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ABSTRACT:

Automatic building detection has been a hot topic since the early 1990’s. Early approaches were based on a single aerial image.
Detecting buildings is a difficult task so it can be more effective when multiple sources of information are obtained and fused. The
objective of this paper is to provide a comparative analysis of automatic approaches to building detection from multi-source aerial
images. We analysed data related to both urban and suburban areas and took into consideration both object-based and pixel-based
methods. Although many of these methods perform full data classification, we focused only on the detection of building regions.
Three measures were used for the evaluation of the performance of each method: number of detected buildings to their total number
(detection rate), number of objects wrongly detected as buildings (false positive) and number of missed buildings (false negative) to
the number of detected buildings. The data sets we used were RGB and colour infrared (CIR) orthoimages and Digital Surface
Models (DSMs) obtained by an airborne laser scanner, which provides a first pulse DSM and a last pulse DSM. In addition, we
derived from these data and used other four sources of information: a Digital Terrain Model (DTM) obtained from a filtered version
of the last pulse DSM, the height difference between the last pulse and the DTM, the height difference between the first and the last
pulse and the Normalized Difference Vegetation Index (NVDI) derived from the red and infrared channels.We analysed results
coming from three classification algorithms, namely Bayesian, Dempster-Shafer and AdaBoost, applied to the features extracted
both at pixel level and at object level. To obtain a very realistic comparison we used the same training set for all methods, either
pixel-based or object-based. Results obtained are interesting and can be synthesised in the need of fusing (the results of) more

approaches to yield the best results.

1. INTRODUCTION

Large-scale cadastral maps that contain building boundaries are
an important source of information for governments. These
maps are mainly used for valuing and taxing properties and
creating databases of land ownership. Because of the rapid
changes of urban areas, an updating of the cadastral maps must
be carried out on a regular basis (i.e., every 5~10 years) to keep
the databases up to date. Map updating is traditionally
performed manually by an operator who is responsible for the
detection of changed buildings by comparing the map with a
recent aerial image (or stereo pair). For large cities, this process
is very time-consuming and costly. In most cases, a large
proportion of buildings, about 95%, remains unchanged, while
only a small number of them needs to be updated. Nevertheless,
the operator has to inspect the entire scene carefully in order to
locate those few buildings that have changed. Automated
approaches to building detection are of great importance in map
updating, because they can reduce the amount of manual work,
and consequently lead to a reduction of time and cost of the
map updating process.

Early approaches to automated building detection relied mostly
on a single source of data. Huertas et al., (1993) and Nevatia et
al., (1997) developed methods for automated building detection
in monocular aerial images based on shadows as evidence. The
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methods of Fischer et al., (1998) and Fradkin et al., (2001) were
based on the processing of multiple-overlap aerial images.
Weidner and Forstner (1995), and Vosselman (1999) used
height data in the form of a digital surface model for building
detection. Today we can register approaches based on multiple
sources of information, and not only from aerial images but
also, for example, using already available urban maps (with the
aim to update them) or LADAR data acquired by unmanned
ground vehicles. Recently, with the availability of airborne
laser data and imagery in multiple spectral bands, the
application of data fusion methods to building detection has
attracted more attention. Khoshelham et al., (2005) developed a
method to fit planar surfaces to height data within regions of a
segmented aerial image for the detection of building roofs.
Walter (2004) applied a Bayesian maximum likelihood method
to object-based classification of multi-spectral aerial data.
Bartels and Wei (2006) performed pixel-based classification of
aerial imagery and laser range data using the Bayesian
maximum likelihood approach. Rottensteiner et al., (2004) and
Lu et al., (2006) developed methods to extract buildings from
aerial imagery and laser range data based on Dempster-Shafer
evidence theory. Zingaretti et al., (2007) adopted an AdaBoost
algorithm for the automatic identification of rules for the
classification of raw LIDAR data mainly as buildings, ground
and vegetation.



