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ABSTRACT:

Municipalities need information on the location and state of the trees in their area, to maintain and manage these resources. Trees
defined and handled as objects would therefore better match this information need than raster output. In this study, we detect and
compare tree crown objects from two different very high resolution images of Enschede, The Netherlands. Soft classifiers were used to
calculate probabilities for each class: for the Quickbird image we used super-resolution mapping and for the aerial image support vector
machines. We modelled the probability profiles of single tree crowns or groups of overlapping tree crowns with Gaussian functions,
resulting in tree crown objects. By overlaying, tree crown objects extracted from two different images were compared on an object-by-
object basis. Where a tree crown object in one image did not find a match in the other image, we recalculated the probabilities for all
classes in the image where the tree was missing. If the probability for tree crown was above a threshold, we extracted the tree crown
object, even if the probability for another class was higher. This iterative process was applied both to the earlier and to the later image,
which increased the accuracy of tree crown mapping at individual dates and the accuracy of the detected changes. The procedure to
extract objects based on probabilities allows using images from different spectral and spatial resolution in change detection. Changes in
existence could be mapped adequately, while detection of changes in extent of tree crowns shows promising results, but needs further
development. The use of probabilities for object-based change detection shows for which objects uncertainty is highest and hence
where field verification would be most beneficial.

1 INTRODUCTION

In densely populated countries like The Netherlands, a consid-
erable number of the total amount of trees is located outside the
forest, in urban and rural areas. These trees contribute to car-
bon sequestration, filtering of noise and particulate matter, biodi-
versity and to a better micro-climate, as they provide shade and
mitigate the urban heat island effect (McPherson et al., 1994).
Furthermore, municipalities need information on the location and
status of the trees in the area under their jurisdiction, because they
are responsible for maintenance of trees on public land. Further-
more, they are in charge of the permits for removal of large trees
on both public and private land. Recent projects to update the tree
databases of municipalities have shown that current databases are
often incomplete and outdated. Very high resolution (VHR) im-
agery can help to update these databases and to monitor the exis-
tence and state of trees.

While some success has been seen for detection of individual
trees in (plantation) forests (Hirschmugl et al., 2007, Leckie et al.,
2005, Wolf and Heipke, 2007), detection and mapping of trees in
urban areas has remained difficult for several reasons: first of all,
the urban context in which the trees grow, is very diverse, with a
variety of materials surrounding the trees and high buildings cast-
ing shadows, which vary with the time and date of acquisition of
the images. Furthermore, the trees themselves are diverse in size,
shape and species. Small trees, often encountered in newly built
or reconstructed neighborhoods and in private gardens, are diffi-
cult to detect in remotely sensed images. In this paper we show
how iterative comparison between image classifications of differ-
ent dates can help to find previously undetected trees in imagery,
thus increasing both the accuracy of tree mapping at the individ-
ual image dates as well as the accuracy of the detected changes.

For the users of the information on urban trees, the trees should
be treated as objects, in mapping as well as in change detection.
Knowing the uncertainty in the detection per object and not only
for the area as a whole, would help to prioritize field checks by
the municipality. Also with regard to detected changes, a mea-
sure of uncertainty of the detected change would help to decide
which actions to take. Up till now, only few methods exist for
object based change detection and even less address uncertainty
in object based change detection (Johansen et al., 2007, Hagen,
2003, Stein, 2008). In this paper we formulate a method to use
object based tree extraction techniques followed by change de-
tection while including uncertainty at the level of the individual
tree crown. This research was part of the ”Boom en Beeld” (Tree
and Image) project.

2 TREE CROWN EXTRACTION

The change detection method presented here combines fuzzy con-
textual classification of VHR color infrared images followed by
tree crown object extraction via fitting of Gaussian functions on
the probability images of different dates and iterative cross-ver-
ification of these objects between consecutive dates. Figure 1
describes the general workflow. To test our method we selected
two images of Bothoven district, a residential area in the city of
Enschede, The Netherlands: a 2006 QuickBird image and a 2009
VHR aerial image (iDelft BV, 2010), as shown in Figure 3 (left),
with the characteristics presented in Table1.

