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ABSTRACT: 

 

In Portugal, updating municipal plans (1:10 000) is required every ten years. High spatial resolution imagery has shown its potential 

for detailed urban land cover mapping at large scales. However, shadows are a major problem in those images and especially in the 

case of urban environments. The purpose of this study is to develop a less time consuming and less expensive alternative approach to 

the traditional geographic data extraction for municipal plans production. A hierarchical object-oriented classification method, 

combining a multitemporal data set of high resolution satellite imagery and Light Detection And Ranging (LiDAR) data, is presented 

for the Municipality of Lisbon. A histogram thresholding method and a Spectral Shape Index (SSI) are initially applied to 

discriminate shadowed from non-shadowed objects using a 2007 QuickBird image. These non-shadowed objects are then divided 

into vegetated and non-vegetated objects using a Normalized Difference Vegetation Index (NDVI). Through a rule-based 

classification using the height information from LiDAR data, vegetated objects are classified into grassland, shrubs and trees while 

non-vegetated objects are distinguished into low and high features. Low features are then separated into bare soil and roads, again 

using a NDVI, while high features are classified as buildings and high crossroads using the shape of the objects (density). The 2007 

shadowed objects are classified based on the spectral and spatial information of a 2005 QuickBird image, where shadows are in 

different directions. The developed methodology produced results with an overall accuracy of 87%. Misclassifications among 

vegetated features are due to the fact that the nDSM did not express the height for permeable features, while among non-vegetated 

features are due to temporal discrepancies between the DTM and the DSM, to different satellite azimuths in the 2005 and 2007 

images and to contextual rules.  
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1. INTRODUCTION 

The extraction of large scale geographical information from 

very high resolution satellite images is an important research 

topic in urban studies, especially in areas with an elevated rate 

of urban changes, as a way to update the geographical 

information. One of the main Portuguese instruments of 

territorial management is the Municipal Director Plan (PDM- 

Master Plan) which has to be updated every ten years. However, 

in municipalities with great urban demands, such as the Lisbon 

municipality, such periodicity is not suitable. The PDM´s are 

produced at scales 1: 10 000 and 1:25 000, respectively, for 

urban and rural municipalities. 

 

The analysis of urban areas demands for high spatial resolution 

supporting data. Traditionally, the extraction of the required 

information at national mapping agencies has been performed 

based on the visual interpretation of extremely high resolution 

aerial photos, which is an expensive and time consuming 

process. As an alternative, high spatial resolution satellite 

imagery can play an important role in the capture and 

maintenance of topographic information. However, the 

information that can be extracted from these images is useful to 

capture medium scale mapping features, being difficult to 

interpret most of the features that are of greatest interest in the 

update of large scale data (Holland et al., 2006). Regarding to 

the PDM’s updating, the most relevant features are, in order of 

importance, built-up areas, other impervious surfaces such as 

concrete parking lots, sidewalks and asphalt roadways, 

vegetated areas and vacant land. Even though airborne and 

spaceborne imagery have been conventionally used for map 

compilation in the updating processes, there are some 

drawbacks that can cause some inevitable problems. These are, 

essentially, the casting shadows that dominate the scenes 

acquired over dense urban areas and the leaning of elevated 

features, such as buildings, due to the geometry of acquisition 

and the heterogeneity of the spectral information (Vu et al., 

2004). 

 

Light Detection And Ranging (LiDAR) is a relatively new 

remote sensing technique that is revolutionizing topographic 

terrain mapping (Alexander et al., 2009). The potential of 

surface-cover height extracted from multiple-return LiDAR data 

for urban areas analysis and building extraction has been shown 

by many authors (Vu et al., 2004; Sohn and Dowman, 2007; 

Alexander et al., 2009; Chen et al., 2009; Zhou et al., 2009). 

Priestnall and Glover (1998) stated that the incorporation of 

building heights offers important extra information over and 

above that offered by optical sensors alone. In fact, Chen et al. 

(2009) concluded that the combination of high spatial 

resolution imagery, such as the QuickBird imagery, and LiDAR 

data can improve urban features classification accuracy, since 

the former provides ample spectral and textural information, 
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while the latter offers good geometry for urban core building 

delineation. 

 

The aim of the research described in this study is to examine the 

potential of high resolution satellite imagery to derive a sub-

product with less detailed thematic and geographic information 

but with a higher temporal resolution. It is expected that this 

more general level of information should be able to fulfil the 

need to detect, more regularly, significant changes to features in 

urban environments. To achieve this, a multisource and 

multitemporal dataset, including QuickBird imagery and 

LiDAR data, is used to develop an object-oriented classification 

method to produce updated thematic cartography for municipal 

activities.  