While relatively successful applications of the fusion methods
to the problem of automated building detection in multi-source
aerial data have been reported, a comparison of the performance
of these methods is not available. The objective of this paper is
to provide a comparative evaluation of three common data
fusion and classification methods, namely Bayesian, Dempster-
Shafer and AdaBoost, as applied to the detection of buildings in
multi-source aerial data. We present results of both pixel-based
and object-based implementations of the methods, and compare
the performance of the methods on the basis of ground truth
information obtained by manual extraction of buildings.

The paper proceeds with a brief overview of the Bayesian
decision theory, the Dempster-Shafer evidence theory, and the
Adaboost classification algorithm in Section 2. Section 3
describes the experimental setup, including a description of the
data and the extraction of pixel-based and object-based features.
In Section 4, the results of the experimental evaluation of the
methods are presented, and a discussion on the various factors
affecting the performance of the methods is provided. The
paper concludes in Section 5.

2. AN OVERVIEW OF THE METHODS

In a typical data fusion and classification method, first a set of
features are extracted from the data, and a number of class
hypotheses are defined. In the next step, a decision is made for
each feature as to what class of objects it belongs to. The
principle of decision making varies across different
classification methods. In the following, a brief description of
the decision-making principle in three classification methods,
Bayesian, Dempster-Shafer and Adaboost method is presented.

2.1 Bayesian method

In the Bayesian method, a decision is made based on
maximizing the likelihood that a feature vector x belongs to a
class w;. Formally, this can be expressed as (Duda et al., 2001):

dix) = p(s/w).P(w) (1)

where p(x/w;) is the conditional probability of x in the
probability distribution function of class w;, P(w;) is the prior
probability of class w;, and d;(x) is a decision function that is
evaluated for each feature x and class w;, and is to be
maximized in order to make a decision. Often, it can be
assumed that the classes have Gaussian probability distribution
functions. In this case, the maximum likelihood decision
function can be expressed as:
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where parameters L; and X; are respectively the mean and
covariance matrix of the multi-dimensional Gaussian
probability distribution function of the class w;.

A simplification of the maximum likelihood method can be
achieved if an assumption can be made that the features in all
classes are independent and have the same variance. Further, if
it can be assumed that the prior probabilities of all classes are
the same, the decision function in Eq. (2) will reduce to:
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A classifier based on the decision function given in Eq. 3 is
referred to as a minimum distance classifier. The principle of
the minimum distance classification is that a decision on the
class of a feature can be made by minimizing the distance of the
feature to the means of the hypothesized classes.

2.2 Dempster-Shafer method

The Dempster-Shafer method performs a classification of data
into different classes on the basis of the evidence that each
feature provides for each class hypotheses (Gordon and
Shortliffe, 1990). Hypotheses include not only all classes but
also any union of the classes. When all the available evidences
for the class hypotheses are gathered from different features,
they are combined using a combination rule, and the sum of the
combined evidences assigned to all subsets of a class hypothesis
defines the amount of belief in that hypothesis:

Bel(A) =Y m(B) @
BcA
The decision on the class of a feature is made based on a
maximum belief decision rule, which assigns a feature to a class
A if the total amount of belief supporting A is larger than that
supporting its negation:

Bel(A4) > Bel(A) (3)

Khoshelham et al., (2008) provide a detailed description of
evidence gathering, combination, and belief computation using
features extracted from aerial imagery and laser range data.

2.3 Adaboost algorithm

Boosting (Sutton, 2005) is a method of combining classifiers,
which are iteratively created from weighted versions of the
learning sample, with the weights adaptively adjusted at each
step to give increased weight to the cases which were
misclassified on the previous step. The final predictions are
obtained by weighting the results of the iteratively produced
predictors. Boosting was originally developed for classification,
and is typically applied for creating an accurate strong classifier
by combining a set of weak classifiers. A weak classifier is only
required to be better than chance, and thus can be very simple
and computationally inexpensive. However, combining many of
these simple and inexpensive classifiers results in a strong
classifier, which often outperforms most “monolithic” strong
classifiers such as Support Vector Machines and Neural
Networks. In 1990, Schapire (1990) developed the predecessor
to later boosting algorithms developed by him and others.
AdaBoost (a short for “adaptive boosting”) is now the most
popular boosting algorithm (Freund, 1997). Boosting uses a
weighted average of results obtained from applying a prediction
method to various samples. Also, with boosting, the samples
used at each step are not all drawn in the same way from the
same population, but rather the incorrectly predicted cases from
a given step are given increased weight during the next step.
Thus, boosting is an iterative procedure, incorporating weights,
as opposed to being based on a simple averaging of predictions,
as is the case with bagging (Sutton, 2005).



