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ABSTRACT: 
 
This work proposes a Hidden Markov Model (HMM) based technique to classify agricultural crops, exploring information of 
temporal image sequences from TM and ETM+/Landsat sensors. It endeavours to combine two knowledge fields, the research on 
plant phenology and on multitemporal object-based classification techniques. HMMs are used to relate the varying spectral response 
along the crop cycle with plant phenology for different crop classes. The method recognizes different agricultural crops by analyzing 
their spectral profiles over a sequence of medium resolution satellite images. In our approach the temporal behaviour of each crop 
class is modelled by a specific HMM. A segment-based classification is performed using the average spectral values of each image 
segment across an image sequence, which is subsequently submitted to the HMMs of each crop class. The image segment is 
assigned to the crop class, whose corresponding HMM delivers the highest probability of emitting the observed sequence of spectral 
values. Experiments were conducted upon a set of 12 co-registered and radiometrically corrected LANDSAT images. The images 
cover an area of the State of São Paulo, Brazil with about 124.100ha, between 2002 and 2004. The following crop classes were 
considered: sugarcane, soybean, corn, pasture and  riparian forest. Performance assessment was carried out upon a data set classified 
visually by two analysts and validated by extensive field work. While in our experiments a single-date classifier delivered in average 
an overall accuracy close to 58%, the HMM method was able to achieve 86%. Considering the scarcity of training samples for some 
crop classes in our data set, it is fair to expect even higher performances, if more representative training sets can be made available.  
 
 

1. INTRODUCTION 

Motivation 

Given the importance of agriculture worldwide, socially and 
economically, the availability of precise and efficient 
information about agricultural activities in an appropriate time 
interval is highly relevant for a number of strategic decisions. 
Rural producers, export and import agents, companies in the 
food industry, suppliers, investors and the government are some 
of the players interested in this kind of information.  
 
With accurate information about the status of different crops it 
is possible to develop commercial plans, to regulate agricultural 
products internal stocks, to make decisions on subsidies, and to 
draw strategies for the negotiation of agricultural commodities 
in financial markets.  
 
This work endeavours to combine two knowledge fields that 
have had a noticeable evolution in recent years, namely the 
research on multitemporal classification techniques using 
satellite imagery and on plant phenology. Here lies the main 
novelty of the present work. In fact there are few reports on 
using phenological models to support the image classification 
process (Aurdal et al., 2005). Hidden Markov Models were 
used to relate the varying spectral response along the crop cycle 
with plant phenology for different crop classes. 
  
Thus the general objective of this work was to evaluate the 
potential of Hidden Markov Models for crop classification from 
remote sensing temporal image sequences. Instead of relying on 
single date images, the methodology investigated in this work 

identifies different agricultural crops by analyzing the crop 
specific temporal profiles of spectral features over a sequence 
of medium resolution satellite images. 
 
Section 2 shows the problem characterization, followed by a 
description of Hidden Markov Model method in section 3. The 
proposed methodology is presented in section 4 and a 
performance analysis is presented in section 5 followed by final 
comments. 
 

2. PROBLEM CHARACTERIZATION 

Crops and their phenological cycles 

The cycles and the planting and harvesting dates of the main 
crops found in a study area determine the quantity of foliar 
area, phytomass volume and soil coverage temporal variations. 
The knowledge of these peculiarities gives the basis for 
understanding the spectral behaviors presented by the studied 
crop types in a certain period of the year.  
 
2.1.1  Sugarcane: In São Paulo, Brazil, the sugarcane (SC) 
(Saccharum spp.) cultivation follows basically two cycles: one 
of 12 months (“one-year” sugarcane) and another of 18 months 
(“one-year-and-half” sugarcane). The one-year-and-half 
sugarcane is planted between January and March and the one-
year sugarcane, between October and November. It is important 
to highlight that each sugarcane crop can be harvested during 
five or six  consecutive agricultural cycles. For this reason the 
cycle is named “semi-perennial”, which is different from grain 
crops’ cycles, because of its duration, as well as of its 
phenological dynamics. 
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For areas where this crop is recently planted, a green mass of 
one-year-and-half sugarcane starts to completely cover the soil 
from October, when there is more heat and pluviometric 
precipitation; however, new areas of one-year sugarcane, 
should have full green coverage in April and May and then the 
green phytomass tends to increase its foliar area until the next 
harvesting period. 
 