 

This manuscript is organized into the following five sections. 

Section 2 presents a brief overview and references to other 

studies related with the urban features extraction from high 

resolution imagery and LiDAR data. In section 3, we describe 

the case study area, the characteristics of the dataset and the 

software used in this study. Section 4 is concerned in describing 

the developed methodology. The following section, section 5, 

describes and discusses the results of this research. Finally, in 

section 6 some conclusions are drawn. 

 

 

2. HIGH RESOLUTION REMOTE SENSING OF 

URBAN AREAS 

The availability of images acquired by the present generation of 

high spatial resolution satellite sensors has contributed for new 

applications, especially for detailed urban areas maps at large 

scales. Although their spatial resolution enables the 

identification of urban and sub-urban objects, these images are 

difficult to classify on a pixel-by-pixel basis due to their high 

level of information (Van der Sande et al., 2003). Images of 

urban areas contain a complex spatial set of spectrally distinct 

land feature types, which require important spatial/semantic 

information for their classification. In these cases, object-

oriented image classification algorithms are recommended 

because the information necessary to interpret those images is 

represented by image objects and their mutual relationships 

(Gamanya et al., 2007). 

 

Another limitation on the use of high spatial resolution images 

is related to the existence of shadows cast by elevated urban 

objects, particularly buildings. These shaded areas are usually 

left unclassified or simply classified as shadows (e.g., 

Shackelford and Davis, 2003), resulting in a significant loss of 

land features information. One possible approach to overcome 

this problem is to use spatial information, such as adjacency 

relations, for the classification of shaded areas in this kind of 

images (e.g., Yuan and Bauer, 2006; Zhou and Troy, 2008). 

Object-oriented classification algorithms, that consider not only 

the spectral information but also several other image object 

features, such as shape, texture and spatial context, may be used 

to improve the classification in urban areas (Benz et al., 2004; 

Zhou and Troy, 2008). Zhou et al. (2009) used both the spatial 

relations to neighbouring objects and the Normalized 

Difference Vegetation Index (NDVI), to distinguish “low 

shadows” into grass and pavement and “high shadows” into 

trees and buildings. Alternatively, shadows may be classified by 

replacing the shadowed pixels by non-shaded pixels of the same 

region from another image acquired at a different time and with 

different sun azimuth angles as proposed by Zhou et al. (2009).  

 

In addition, altimetry data from LiDAR may be helpful in the 

discrimination of image features of the same material at 

different heights, such as concrete buildings and road/vacant 

land in urban areas (Madhok and Landgrebe, 1999; Gamba and 

Houshmand, 2002; Chen et al., 2009; Zhou et al., 2009). 

However, LiDAR data itself is insufficient to distinguish 

between different features with the same height, such as 

buildings and trees (Vu et al., 2004). In such cases, spectral 

indices, such as the NDVI, can be used to first discriminate 

between vegetation and impervious surfaces and then at a low 

level of segmentation, the LiDAR data can be used to 

discriminate among features with different heights. As an 

example, using the height information obtained from the surface 

height model, Chen et al. (2009) were able to discriminate 

artificial features into crossroads, high buildings and low 

buildings, while Zhou et al. (2009) separated impervious 

surfaces into buildings and pavements. 

 

 

3. STUDY AREA AND MATERIALS 

3.1 Study area 

The study area, located within the Lisbon Municipality (Figure 

1), has a square shape with an area of approximately 570 ha 

(approximately 2.4 km x 2.4 km). This site was chosen because 

it contains the main features of interest for the municipality 

(buildings, other impervious surfaces, vegetated areas and 

vacant land) and also because LiDAR data were available for 

the area (LiDAR data extent is smaller than the area of the 

municipality of Lisbon). The west part of the study area is 

dominated by a dense urban area with a variety of building 

types and different kinds of transport units (roads, railways and 

associated land).  The east part, although containing some 

scattered building areas and roads with different widths, 

comprises a wooded area in the North, some vegetated areas, 

mainly belonging to a golf course, some shrubs and/or 

herbaceous vegetation and bare soil. Water features are also 

present in the study area (within the golf course) but their area 

is insignificant when compared to the total area of the study 

site. Variations in the terrain are found in the study site, with 

altitudes ranging from 25 to 110 metres. 