Figure 1. Dataset used in the experiments (a) RGB orthoimage with superimposed the 8 samples for each class, constituting the
training set; (b) First pulse airborne laser range image; (c) Reference building map manually extracted from the image and laser data.

3. EXPERIMENTAL SETUP
3.1 Description of the data

The study area of the experiments is a small suburban
neighbourhood of about 1.2 km? in the city of Memmingen,
south of Germany. About seventy buildings with dimensions
ranging from around 100 to 300 m? and with vegetation
between them are comprised in the area. Moreover, a large
number of garages and garden sheds are present in the vicinity
of buildings.

The multi-source data available for the experiments include an
aerial orthorectified image in four spectral channels, red, green,
blue, and near infrared, and laser range data in both first and
last pulse recorded by an airborne laser scanner. Figure la
depicts the RGB image, while Figure 1b shows the DSM
(Digital Surface Model) corresponding to the first pulse laser
range data. In addition, a digital elevation model (DEM) of the
terrain as a filtered version of the last pulse laser scanner data is
available. Radiometric data have a resolution of 0.5 meters,
while the laser data are provided at a density of 1 point/m?.

The whole dataset was used in both qualitative and quantitative
comparisons. The comparisons were carried out on the basis of
a reference dataset generated by manual extraction of the
buildings in the image and the laser data. No in-situ information
for the recognition of the buildings was available. All points in
the reference dataset were labelled as either Building (B) or
Not-Building (NB). Figure 1c shows the reference building data
in blue, while garages and garden sheds are depicted in pink. In
particular, only those with a dimension of 15~30 m’ and a
height of at least 2.5 meters were included in the reference data.
In spite of focusing only on buildings at an early stage, a
classification of the data in the following four classes was first
performed by all the methods: building, tree, bare land and
grass. Building regions were then detected from the
classification results.

To allow a very realistic comparison a strong assumption was to
use the same training set for all methods, either pixel-based or

object-based. In particular, we selected eight sets of pixels,
totalling more or less an equal number of samples (from 2 to 3
thousand pixels), for each class. Consequently, in the case of
pixel-based approaches the training set represents about 1.8% of
the total pixels, while in the object based approach the regions
corresponding to that pixels represent about the 2.1% of the
total regions of the image.

3.2 Pixel based features

In the pixel-based classification data fusion was carried out at a
pixel level. Each pixel of the image is visited once, its features
extracted and then passed on to the classification methods. All
methods work with the following three features: Ak, the height
difference between the last echo and the DTM; Ap, the height
difference between first and last echoes; NVDI, the Normalized
Difference Vegetation Index obtained from the red and near-
infrared channels. Since the Adaboost algorithm was expected
to perform better with a larger number of features, it was tested
with additional features from all the channels of the radiometric
data. This allowed the algorithm to be tested with five (Ah, Ap,
NVDI, G,B) and seven features (Ah, Ap, NVDI, R, G,B, NIR).

3.3 Object based features

To perform object-based classification with features at a region
level, a preliminary segmentation process was applied to the
image data. For each region in the segmented image the
average, minimum, maximum and root mean square value was
calculated for the first three features described in the pixel-
based classification. In addition, the number of points belonging
to each region, the average, minimum, maximum and root mean
square values of the multispectral intensities and of the first and
last pulse, the kurtosis (relative peakedness or flatness of a
distribution compared to the normal distribution) and skewness
(the degree of asymmetry of a distribution around its mean)
were considered. As done with pixel based methods, first a
comparison was carried out using only the average value of 44,
Ap and NVDI. Later, all the additional features were included.



