parameters (Blaschke et
al., 2006).

Since GEOBIA relies on remotely sensed data, and generates GIS
ready output, it can be seen as the critical bridge between the
raster domain of remote sensing and the predominantly vector
domain of GIS. The ’bridge’ linking both sides of these domains
is the generation of classified image-objects representing geo-
graphic objects (Hay and Castilla, 2008). In simple terms, image-
objects are ”groups of pixels with meaning in the real world”
(Schneider and Steinwender, 1999). The relationship between
real-world objects and image-objects must be made explicit by
means of spatial analysis and semantic rules (Blaschke et al.,
2006).

Because of the close link between remote sensing and GIS it is
sensible to integrate GEOBIA ontology into a general theory of
geographic representation. A substantial contribution to such a
theory relies on the concepts of geo-objects and geo-fields which
will be discussed in the next section.



2.2 An ontology for geographic information

Goodchild et al. (2007) have proposed a general ontology for
geographic representation in which all information may be re-
duced to a very basic form, the geo-atom. A geo-atom is de-
fined as an association between a point location in space-time
and a property. A geo-atom can be written as a tuple〈x, Z, z(x)〉
wherex defines a point in space-time,Z identifies a property
andz(x) defines the particular value of the property at that point.
In this framework, both discrete geographic objects (geo-objects)
and continuous fields (geo-fields) are simply aggregations of geo-
atoms (Goodchild et al., 2007).

A geo-object is defined as an aggregation of points in space-time
whose geo-atoms meet certain requirements, such as having spec-
ified values for certain properties. The dimensionality of geo-
objects is constrained by the space in which they are embedded.
For example, a geo-object which is embedded in a space of two
horizontal dimensions and time, may be a point, line or area. The
spatial extent of a geo-object can be established byfiat bound-
aries, as for example when census zones are defined by admin-
istrative decision. It can also havebona fideboundaries if the
spatial extent reflects some form of internal cohesion or homo-
geneity, for example when geo-objects represent individual trees,
houses, or geographic regions (Goodchild et al., 2007).

A geo-field defines the variation of one or more properties over a
domain of space-timeD. As such, it constitutes an aggregation of
geo-atoms over space by propertyZ, irrespective of valuez(x).
A geo-field for a single property such as elevation is termed a
scalar geo-field, while a vector geo-field might describe the spa-
tial (and temporal) variation of a phenomenon such as wind or
temperature over a domain. In principle, any geo-field over a fi-
nite domainD aggregates an infinite number of geo-atoms. Thus,
unless a geo-field can be represented accurately by a mathemat-
ical function, in practice it is necessary to sample, discretize or
interpolate it to store it in a container of finite size (Goodchild et
al., 2007).

In current GIS practice, a common way of representing geo-fields
is using some kind of discretization. One of them, the piecewise
constant representation in a regular grid of cells (normally rect-
angular), is of particular importance for remote sensing image
analysis. The key point to note here is that the discrete picture
elements (pixels) utilized to represent a geo-field normally have
no meaning in reality but exist solely for the purpose of measure-
ment or representation.

3 AN ONTOLOGY FOR REMOTE SENSING IMAGES

3.1 Do images represent geo-fields or geo-objects?

Following Goodchild et al. (2007) geographic ontological con-
cepts, remotely sensed images can be considered as a subclass
of geo-fields. Therefore, an image is a 2-dimensional function,
arising from the sampled spectral signal of a region of the earth
as measured by a passive or active sensor. Nevertheless, view-
ing images as geo-fields of electro-magnetic energy values is just
the starting point for their ontological characterization (Camara
et al., 2001).

Remotely sensed images may also be seen as containers of an
implicit set of objects which have to be identified by manual or
semi-automated image analysis procedures. In this view, the in-
terpretation may focus on extractingfiat objects (e.g. land use
units whose boundaries result from cognitive actions) orbona

fideobjects (e.g. land cover units whose boundaries exist in na-
ture). In the image interpretation process,fiat image-objects are
delineated and created. These image-objects owe their existence
to (i) the notion of a corresponding geo-object in the world, (ii)
an act of measurement (in this case the remote sensing process),
and (iii) a creative human act of spatial analysis (Camara et al.,
2001). Although this perspective captures a fundamental com-
ponent of the ontology of images and forms the basis for a large
set of image classification techniques, it is still incomplete. In
many cases, instead of a corresponding geo-object, the relevant
real world object is better represented as a geo-field, as for exam-
ple when the image analysis focuses on the study of land surface
biogeophysical variables like LAI (Leaf Area Index) or the frac-
tion of the absorbed PAR (Photosynthetically Active Radiation)
by green vegetation (Camara et al., 2001). In such cases, there
are no boundaries to identify or to delineate.