Because of the difference in spatial resolution of the input im-
ages, we used two different classification approaches, both based
on a fuzzy contextual approach combining spectral characteris-
tics with prior knowledge. On the QuickBird 2006 image we
applied a super resolution mapping (SRM) classification based
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Figure 1: False color composite of Very high resolution with dig-
itized tree crowns objects in yellow

QuickBird VHR
Acquisition date 21/09/2006 25/05/2009
Resolution (m) 0.6 (PAN)-2.4 (MS) 0.25

Spectral bands R,G,B,NIR,Pan R,G,B,NIR

Table 1: Characteristic of the images used for change detection

on Markov random fields (MRF) to produce a tree crown prob-
ability image at 0.6 meters resolution, while for the 2009 VHR
aerial image a MRF classification based of Support Vector ma-
chine (SVM) was used to produce a tree crown probability image
at 0.25 meters as described below.

2.1 Super resolution mapping of QuickBird image

We computed the probabilities for tree crown in the QuickBird
image using a fuzzy SRM classification approach (Tolpekin et al.,
2010). The super resolved tree crown map at 0.6 m resolution was
obtained by combining the conditional probabilities for defined
land cover classes in multi-spectral and panchromatic bands and
the prior probabilities of the spatial distribution of the class labels
of spatially adjacent pixels. Spectral properties of classes were
computed from training areas collected for the defined land cover
classes: tree crown, grassland, shrubs and sealed surface. The
pixel labeling was formulated as an energy minimization problem
which was solved iteratively with simulated annealing. Optimal
parameter values were selected based on the estimated accuracy
from error matrix for different trials. While in Tolpekin et al.
(2010) only a crisp tree crown map is reported, we also computed
a posterior probability image for the tree crown class.

2.2 Contextual SVM classification of VHR image

Support Vector Machine (SVM) is an advanced machine learn-
ing method which has recently been adopted by the remote sens-
ing community for supervised multivariate image classification,
which usually outperforms conventional parametric classification
methods. The SVM method defines an optimal separating hy-
perplane in the feature space between the classes of a training
set (Huang et al., 2002, Foody and Mathur, 2004). An advan-
tage of SVM classification is that it supports high dimensional
data, which may be useful to find better separating hyperplanes
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Figure 2: False color infrared composite showing a group of trees,
grassland and a row of shrubs (left) with their respective segment-
wise standard deviation values computed after segmentation of
near infrared band (left.

between spectral classes. To enhance the class separability be-
tween tree crowns and other vegetated surfaces such as shrubs
and grasslands, the normalized vegetation index (NDVI) and a
texture band were computed. For the texture band, we segmented
the near infrared band and computed the standard deviation of the
pixels inside the segments as shown in Figure 2. The segments
were generated using multi-resolution segmentation (Baatz and
Schäpe, 2000).

SVM classification was applied after defining a training set of
tree crown- and background classes, using a radial basis function
with gamma equal to 0.167. Probability images were computed
for the tree crown- and for the background classes with the total
probability for tree crown Ptc equal to the maximum probability
of all spectral sub-classes defined as belonging to tree crown Ptcn

and similarly for the background classes.

Ptc = max(Ptc1 , Ptc2 ....Ptcn) (1)

Once the probability images for the tree crown and background
classes were computed, we implemented a spatial optimization
of those probabilities using a local MRF model which favors the
classification of adjacent tree crown pixels within a first order
neighborhood and penalizes the tree crown probability of pixels
which are isolated or distant from other tree pixels. Graph cuts
optimization method (Karimov, 2010, Boykov et al., 2001, Kol-
mogorov and Zabih, 2002, Boykov and Kolmogorov, 2004) was
used to determine the solution for the model. The combination
of SVM with contextual optimization described above will be re-
ferred to as Contextual SVM (CSVM) in this study.