Each year the period of harvesting starts in April and ends in 
November, this way, in a same date of satellite image it is 
possible to find: straw from harvested crop, recently planted 
sugarcane, as well as sugarcane in the growth phase and in the 
adult phase. It is also possible to find exposed soil, where the 
agricultural area is prepared for planting. 
 
2.1.2  Short cycle crops (cereals): Soybean (SB) and corn 
(CO) are called “annual crops” or “short cycle crops”, once 
they can complete their phenological cycle in 110 to 140 days. 
They are planted, in general, in the end of October or in the 
beginning of November and they germinate about 10 days after 
being planted, begging their vegetative growth and fully 
covering the soil surface around 60 days after the germination. 
In the sequence, these crops reach the peak of green phytomass 
and then they begin the grain filling process, when the quantity 
of green leaves starts to diminish while the quantity of yellow 
leaves increase. They then dry out and fall, exposing again the 
soil background until the harvesting period. 
 
2.1.3 

2.1.4 

Pasture: Pasture (PS) presents different phenological 
and spectral dynamics from the other crops mentioned above.  
These dynamics depend on the types of soil management used 
by cattlemen, however, in general, pastures are more dry and 
scarce between April and September, when the rainy season 
starts along with their revigoration, which increases the foliar 
area index and sustain the green vegetative vigor from 
November to March. 
 

Other classes: Besides these crops vegetation, riparian 
forest (RF) was also considered in this work. Other classes of 
land cover are present in the study area: urban areas, roads, 
forest and water bodies. They appear as few, large segments 
that practically do not change thorough all the image sequence, 
and for this reason, they were not included in this work. 
 

3. HIDDEN MARKOV MODELS 

A Hidden Markov Model (HMM) (Bunke & Caelli, 2001)  
represents a doubly embedded stochastic process. In an HMM, 
the observations (vi) are regarded as symbols emitted by non 
observable states (Si), following particular probabilistic 
functions, whereby the state sequence is a first order Markov 
Chain. An HMM is illustrated in Figure 1. N is the number of 
states in the model (the individual states are denoted as S = 
{S1,…,SN}, and the state at time t as qt) and M is the number of 
distinct observation symbols per state (the individual symbols 
are denoted as V = {v1, …, vM}). A basic HMM consists of 
three sets of parameters:  

a) the symbol emission probabilities bjk – the probability 
that symbol vk is emitted by state Sj, i.e. 

Mk N j,    S t|q vb jtkjk ≤≤≤≤== 1and1]atP[  

b) the state transition probabilities aij – the probability of 
being in state Sj in the subsequent time instant given 
that the current state is Si, i.e. 

Ni,j,    S|qSqa itjtij ≤≤=== + 1]P[ 1
 

c) the prior probability distribution πi that the system is 
in a given state Si at the initial time instant (not shown 
in the figure), i.e. 

Ni,    Sqπ ii ≤≤== 1]P[ 1
. 
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Figure 1.  Example of a Hidden Markov Model (Si → states, vk 
→ observation symbols, aij → state transition probability, bik → 

symbol emission probability). 
 

If a state Si can reach another state Sj, aij>0 and if two states are 
not connected, aij = 0.  
 

4. METHODOLOGY 

The basic HMM shown in Figure 2 was chosen to model the 
temporal behaviour of sugarcane, soybean and corn. The arrows 
illustrate how the states are temporally related. According to 
plant phenology, states PP, GR, AD and PH correspond to 
stages Prepared Soil, Growth phase, Adult phase and Post-
Harvesting respectively. 
 

 

PHPP GR AD

Figure 2.  HMM used in this work for sugarcane, soybean and 
corn (PP = Prepared soil, GR = Growth, AD = Adult phase and 

PH = Post-harvesting). 
 

 

AD

Figure 3.  HMM used in this work for pasture and riparian 
forest (AD = Adult phase). 

 
For pasture and riparian forest there is no significant change in 
the radiometric features throughout the phenological cycle, so a 
specific HMM is devised for these classes having a single state 
S1, which in these cases correspond to Adult  (Figure 3). 



 

 
Even though pasture and riparian forest are actually not crop 
types, the term “crop” will be used hereafter to designate the set 
of all five classes to be recognized in our problem. 
 
Considering the crops available in the study area, each one of 
these crops is associated with a different HMM, with different 
state transition probabilities and symbol emission probabilities. 
It is necessary to obtain such components, as well as the 
probability of occurrence of each state Si on the initial date of a 
sequence of observations being considered, in order to define 
each crop’s model.  
 