Therefore, both of the two ontological descriptions of remotely
sensed images have to be used to support the full process of
knowledge representation for image data analysis (Camara et al.,
2001). Images are geo-fields at the measurement level but the
product of the image analysis process are new images whose
nature is dual: they may be either geo-objects (when estimat-
ing categorical variables like land cover classes) or geo-fields
(when estimating continuous variables like land surface albedo).
Even more, in some cases, interpreted images may correspond
to a special sub-class of geo-objects termed field-objects, that is,
geo-objects with internal heterogeneity conceptualized as a field
(Goodchild et al., 2007). For example, a processed MODIS im-
age may comprise geo-objects with boundaries defined by the
limits of land cover, and an internal structure defined by the vari-
ation of such field-like properties as land surface temperature or
emissivity.

3.2 Knowledge representation on images

Camara et al. (2001) propose that remotely sensed images are on-
tologically instruments for capturing landscape dynamics. This
view focuses on the ontological characterization of images on the
search for changes instead of the search for content. Its empha-
sis is not only on object matching and identification procedures,
but on capturing dynamics over a finite landscape. Hence, the
phenomenon domain for the images has three distinct, but inter-
related components:

• A physical ontology, which describes the physical process
of image creation. Typical concepts here include spectral
response, backscatter and Lambertian target.

• A structural ontology, which includes the geometric, func-
tional, and descriptive structures than can be extracted from
or detected in the image by means of feature extraction, seg-
mentation, and classification techniques. Typical concepts
for this ontology include geometries as lines and regions,
and functional descriptions such as spectral response curve,
optical flow and light intensity gradient.

• A methodological ontology, consisting of a set of algorithms
and data structures, which represent reusable knowledge in
the form of image processing techniques that can be used to
transform the image from the physical level to the structural
level.

While this phenomenological ontology may be considered as neu-
tral or observer-independent, scientific disciplines conceptualize
the world in the particular scope and context of their knowledge



domains. A given geographic object, for example an urban area,
may be seen as a discrete partition of space into land cover units
for planners whereas it may be seen as a a radiative field (de-
pending on surface geometry, land use and land cover) for cli-
matologists. We believe that, if GEOBIA is to become a bridge
between remote sensing and GIS applications, a generic ontol-
ogy for image-regions, able to encompass both image-objects and
image-fields, need to be developed.

As a discipline of GIScience, GEOBIA ontological definitions
may be based on the theoretical primitives of geographic repre-
sentation. As a consequence, GEOBIA processes would be able
to account for the creation of knowledge from the raw input im-
age to the final interpreted image. In the next section, we propose
an ontological framework for image analysis who attempts to ad-
vance on such path. This framework is generic to accommodate
both quantitative and qualitative analysis of remotely sensed im-
ages.

4 A GENERAL FRAMEWORK FOR GEOGRAPHIC
OBJECT-BASED IMAGE ANALYSIS

4.1 Image Analysis Process

Our focus lies on the characterisation of the generic image anal-
ysis process which changes the structural elements of the im-
age, from the raw pixel data collected by the sensor to the fi-
nal elements representing geographic objects in the application
domain. Figure 1 shows the image analysis process as the se-
quential development of six distinct and interrelated stages: sens-
ing, pre-processing, grouping, feature analysis, assignation, and
post-processing. Each stage is a function which transforms the
information contents of the image elements. This representation
of the image analysis process suggests a bottom-up information
flow, from images with no abstraction to the higher abstraction
needed for image understanding. Note that the proposed frame-
work describes the processes which transform image data from
the physical reality which is remotely sensed to the human ’con-
struction’ (conceptualization) of the geographic objects. It goes
from observations through pixels and groups of pixels before pro-
viding the target objects of interest. Note also that the proposed
flow not need to be unidirectional and that feedback loops and
knowledge inputs may occur at any stage of the process. Every
stage of the proposed framework is discussed in detail in the fol-
lowing sections.