3 OBJECT GENERATION AND CHANGE DETECTION

Inspecting the probability images from SRM and CSVM, we ob-
served that the tree crown resembles a bell-shaped profile. To
model size and location of the tree crown as an object we there-
fore used model-based fitting of a Gaussian function on the prob-
ability images using a non-linear square fitting method. The Gaus-
sian equation with rotated axes (x′, y′) fitted to the image loca-
tions (x, y) is defined as:

F (x, y) = I exp

[
−1

2

((
x′(x, y)

σx

)2

+

(
y′(x, y)

σy

)2
)]

(2)

where I is the height of the Gaussian, σx and σy are the standard
deviations along the axes x′ and y′ respectively. The rotation of
the axes around the center (cx,cy) by the angle θ is defined as:

2
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x′(x, y) = (x− cx) cos θ − (y − cy) sin θ (3)

y′(x, y) = (x− cx) sin θ + (y − cy) cos θ (4)

Before fitting the data we applied a Gaussian smoothing filter on
the data. The kernel sizes were 9×9 and 19×19 pixels, the stan-
dard deviations were 4 and 9 for the images of 2006 and 2009,
respectively. The different kernels were applied to accommodate
for the difference in spatial resolution of the images. The fit is
iteratively computed on the image by locally fitting the Gaussian
function around the local maximum. During each iteration, the
algorithm fits a region around the global maximum point to the
data and subtracts the contribution of the fitted object from the
probability image. This procedure was repeated until the global
maximum of the remaining image was lower than a defined prob-
ability threshold. For each fitted region the location of the Gaus-
sian function (cx, cy), the standard deviations (σx, σy) and the
rotation angle (θ) were estimated. From these parameters, the
position of the Gaussian function (cx, cy) was interpreted as the
approximate center position of tree crown on the ground while
the standard deviations of the Gaussian function were translated
into the width of tree crown object via an estimated calibration
factor of 1.5.

3.1 Iterative checking of changes and validation

After fitting Gaussian functions to the probability images of 2006
and 2009, we overlaid the resulting tree crown objects to identify
matching and non-matching objects between the two dates. On
these differences, an iterative analysis was applied to verify the
changes of the preliminary non-matching objects (see Figure 1).
In this iterative analysis, we re-estimated the probabilities for tree
crown for those pixels where we expected a matching object, but
did not detect one. During first classification the probability for
tree crown for these pixels could have been substantially larger
than zero, but they were classified into another class with a higher
probability. This multi-class probability estimate was based on
the maximum likelihood classifier and the class statistics calcu-
lated from the training areas. If the the probability for tree crown
was above a threshold for these pixels, we implemented Gaus-
sian fitting over that region to recover the tree crown object. If
the probability was below the threshold, we considered the tree
crown object missing in the image of that date. This iterative de-
tection of tree crown objects was performed both to previous and
to later dates. For validation of the classification results and the
detected changes, we used manual digitization of the tree crowns
and field data for comparison.

4 RESULTS AND DISCUSSION

The images of 2006 and 2009 are shown in Figure 3, along with
the tree crown probability images obtained from SRM (2006) and
CSVM (2009). For comparison, the digitized tree crowns are
overlaid on all images. From the image we can see that in some
cases two trees were merged into one tree crown object and that
small trees were difficult to detect. In the SRM classification one
of the three large trees in the bottom left corner of the 2006 im-
age was not detected. Still, the iterative verification of changes
correctly recovered the object as shown in Figure 4. This proves
the importance of the iterative verification, as it can reduce false
detection of changes due to omission errors in the classification
of one of the images.