The problem being considered in this work deviates in a 
number of ways from the basic HMM description presented in 
the preceeding section. First, the symbol emission probabilities 
(bjk) depend on seasonal effects that can not be fully 
compensated in the image pre-processing phase. Second, the 
prior probability distribution (πi) is not constant along the year 
(see section 2). Third, the basic model depicted in section 3 
assumes that the symbols are emitted at a constant time rate. In 
most real applications we don’t have an usable image at a fixed 
time interval, mostly due to clouds at the moment when the 
satellite passes over the target geographical area. It is also 
worth mentioning that the basic model shown in Figure 2 may 
also change for a larger interval between two consecutive 
images in the data set. For instance, a transition from PP to AD 
may become possible in these cases. 
 
In consequence, an HMM for our problem will have to consider 
distinct symbol emission probabilities, prior state probabilities, 
as well as state  transition probability matrices for each pair of 
consecutive images in the available dataset. 
 
Regarding the symbol emission probabilities, it is assumed 
throughout this paper that they have a Gaussian distribution. 
Hence the emission probability density of a symbol x (a vector 
consisting of the spectral bands and NDVI) will be given by:  
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where μcs, and Σcs  denote respectively the mean vector, the 
covariance matrix for culture c and state s, and d is the 
dimension of x.  
 
Once the HMM have been established and their parameters 
estimated, the classification of an image segment is done in the 
following way. The segment is represented at each date by a 
symbol vector comprising its average spectral values and NDVI 
observed at that date. From the symbol vectors representing the 
segment behaviour during a given succession of dates, the 
classifier computes for each model, the probability that the 
corresponding crop class emits the observed sequence of 
symbol vectors. The segment is assigned to the class whose 
model delivers the highest emission probability. A detailed 
description about how emission probabilities are computed in 
an HMM can be found in (Rabiner, 1989). 
 

5. PERFORMANCE ANALYSIS 

5.1 

5.1.1 

Data Set 

This section shows the details of the database used in this work. 

 
Study area: The study area corresponds to three cities 

in the State of São Paulo, Brazil: Ipuã, Guará e São Joaquim da 
Barra (inside a rectangle defined by the following coordinates: 
20º16’30”S to 20º40’00”S x 47º37’36”W to 48º13’50”W), 
covering an area of 124.100ha (Figure 4). Agriculture is the 
main activity in this area. The main crops found are: sugarcane, 
soybeans and corn. This region has a plane to slightly undulated 
relief, a tropical climate with dry winter, with annual mean 
temperature of 22,9ºC and annual mean precipitation of 
1480mm. 
 

 
Figure 4. Study area in state of São Paulo, Brazil 

 
5.1.2 Image Sequence: The dataset contains a total of 12 
images from the Landsat satellite, orbit/point WRS 220/74, 
from 2002 to 2004 (Table 1), from TM/Landsat-5, as well as 
from ETM+/Landsat-7 sensors (Sanches, 2004).  Bands 1 to 5 
and 7 were used in this work. Only the thermal band was not 
used. 
 

 2002 2003 2004 

January  (ETM+) 
08/01/03 

(TM) 
19/01/04 

February  (ETM+) 
09/02/03 - 25/02/03  

April  (ETM+) 
14/04/03 - 30/04/03  

May  (ETM+) 
16/05/03  

July  (TM) 
27/07/03  

August  (TM) 
12/08/03  

September (ETM+) 
02/09/02   

October (ETM+) 
20/10/02 

(TM) 
15/10/03  

Table 1. Images available 
 

5.1.3 Image pre-processing: The Landsat images were in 
geotiff format and for the geometric corrections, 13 control 
points gathered by GPS were used. The nearest neighbour 
resampling method was applied, considering that it well 
preserves the original image’s radiometry (Mather, 1993; 
Richards, 1995). 
 
A correction was applied to the multitemporal images to 
diminish atmospheric effects, once that the atmosphere, by its 
spread-spectrum, absorption and refraction phenomena, affects 
the radiance measured by the orbital sensors. The Dark-object 
subtraction technique, developed by Chavez (1988), was 
applied. 
 



 

As the same object may present distinct digital values in 
different acquisition dates’ images, due to difference in the 
solar angles and to spread-spectrum effect, multitemporal 
groups of images must be radiometrically normalized. In this 
work, this process was done according to the methodology 
proposed by Gürtler et al. (2003). 
 