4.1.1 Sensing: Imaging the earth surface leads to a collection
of discrete point measurements of a specific property which is
dependent on sensor properties and deployment. Spectral sensors
provide a regular array of data (normally arranged as rectangular
cells) related to electromagnetic signal of a surface. Image pixels
store a value expressing reflected energy. As such, image pix-
els correspond to some degree to real-world geographic objects.
However, the location of the pixel’s spatial boundaries is arbitrary
and do not match real world surfaces. Neither do pixel’s spectral
and radiometric boundaries. These three-dimensional boundaries
are a function of the sensor capabilities which, in turn, are guided
by user-defined objectives. In essence, pixels are fiat objects
whose characteristics influences greatly the subsequent stages of
the image analysis process.

4.1.2 Pre-processing: Pre-processing of satellite images com-
monly comprises a series of sequential operations, including at-
mospheric correction or normalization, image registration, geo-
metric correction, and masking (e.g., in order to ignore clouds,
water, or other irrelevant features for a given application). Image

Figure 1: Ontological framework for remote sensing image anal-
ysis.

pre-processing outputs pre-processed pixels (prixels). When at-
mospheric correction techniques are applied, interference caused
by water vapour content and aerosol optical depths are removed
or attenuated. In such cases, output prixels values represent an ac-
curate estimate of the reflectance of the earth surface. Often, the
pre-processing stage aims also to create additional bands or chan-
nels of information, as for example, when textural components or
vegetation indexes or edges are extracted from the original bands.
In such cases, pre-processed images contain both pixels (from the
original images) and prixels (from the output new bands).

4.1.3 Grouping: By applying one or several algorithms that
are part of the method ontology, this process results in a set of
grouped pixels (grixels) or structures strongly related to the mea-
surement device properties and its interaction with the physi-
cal landscape. These structures may be geometric (e.g. image-
regions extracted by a segmentation procedure) or thematic (e.g.
vegetation indexes obtained from multi-temporal images). Grix-
els are fiat objects which can be described either as well-defined
geo-objects or as spatially continuous geo-fields. Therefore, as it
will be discussed in section 5, discrete segmentation may be seen
as an special case of continuous segmentation. It is important to
note that grixels can be obtained at one or several spatial, spectral
or temporal scales.

4.1.4 Feature Analysis: At this stage, spectral, contextual or
geometric attributes of grixels are analyzed and related to real
world objects of interest. A collection of attributes (also known as
feature vector) is developed for every grixel in the image. There-
fore, the output of this stage is a vector of features for every grixel
(or, in other words, a vecxel). Selection of the most relevant at-
tributes is carried to determine the best set of features. In addi-
tion, existing knowledge is input to the process in several forms
like training samples, semantic networks or decision rules.

4.1.5 Assignation: The output of this stage are preliminary
objects (pre-objects) which are expected to be closely related
to real-world geo-objects. This stage may be a classification in
which cells are given a value expressing their allocation to a qual-
itative land-cover class. It may be also the estimation of a quanti-
tative variable, in which cells may keep their unique values or be
classified into a predefined range of numeric attribute values.



4.1.6 Post-processing: Refining of the previous output using
filtering or simulation techniques leads to polished structures which
hopefully correspond closely to real-world geo-objects. The out-
put objects can be geo-atoms, geo-objects, geo-fields or field-
objects. In the case of geo-objects, this stage usually includes
raster to vector conversion. In any case, this stage usually in-
cludes analysis of spatial and thematic accuracy and geographic
metadata creation.

It should be noted that the described framework is iterative in
nature and a number of loops may occur in its execution. Know-
ledge input is not restricted to the Feature Analysis stage where
user interaction is a requirement to make explicit the mapping be-
tween image-regions and real world geographic objects. It may
occur at any stage of the image analysis process, as for example
when entering training samples as input for supervised segmen-
tation or classification. Overall quality evaluation of the image
analysis is usually conducted at the end of the process but inter-
mediate quality checks may be conducted after every step to make
a decision about its correctness. Moreover, repeated cycles of the
image analysis process may lead to scheduling new flight cam-
paigns (or satellite orbits), improving sensor design or advancing
image processing algorithms.

4.2 Image analysis process in GEOBIA software implemen-
tations

In this section, the proposed framework is applied via a brief anal-
ysis of two mainstream image analysis applications:Definiens
andENVI. Definiens(formerly eCognition) is a popular imple-
mentation of the geographic object-based image analysis process.
Definiensprovides users with advanced capabilities for the fol-
lowing GEOBIA stages (Benz, 2001):

• Pre-processing: capabilities for masking.