As known, overgrown and undergrown regions are inevitable in
the segmented image. The classification methods can cope with
undergrown regions by assigning them to a same class;
however, in overgrown regions features of two or more
different objects are present, and their merger would certainly
influence the classification results. For this reason, the
segmentation algorithm was applied with parameter settings
that produced oversegmented results. To study the influence of
the parameter setting, two segmentations were obtained: a
slightly oversegmented image with smoothing parameter 10,
and a largely oversegmented image with smoothing parameter
5. The object-based classifications were applied to both
segmented images.

4. RESULTS AND DISCUSSION

The classification methods were applied to the features
extracted both at pixel level and at object level. Then the
building class were extracted from the classification results. A
cleaning operation based on morphological opening and
reconstruction was applied to the detected buildings in order to
remove regions that were smaller than a threshold (Khoshelham
et al, 2008). The comparisons were carried out both
qualitatively, by visual inspection of the results, and
quantitatively, by deriving a number of performance measures
using the reference data. To this aim we have defined the
following quantities: @, the number of points correctly classified
as buildings; b, the number of buildings points classified as
other objects (False Negative - FN); ¢, the number of other
objects classified as buildings (False Positive - FP); d, the
number of other objects correctly classified. Then, the detection
rate is expressed as a/(atb), the percentage of FN and FP as
b/(a+b) and c/(c+d), respectively.

4.1 Qualitative comparison of approaches

The qualitative comparison is performed visually comparing the
results by taking error location into particular attention. To this
aim, in Figure 2 FP (blue) and FN (red) for the pixel based
classification realized with only three features are superimposed
to the reference data. The images highlight the different
contribution of the two kind of errors very well: a
predominance of FP in the first two images, namely those
corresponding to the Adaboost (a) and the Bayesian (b), but a
predominance of FN in the Minimum Distance (Figure 2¢) and
Dempster-Shafer (Figure 2d). Consequently', a higher number of
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missed elements (particularly garages or garden sheds due to
their small dimensions) is present in the last two methods. To
sum up, the not detected garages or garden sheds were: 8, 9 and
16 for the Adaboost working respectively with 3, 5 and 7
features; 5 and 7 for the Bayesian working respectively with 3
and 5 features; 28 with the Minimum Distance and 19 with the
Dempster-Shafer. Moreover both these last two methods do not
detect 1 building.

In the same way Figure 3 shows error location of the object
based classification based on the segmentation that produces a
larger number of regions (threshold 5). The same trend in the
distribution of errors can be noticed. With the two different
segmentations, threshold 5 and 10, respectively, the Adaboost
using only 3 features missed 27 and 12 garages or garden sheds
and 1 and 2 buildings. Using 15 features and segmentation
threshold 5 it missed 12 garages or garden sheds and 1 building,
while with segmentation threshold 10 all buildings were
detected, but missing 6 garages or garden sheds. With the two
different segmentations, threshold 5 and 10, respectively, only 2
and 3 garages were missed by the Bayesian; 28 garages and 1
building were not detected by the Minimum Distance, and 21,
24 garages and 1, 2 buildings were not detected by the
Dempster-Shafer.

4.2 - Quantitative comparison of approaches

On a quantitative level the detection rate and error rates are
furnished for every elaboration.

Classification results expressed as percentage of detection rate
or error rates, obtained with the three pixel-based methods
using only three features are shown in Table 1 both for building
(B) and not-building (NB) objects. Similarly, Table 2
summarizes the detection and error rate percentages for every
object-based classification algorithm.