ID matching objects (2006,2009)
(9,3);(7,4);(2,5);(8,7);(6,11);(6;13)
ID non-matching objects (2006)

(1,3,4,5,10,11,12,13,14)
ID non-matching objects (2009)

(1,2,6,8,9,10,12,14,15,16,17

Table 2: Overlay analysis of Gaussian functions fitted for 2006
and 2009

ID matching objects (2006,2009)
(15,1);(16,2);(9,3);(7,4);(2,5);(8,7);(6,11);
(6;13);(3,18);(5,19);(9,3);(10,20);(11,21)

ID non-matching objects (2006)
(1,4,12,13,14)

ID non-matching objects (2009)
(6,8,9,10,12,14,15,16,17, 22)

Table 3: Overlay analysis of Gaussian functions after iterative
fitting for 2006 and 2009. In bold type newly generated Gaussian
functions after iterative analysis

The result of the fitting of Gaussian functions on the 2006 and the
2009 probability images, followed by tree crown mapping and
overlaying can be seen in Figure 4 (left), while Table 2 presents
the list of matching and non-matching objects fitted for the two
dates using their ID as shown in this figure. The result of the
iterative probability analysis is shown in Figure 4 (right) and Ta-
ble 3. The figure and the table show that for this area, the number
of matching objects, i.e. trees present in both images, increased
from 6 to 13 after iterative probability analysis between the two
images. Figure 5 shows the tree crown objects that were recov-
ered in the 2006 and the 2009 image.

Figure 6 shows the changes in the reference data (manually dig-
itized with field verification) and the changes detected after the
iterative probability analysis. The changes had to be made crisp
for comparison, since the reference data were crisp. There are
two aspects of change in this study: existence and extent. The
method works well for detecting changes in existence of trees, for
example in the centre of the images, where trees were removed to
create parking space, and the two trees along the road in the top
left corner of the image. Some further work is needed on groups
of trees, such as the group in the top right corner of the images,
where differences in the way of merging the individual trees into
a group affect the matching of objects between the two dates. A
further advantage of our method of object-extraction based on
Gaussian fitting, is the fact that it allows to use images from dif-
ferent sources and different resolutions together in change detec-
tion, as long as the images contain comparable spectral bands and
spatial resolution finer than approximately half of the tree crown
diameter.

Figure 6 also shows changes in the extent of the tree crowns,
some of which clearly seem to reflect growth of the tree crown.
For better understanding of these changes and to maintain the
quantification of uncertainty in change detection, we computed
the differences in probability, area- and volume of the matching
Gaussians after the implementation of the iterative analysis and
plotted the result in Figure 7. Changes in probability are small,
in most cases probability for the same object is higher in 2009
than in 2006, which can be explained by the better spatial reso-
lution of the 2009 image. With regard to the area covered by the
Gaussians, for most objects, areas were found equal or larger in
2006 than in 2009. This surprising result is most likely due to
the coarser resolution of the 2006 image and the choice of the pa-
rameters in classification and fitting of the Gaussians. Some tree

3
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Figure 3: False color composite image of 2006 (top-left) and 2009 (bottom-left) and corresponding tree crown probability image for
2006 (top-right) and 2009 (bottom-right). Reference trees are shown in yellow

.

group objects became smaller, because of removal of a tree, see
Figure 6. Results for the differences in volume covered by the
Gaussian functions are similar to the differences in area. From
these results it is clear that mapping changes in extent of tree
crowns still needs further study, preferably with larger time span
between the images, as well as adequate ways of validating the
extent of vague objects.

5 CONCLUSIONS

In this paper we have shown how change detection can be per-
formed on fuzzy objects, while including the uncertainty, instead
of making the objects crisp. We successfully extracted tree crown
objects from probability images generated by super resolution
mapping or contextual support vector machines, depending on
the resolution of the input image. The iterative change detection
between images resulted in a higher accuracy (lower omission
error) of tree crown detection in the individual images, because
trees that were not detected at first, could be detected when prior
information from a tree crown object from a later or an earlier
image could be used. As a result also the accuracy of change de-
tection improved. An advantage of the method is that is can be
used to combine images of different resolution in change detec-

tion. Detection of changes in the extent of the tree crown still
needs further research.
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Figure 4: Tree crown objects, results of Gaussian fitting to probability images for 2006 and 2009. Left: after fitting on individual
probability images; Right: after iterative analysis
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Figure 6: Assessment of changes between 2006 and 2009 for matching objects
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Figure 7: Changes in tree probability, area- and volume of the Gaussian function between 2006 and 2009 for matching objects
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