• Grouping: capabilities for producing a hierarchical network
of segments at different scales.

• Feature Analysis: it offers a rich set of measures on spectral,
textural, geometric, contextual and hierarchical properties of
image-objects.

• Assignation: two basic choices for classification are avail-
able: sample-based classification using nearest neighbour
classifier; and rule-based classification, using expert knowl-
edge and fuzzy or crisp logic for rule definition.

• Post-processing: capabilities for filtering classified images
and raster-vector conversion.

Definiensallows users to introduce knowledge in the image anal-
ysis process by defining relationships between between image-
objects and target geographic objects or classes. A process tree
can be used to select appropriate analysis steps and automate the
image classification process.

TheDefinienssegmentation approach is an iterative process. Users
must decide how much color (spectral similarity), how much shape
(compactness and smoothness similarity), and also how large the
regions (scale parameter) shall be. There are not satisfactory an-
swers yet to every question and users have to decide using both
logic and intuition. This issue is alleviated by using multi-scale
segmentation, that is, outputting image-objects at several levels
of detail and defining hierarchical relationships among them.

TheENVI Feature Extractionmodule is a recent implementation
of the GEOBIA process. As a result,ENVI software provides a
full range of capabilities for image analysis as follows:

• Pre-processing: capabilities for atmospheric correction, ra-
diometric normalization, geometric correction, and mask-
ing.

• Grouping: capabilities for producing segments at a given
spatial scale. Merging and refining may be conducted as a
subsequent step.

• Feature Analysis: it offers a rich set of measures on spatial,
spectral and textural properties of image-objects.

• Assignation: two basic choices for classification are avail-
able: example-based classification and rule-based classifi-
cation. The latter includes options for defining fuzzy rules.

• Post-processing: capabilities for editing vectors, spatial en-
hancement of classified images, thematic accuracy evalua-
tion and raster-vector conversion.

TheENVI segmentation approach is an iterative approach which
is supported by pre-visualization of the output. Users define a sin-
gle parameter (scale) and can later refine obtained segments. In
addition, ENVI provides a set of tools that allow image analysts
to automate image processing routines.

Common capabilities (and differences) between the two GEO-
BIA software implementations become apparent when analyzed
using the proposed workflow. However, our proposed framework
may be more detailed. Every stage of the image analysis pro-
cess can be further examined by splitting it into more detailed
actions or tasks. Any action may be described in a generic way to
be able to accommodate one or another specific implementation
technique. As an illustrative example, in next section we analyze
the segmentation process (a special case of the generic Grouping
stage) which has been identified as a critical task in the GEOBIA
approach (Baatz and Schape, 2000).

5 IMAGE SEGMENTATION

5.1 A general view of segmentation

Segmentation is the partition of an image into meaningful regions
that are, in someway, related to real world objects. Image-regions
can be produced by segmentation at one single spatial scale or
at several nested scales. Image-regions are usually interpreted
as discrete image-objects with very well defined boundaries, that
is, as a set of non-overlapping, space-exhausting polygons. This
approach for image segmentation has proven to be very useful in
a great number of applications (Blaschke et al., 2006). Figure 2
shows the discrete approach for image segmentation, i.e. image-
objects are disjoint and homogeneous image-regions expressing
belonging of a cell either to Region A or Region B. Note that the
segmentation output is a single image comprising discrete image-
objects.

However, in many cases, the existence of noisy images and spec-
tral ambiguity of target classes may call for building image-regions
with indeterminate boundaries. In such cases, image-regions can
be modelled using partial belonginess, that is, as collections of
grixels with associated membership functions to regions. In other
cases, as it was discussed earlier, geographic objects of inter-
est simply do not have well defined boundaries. In any of these
cases, image-regions can be better described as image-fields and
referred to as continuous image-regions. There will be as many
image-fields asn regions exist. For each locationx, a member-
ship functionm(x) gives the degree of membership of the grixel
to every image-region. Figure 3 shows this continuous approach



Figure 2: Discrete image segmentation.

Figure 3: Continuous image segmentation.

for image segmentation, i.e. image-fields are overlapping and
heterogeneous image-regions expressing degrees of membership
of cells to both Region A and Region B. Note that, the segmen-
tation output is a set ofn images comprising continuous image-
fields (one image for every target region).