Classification algorithms are based on the spectral appearance 
of the objects being classified in images from different dates, so 
the grayscale values were converted to reflectance values, 
which have a physical meaning, in order to correctly represent 
the different objects and their conditions at the images’ 
acquisition moments. This conversion was based on the 
methodology proposed by Luiz et al. (2003). 
 
5.1.4 

5.1.5 

5.1.6 

5.2 

Image Segmentation and Attributes: After gathering 
all the images available, they were stacked up and segmented. 
A watershed based technique was applied, which is presented in 
details in (Mota et al., 2007). The average spectral values of 
eachwere are measured across an image sequence and, 
subsequently, a seventh attribute was generated, the NDVI 
(Normalized Difference Vegetation Index).  
 

Reference Data: The agricultural vegetations 
considered in this work were the main ones found in the study 
area: sugarcane, soybeans, corn, pasture and riparian forest.   
 
For soybeans, corn and sugarcane, the phenological-spectral 
cycle was divided in four phases: Prepared soil (when the 
surface appears as exposed soil in the satellite images), Growth 
phase (when the crop fully covers the soil), Adult phase (when 
crops are in maximum green vegetative vigor and may be 
beginning their senescence period) and Post-Harvesting (when 
areas, where there were crops before, are covered with dry 
straw remains after harvesting). 
 
As mentioned before, the cycles of pasture and riparian forest 
were represented by a single state. 
 
There were 316 reference segments selected in the study area, 
and each one of them was visually classified by two experts, 
considering the acquisition dates and according to the classes 
indicated above. This classification was validated by field 
works conducted in March and August of 2003 respectively. 
 

Training Procedure: The training procedure consists 
in estimating the symbol emission probability, as well as the 
state transition probability and the prior probability distribution.  
 
The value returned by equation (1) was used in place of the 
symbol emission probability as these values are proportional. 
Hence, the problem of estimating symbol emission probabilities 
turned into the estimation of the sample mean and covariance 
matrix for each crop type and state. 
 
After isolating the samples of one crop, in a given date, the 
proportion between the occurrence of one phenological stage 
and all the others was calculated. The prior probability 
distribution was fully defined after having calculated such 
proportions for all phenological stages and all the crops, in each 
date. 
 
At last, the state transition probability was calculated 
considering pairs of consecutive dates. To calculate the 
transition probability of state i to state j, the proportion between 

the occurrence of this particular transition and the transitions of 
state i to all the others was calculated. This was done for each 
crop and each transition possible in all the pairs of consecutive 
dates. 
 
The need to provide model parameter estimates for each date 
(see section 4) brought about a considerable demand for 
training samples, which in some cases could not be met by the 
available data set. This was especially critical for the estimation 
of the covariance matrices (equation 1). To cope with this 
problem some strategies were applied, namely: 
Prior-knowledge: To estimate prior state probabilities, the 
number of possible states with no sample in the training set was 
set to 1; this guaranteed a non zero probability for all possible 
states. The information about what are the possible states for 
each crop type and for each date was treated as prior-
knowledge. A similar strategy was applied to estimate state 
transition probabilities. 
Leave-one-out: all sequences in the data set excluding the one 
being classified was used to estimate the model parameters; this 
procedure was repeated for each tested sequence in the data set. 
Dimensionality reduction: principal component analysis was 
applied to reduce dimensionality, and consequently the demand 
for training samples.  
Linear Regression: in cases where, despite the aforementioned 
strategies, available training samples were still insufficient, 
linear regression was applied to provide estimates based on 
samples from a different date. 
 

Experiment Results 

This experiment aims at identifying crop types, as well as the 
phenological stages during the dates in the test sequences. 
 
The sequence used to test the classifier was not used for 
training. A “leave-one-out”, as well as the strategies briefly 
described in section 5.1.6 to deal with scarce training sets, were 
applied.  
 
Only complete sequences were used here, meaning that they 
had all the phenological stages represented. Additionally, there 
was only one crop type per sequence. 
 
Finally, a single-date classifier was applied for comparison. 
 
Table 2 and 3 show the accuracies and the confusion matrix for 
crop class classification respectively. Table 4 and 5 refer to 
stage identification, considering again only sequences correctly 
identified by the HMM classification model. 
 
The tables show high overall and average class accuracy for 
both crop and phenological stage classification. 
 