It’s important to notice that both Adaboost and Dempster-
Shafer furnished a number of not classified (NC) points, which
means there are points where the algorithm was not able to
decide among the four classes. The percentage of NC building
points is shown in a separate row of the table, while Fig. 4
emphasizes how FN and FP are relatively small in the Adaboost
algorithm despite of it has the same amount of errors of the
Bayesian algorithm due to the contribution of NC points.
Similarly the same results are shown for the object-based
classification in Figure 5.

r - r
- ﬁGP .~ ._‘ o ‘QGP a ?Dn
QQG m: [ul™8] QQQQ OI'DCU
2 o
oot ao O o2 an
SEL ERTL
DDDG‘:’Q‘-%DG gczt:lﬂ‘qf{é_ V=
aoodtyan s poedualE
gacdni a a@/do o
i J=is Eﬂﬁn% o ond EDQDU a°
By o0 ne0 Byt S ood
] © @

Figure 2. Results of pixel based classification using three features. False Positive (blue) and False Negative (red) superimposed at the
reference map. (a) Adaboost; (b) Bayesian; (c) Minimum Distance; (d) Dempster-Shafer.
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Figure 3. Results of object based classification using three features and the segmentation with threshold 5. False Positive (blue) and
False Negative (red) superimposed at the reference map. (a) Adaboost; (b) Bayesian; (c) Minimum Distance; (d) Dempster-Shafer.

Reference Reference
B NB B NB
Adaboost B 83.44 2.52 Adaboost B 80.86 3.53
NB 9.54 85.87 NB 6.84 67.46
NC 7.02 11.61 NC 12.31 29.01
Maximum B 85.89 391 Maximum B 93.42 5.97
Likelhood NB 14.11 96.09 Likelhood NB 6.58 94.03
NC - - NC - -
Minimum B 72.26 1.49 Minimum B 76.09 1.83
Distance NB 27.74 98.51 Distance NB 23.91 98.17
NC - - NC -
Demspter B 76.49 0.89 Demspter B 80.93 1.20
Shafer NB 23.02 99.11 Shafer NB 18.83 97.60
NC 0.31 1.09 NC 0.24 1.20

Table 1. Pixel-based classification results using three features.
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Figure 4. FN, FP and NC for pixel-based classification.
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Figure 5. FN, FP and NC for object-based classification

Table 2. Object-based classification results using three features.

4.3 -Discussion

Generally, object based algorithms perform better than pixel
based methods, on average about 5% more. In the case of the
Adaboost algorithm this is not evident from Table 2, but using
all 15 features and segmentation threshold 10 in the object-
based approach Adaboost reached a building detection rate of
94.27% (about the same for ML).

Moreover it was experimented that a larger number of features
does not produce a very important improvement in the
classification results. On the contrary, often not adequate
features can deteriorate the results, as it happened the
Maximum Likelihood when working with 5 features. Future
works will investigate deeply this field and we are also studying
the relevance of the used features looking for redundancies.
Finally, another aspect to further investigate is the influence of
segmentation threshold in the object-based classification, in
particular in the case of over-segmentation, when many regions
become so small to reduce the method very similar to a pixel-
based one.




5. CONCLUSIONS

We analysed results coming from three classification
algorithms, namely Bayesian, Dempster-Shafer and AdaBoost
algorithm, applied to the features extracted both at pixel level
and at object level. To obtain a very realistic comparison we
used the same training set for all methods, either pixel-based or
object-based.

Results obtained are interesting and can be synthesised in the
need of fusing (the results of) more approaches to yield the best
results.

Some conclusions can be also done on the classification
performances: as usually probabilistic classifiers bring to better
results due to the fact that they can model noisy data and
implicitly filter bad associated results. From this point of view
the boosting part of the Adaboost algorithm guarantees optimal
performances. The presence of a large number of not classified
data is another good quality of this approach; usually in the
classification literature this kind of result is considered better
than false and positive results and usually not classified classes
data are then disambiguated using a second level classifier
(different from the first one) mixed with rule based approaches.
Future works will investigate deeply this field and we are also
studying the relevance of the used features looking for
redundancies. We will finally try to use a cluster based learning
approach to train probabilistic classifier using a reduced number
of data. This will allow us to compare performance of different
complex classifiers (such as SVM, Neural Networks and
Particle based approaches) over the huge amount of data used in
the proposed experiments.
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