According to the foregoing concepts, we suggest to consider dis-
crete segmentation as a special case of the more general continu-
ous segmentation. However, appropriate methods and structures
to store and manipulate continuous image-regions are to be de-
veloped in order to advance GEOBIA on that way (Lizarazo and
Elsner, 2008). The remaining of this paper analyses the discrete
segmentation stage.

5.2 Discrete segmentation functional model

A functional model of discrete segmentation offers a unified view
of the process which may be useful for comparison of different
techniques and methods. Figure 4 depicts an adapted version of
a model originally proposed for computer vision (Zouagui et al.,
2004). It is an iterative process composed of five blocks: mea-
surement, criteria building, control, modification and stop.

The Measurement block is in charge of compute at each iteration
k a set ofM scalar measures expressing some value of homo-
geneity or dis-similarity for each region n among theN regions
of the image. These measures are related to the region homo-
geneity and the boundary gradients or the neighborhood between
adjacent regions (i.e. gray level variance, gray level mean, area,

local deviation from mean, clique energy, mean square error, lo-
cal distance, point displacement). The Measurement block needs
as input the original image and the current segmented image.

The Criteria block receives these measures and builds a criteria
scalarCk(n) = f(F k(i, n)) for each regionn that express ho-
mogeneity for each region (i.e. additive combination, inverse,
embedded, magnitude). The Control block verifies if the region
has fulfilled the homogeneity parameter (i.e. thresholding, deriva-
tive, maximum, minimum) or instead if needs to evolve. It takes
as input the criterion valuesCk(n) and produces the control value
Ek(n) for each regionn. If Ek(n) is null, this means this region
has reached the required quality.

The Modification block process the current region according to
the technique selected (i.e. orthogonal splitting, fixed control
point displacement, pixel labeling, histogram thresholding, merg-
ing, dilation, contraction, adaptive control point displacement).
The Stop block checks if it is necessary or not to continue the
iteration.

Figure 4: Functional model for discrete segmentation.

Image segmentation inDefiniensis a multiresolution, bottom up,
region-merging technique starting with one-pixel objects. Image
objects are extracted from the image in a number of hierarchical
segmentation levels and each subsequent level yields image ob-
jects of a larger average size by combining objects from the level
below, which represents image information on different scales si-
multaneously.

Objects are grouped into a larger object based on spectral simi-
larity, contrast with neighboring objects and shape characteristics
of the resulting object. These three characteristics are grouped in
a single parameter called heterogeneity (Yan and Bauer, 2006).
Throughout a single segmentation step, the underlying optimiza-
tion procedure minimizes the heterogeneity of resulting image
objects weighted by their size. A segmentation step is finished
when very original object is assigned to the optimal higher level
object. To achieve adjacent image objects of similar size and thus
of comparable quality, the procedures simulates an even and si-
multaneous growth of objects over a scene in each step and also
for the final result.

In Figure 5,Definienssegmentation approach is depicted using
the functional model described above. Spectral homogeneity (i.e.
color) is measured using size and standard deviation of each re-
gion inn spectral layers weighted according to user preferences.
Compactness is measured asnmlm/bm wheren is the size of
each region,l is the perimeter of the region andb is the perimeter
of a minimum box bounding each region. Smoothness is mea-
sured asnmlm/(nm)0.5. Connected regions are merged only



when region size is below a predefined size known asscale pa-
rameter.
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Figure 5: Discrete segmentation as implemented inDefiniens.

6 CONCLUSIONS

This paper proposes a unified framework for geographic object-
based image analysis process. It is based on recent theoretical de-
velopments of geographic representation in GIS and aims to con-
tribute to a better integration between remote sensing and GIS ap-
plications. It is able to accommodate different approaches to es-
timate land surface properties, either the qualitative classification
of land cover or the quantitative estimation of bio-geo-physical
variables. It uses a bottom-up description of the image analysis
process where structural properties of the image and abstraction
are changed by generic functions or stages. The proposed frame-
work may serve to analyze different GEOBIA software imple-
mentations and to compare the particular ways they use to accom-
plish each stage of the process. More important, critical processes
of the GEOBIA image analysis approach like the segmentation
stage can be extended and generalized to allow the existence of
both discrete image-objects and continuous image-fields.
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