 

3.2 Data and software 

The satellite data consist of two pan-sharpened QuickBird 

images dated 13 April 2005 and 11 March 2007, with a spatial 

resolution of 0.6 m. The sun azimuth and elevation of the 2005 

image are 149°.6 and 57°.3, respectively, while for the 2007 

image those values are 161°.4 and 46°.0, respectively. All 

images have been orthorectified with sub-pixel accuracy, using 

Rational Polynomial Coefficients (RPCs) with 29 GCP’s and 

validated with 22 checkpoints. For orthorectification, a Digital 

Terrain Model (DTM) was generated from the 1998 

municipality vector cartographic map at scale 1:1 000 with a 

spatial resolution of 0.5 m. A 2006 LiDAR Digital Surface 

Model (DSM) with a 1-meter spatial resolution was provided by 

LOGICA, covering only partially the extent of the municipality 

of Lisbon. Elevation and intensity of the first and last pulse 

returns from a TopoSys II 83 kHz LiDAR instrument, flown on 

a helicopter, were recorded for each laser pulse, with an average 

measurement density of 20 points per m2. The provided DSM 

was produced using only the last pulse returns, meaning that 

only data from the surface that was last hit by the laser pulse 

was considered. In the case of buildings or other impermeable 

surfaces, the first and last returns will yield the same 
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information. A surface cover height model (nDSM) was 

generated by subtracting the DTM from the DSM, to be used as 

ancillary data in the classification process. Orthorectified 

photographs acquired on 16 August 2007 were provided by the 

Portuguese Geographical Institute (IGP) and used to collect the 

reference data used for the accuracy assessment of the map. 

These images have four spectral bands in the blue, green, red 

and infrared wavelengths and 0.5 m spatial resolution. All data 

was converted to the PT-TM06/ETRS89 coordinate system and 

the vertical datum of the DSM and the DTM is the maregraph 

of Cascais. The Definiens Professional 5.0 software was used to 

conduct the object-oriented images analysis. Images 

orthorectification was undertaken in the PCI Geomatica V9.1 

(OrthoEngine) since Definiens does not support those 

capabilities.  

 

 
Figure 1.  Study area (grey square): an urban area in the 

Municipality of Lisbon, Portugal  

 

 

4. METHODOLOGY 

A hierarchical object-based procedure was developed to classify 

a 2007 QuickBird image into seven classes (trees, shrubs, grass, 

buildings, transport units, bare soil and water). The dataset used 

to implement this procedure integrates a multitemporal set of 

QuickBird images and LiDAR elevation data. The hierarchical 

information extraction process was made up of three main steps. 

First, the dark objects (water and shadows) and non-dark object 

were separated. Then, the non-dark objects were classified using 

the 2007 QuickBird image. Finally, shadows were classified 

using the 2005 QuickBird image. In both of the classifications 

steps an identical classification approach was adopted. First, 

vegetation and non-vegetation features are differentiated. Under 

the vegetation class, grass, shrubs and trees were extracted, 

while under the non-vegetation class, transport units, buildings 

and bare soil were discriminated. As shadows could not be 

entirely recovered due to the acquisition geometry of the 2005 

image, the common shadows between 2005 and 2007 were 

classified using contextual rules. 

 

4.1 Image segmentation 

Image segmentation is the process of dividing an image in non-

overlapping parts in the image space (Schiewe, 2002). The 

Definiens Professional 5.0 software provides several possible 

image segmentation algorithms (Definiens, 2006). In this study 

the multiresolution segmentation was adopted. This algorithm 

requires several inputs, such the scale, the color and the shape 

parameters. Those values were defined through trial-and-error 

and visual inspection for the two segmentation steps of the 

methodology. The 2007 QuickBird image segmentation was 

applied, with a scale parameter of 75, a color parameter of 0.9 

and a shape parameter of 0.1, whilst the 2005 QuickBird image 

was processed at a finer scale of 25, the weights for colour and 

shape were kept as 0.9 and 0.1, respectively. 

 

4.2 Water and shadow detection 

Dark objects, that include both water and shadows, were 

extracted with a histogram thresholding method. A synthetic 

brightness image was initially computed through the NIR, red 

and green bands mean value and then a pixel-based histogram 

of brightness was analysed to determine an optimum threshold 

value for shadows and non-shadows (a threshold value of 180 

was set). As mentioned by Zhou et al. (2009), it is assumed that 

this histogram is bimodal, with the lower part being occupied 

by the darker features (shadows and water). Once the dark 

objects also included water, a Spectral Shape Index (SSI) was 

used to distinguish water from the black body mask (Dou and 

Chen, 2005). The threshold range for separating these two 

features was set in [134, 163].   