Table 2 shows that corn crops had the lowest value for class 
accuracy. This can be explained by the scarce data available for 
training. When leaving one of the sequences out for testing, for 
some dates, the only sample of this culture was taken out, 
making it hard to estimate the model parameters. It is important 
to highlight that this is a problem with the data available and 
not with the method itself. 
 
When looking at the confusion matrix shown in Table 3, one 
may be mislead to think that the aforementioned problem of 
missing samples in some dates for corn crops should also affect 
pasture and riparian forest as they have approximately the same 
number of samples. Recall that these two crops are represented 



 

by single-state models, meaning that there are fewer parameters 
to be estimated and thus, fewer samples needed. 
 
The phenological stages were also well identified, in exception 
of the Growth phase (Table 4). This can be explained by the 
temporal evolution of the crops throughout the phenological 
cycle. During the prepared soil, adult and post-harvesting 
phases, there is no significant changes in the crop’s spectral 
response. However, the spectral response of the growth phase is 
continuously changing from prepared soil to post-harvesting. So 
its spectral response could be close to the response of these 
other two stages, or something in between, which can lead to 
misclassification. 
 
Table 5 confirms this interpretation, as the confusion matrix 
shows that the growth stage was often misclassified as adult 
phase and prepared soil. 
 

Class Accuracy (crops) 
Crops Rates (%) 

Soybeans (SB) 96 
Corn (CO) 47 
Sugarcane (SC) 90 
Pasture (PS) 76 
Riparian forest (RF) 75 
Overall accuracy:   86 
Average class accuracy: 77 

Table 2. Crop classification accuracy. 
 

Confusion matrix (crops) 
 SB CO SC PS RF 

SB 96 0 4 0 0 
CO 5 14 5 4 2 
SC 8 1 179 11 0 
PS 1 0 1 19 4 
RF 1 0 4 3 24 

Table 3. Crop classification confusion matrix. 
 

Class Accuracy (states) 
States Rates (%) 

Prepared soil (PP) 84 
Growth phase (GR) 38 
Adult phase (AD) 94 
Post-harvesting (PH) 78 
Overall accuracy: 84 
Average class accuracy:  74 

Table 4. State classification accuracy. 
 

Confusion matrix (states) 
 PP GR AD PH 

PP 431 32 32 16 
GR 79 137 139 4 
AD 31 67 1678 7 
PH 31 5 11 167 

Table 5. State classification confusion matrix. 
 

For this particular data set, which had scarce data for some 
crops, the number of attributes used in the classification is 
highly influent on the results. For example, when using all 7 
attributes available, the accuracy for corn (crop with the least 
number of samples) was much (from 13% to 47%) worse than 
when applying PCA to reduce the dimension to 3 attributes. 
 

A single-date classification was performed for comparison 
purposes. The experiment was only concerned about the crop 
type classification.  
 
The method previously described was applied considering only 
sequences of length 1 – one image at a time. The classification 
accuracy reduced considerably, as shown in Table 6. This is 
certainly not a surprising result, once one single crop class may 
have at the same date quite distinct spectral responses 
depending on their phenological stage.  Nevertheless, the poor 
performance observerd in this single-date classification 
emphasizes the convenience of using a multi-date approach, as 
the HMM method proposed in this work.  
 

Class Accuracy 
Crops Rates (%) 

Soybeans (SB) 77 
Corn (CO) 31 
Sugarcane (SC) 54 
Pasture (PS) 56 
Riparian forest (RF) 59 
Overall accuracy:   58 
Average class accuracy: 55 

Table 6. Crop classification accuracy. 
 

6. FINAL COMENTS 

This work evaluated the potential of Hidden Markov Models for 
crop classification. The experimental evaluation based on 
sequence of 12 Landsat images for 5 crop types indicated that  a 
remarkable superiority of the HMM-based method, over a 
monotemporal classification approach. 
 
An analysis of the experimental results revealed that the 
performance of HMM-based classifier was severely impacted 
by the scarcity of training samples of some crop types. Hence, 
even better results could have been achieved if a more 
representative  training set were available. 
 
The HMM approach also performed well to recognise the 
phonological stages. Exception was the growth phase, which 
were frequently confused with prepared-soil and adult phase. 
This observation suggests that symbol vectors used to 
characterize the growth-phase should take into account not only 
the absolute spectral values but also their variation along the 
time. 
 
For this work, only sequences with one crop type were 
considered. It would be interesting to test, in future works, the 
behaviour of the method with sequences containing samples of 
more than one crop type. 
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