 

4.3 Non-shadowed areas classification 

The class hierarchy and its associated features as well as the 

rules used for the classification of the 2007 QuickBird image 

are presented in Figure 2. Non-shadowed areas, identified 

previously in the first step of the methodology, were initially 

separated into two features, vegetation and non-vegetation 

features, using a NDVI. The NDVI was calculated based on the 

formula: NDVI = (NIR-Red)/(NIR+Red) and the threshold was 

set to 0.36, through a pixel-based histogram analysis. 

 

The non-vegetation features were further divided, using the 

nDSM, in high (nDSM> 1.91 m) and low (nDSM≤ 1.91 m) 

features. These high features were separated afterwards into 

buildings and high crossroads using a shape function 

(Definiens, 2006). The density parameter, which is defined as 

the ratio between the object’s area and its radius, was used 

because human constructions, in particular industrial and 

commercial areas, tend to have a higher density value (Navulur, 

2007). The density range was set to [0.7, 5], being 5 the 

maximum value. Low features were then divided into bare soil 

and roads, using a “blue” NDVI, computed using the formula: 

bNDVI = (NIR-Blue)/(NIR+Blue). The threshold value used to 

discriminate both features was set as 0.15. Roads and high 
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crossroads were merged as a unique class, named transport 

units, since only two high crossroads were observed in the 2007 

image. 

 

      Bare soil 

      bNDVI> 0.15 

    Low features bNDVI  

    nDSM≤ 1.9  Roads 

      bNDVI≤ 0.15 

  
Non- 

vegetation 
nDSM    

  NDVI≥ 0.36        Buildings 

      Density≥ 0.7 

    High features Density  

    nDSM> 1.9  
High 

Crossroads 

      Density< 0.7 

Non- 

shadows 
NDVI 

    Grass   

    0 <σnDSM≤ 0.6   

       

  Vegetation σσσσnDSM Shrubs   

  NDVI<0.36  0.6 < σnDSM< 2.17   

       

    Trees   

    σnDSM≥ 2.17   

 

Figure 2.  The hierarchical rule-based classification 

 

 

Three different features, namely trees, shrubs and grass, were 

discriminated under the vegetation features. This discrimination 

was achieved based on the nDSM standard deviation. As the 

DSM corresponds to the last pulse data of LiDAR, the nDSM 

only expresses correctly the height of artificial features, because 

vegetated areas are permeable. Therefore, to search for residual 

differences in height between these three features, the standard 

deviation of the nDSM was evaluated and further used. The 

adopted threshold values for grass and trees were, respectively 

σnDSM≤ 0.6 and σnDSM≥ 2.17. Shrubs were identified by 

considering 0.6 <σnDSM< 2.17. 

 

4.4 Shadowed areas classification 

Shadowed areas were classified using the spectral and spatial 

information of the 2005 satellite image. In this case the adopted 

methodology is similar to the one described for the non-

shadowed areas, with the exception that the threshold values 

differ slightly from the ones used for non-shadowed features in 

the 2007 image, due to the fact that the images were acquired at 

different months and different years. Besides, the initial 

segmentation was performed at a finer scale in order to keep the 

parent-child relation between objects. However, this approach 

was not completely effective since the sun azimuth angles of 

both images were not significantly different. As a result of this, 

each shadowed area could not be entirely restored. To classify 

the remaining shadows, an alternative approach based on the 

relations to neighbour objects in the 2005 classification map 

had to be considered. The selected contextual rule was based on 

the “relative border to” function (Definiens, 2006), e.g. a 

shadow object with a relative border to a transportation unit≥ 

0.6 is classified as transportation unit; and a shadow object with 

a relative border to tree= 1 (i.e. totally surrounded) is classified 

as tree. 

4.5 Accuracy assessment 

For the accuracy assessment of the produced thematic map, a 

random stratified sampling method was used to prepare the 

ground reference data. This sampling method must be applied 

when there is a need to ensure a minimum sample size in each 

stratum to derive accuracy estimates for all classes presented in 

the map (Stehman, 1999). The individual sample units were 

defined as polygons displayed on the classified image. Polygons 

are suitable for the accuracy assessment of maps generated 

through the use of image segmentation and object-oriented 

classification algorithms (Congalton and Green, 2009). A total 

number of at least 300 random polygons was planned to be 

sampled, with a minimum number of 50 samples per each map 

class, as proposed by Congalton (1988) for maps of less than 1 

million acres in size and fewer than 12 classes. The class 

“water” was not considered in the accuracy assessment since it 

covers less than 0.5 ha.  Reference data was collected and 

labelled using the same classification scheme as the one used to 

generate the map. Since the classification scheme used is simple 

(with a few general classes), the reference label for each sample 

unit was derived by visual analysis of orthorectified aerial 

photographs acquired in 2007 with 0.5 m spatial resolution. 

Reference data was also collected on the ground and compared 

with the airborne data to verify the reference labels derived 

mainly for vegetated classes (trees, shrubs and grassland). The 

analysis of the accuracy assessment was performed with an error 

matrix. An error matrix summarises the correct classifications 

and misclassifications in a contingency table format, with the 

rows designating the map labels and the columns the reference 

labels (Stehman and Czaplewski, 2003). Standard accuracy 

measures (overall accuracy, producer’s and user’s accuracy, as 

well as Kappa statistics) were derived from the classification 

results. 

  

 

5. RESULTS AND DISCUSSION 

Using the pixel-based shadow detection method together with 

the SSI method, most shadowed areas were correctly identified 

(91%). The lowest value of 90% was found for the user’s 

accuracy of non-shadowed areas and for the producer’s 

accuracy of the shadowed areas. The overall accuracy of the 

“water” class was determined by visual interpretation as being 

100%. For some classes, such as trees and shrubs, less than 50 

samples were selected because they were not so representative 

in the study site, covering only 4.6% and 8.7% of the total area, 

respectively. For the remaining classes, 50 or more samples 

were selected with a total of 385 validation samples. An overall 

accuracy of 87% was achieved for the object-oriented 

classification results (Table 1). An extract of the final extracted 

seven objects is shown in Figure 3. 

 

Overall classification accuracy is 89% both for trees and grass, 

while for shrubs its value is low, only 57%. Shrubs are 

overestimated on the final map, being confused mostly with 

grass but also with trees. In the case of vegetated areas the 

height information was of relative use, mostly due to the fact 

that the nDSM could not be directly used since it did not 

represent the height of vegetated features. Misclassifications of 

bare soil as grass were originated at the upper level of the 

hierarchical classification when vegetated and non-vegetated 

features were separated, and are verified in samples were the 

soil still has some sparse vegetation. Transport units being 

classified as grass is due to the inappropriate value obtained for 

the “relative border to” of a remaining shadowed object. 
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Classified 

data 

Reference data 
User acc. 

(%) 

B Bs Tu Tr Sh Gs  

B 102 3     97 

Bs  76 8   11 80 

Tu  3 51    94 

Tr    34  4 89 

Sh    5 21 11 57 

Gs  2 2  2 50 89 

Producer’s 

acc. (%) 

 

100 

 

90 

 

84 

 

87 

 

91 

 

66 

 

Overall accuracy: 87%; Kappa coefficient: 0.84   

 

Table 1. Error matrix and user’s, producer’s and overall 

accuracy and Kappa statistics for the produced map. B- 

buildings, Bs- bare soil, Tu- transport units, Tr- trees, Sh- 

shrubs and Gs- grass 

 

Buildings and transport units are the classes with the lowest 

commission errors, respectively 3% and 6%. For both classes 

the use of the nDSM was extremely helpful. Commission errors 

of bare soil as buildings are also explained by unsuitable 

“relative border to” values, but also by the existence of 

shadowed areas in 2007 that in the 2005 image were in fact 

buildings due to different satellite azimuth angles. In the 2007 

shadows are in the NNW-direction and high features are leaning 

in the ENE-direction, while in the 2005 image high features are 

leaning in the WNW-direction. Misclassifications between bare 

soil and transport units are easily justified by the bNDVI 

threshold used to discriminate them. 

 

Misclassifications among features with distinct heights might 

also have been originated by some height inconsistencies found 

between the DTM and the DSM as a result of their large time 

gap. To avoid this kind of misclassifications, ancillary data 

should be acquired preferentially in the same year or, if not 

possible, with a time gap of less than a couple of years, 

especially in urban areas with an elevated rate of changes. A 

better discrimination among vegetated classes might have been 

achieved with the use of an nDSM obtained by the difference 

between a DSM, interpolated from the first pulse of raw LiDAR 

data, and a more up to date DTM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A subset of the study area. (a) the original 2007 

QuickBird imagery; (b) shadows identified by a pixel-based 

histogram thresholding method; (c) land cover classification 

obtained with the proposed methodology 

 

 

6. CONCLUSIONS 

Shadowed areas are a major problem in urban high resolution 

satellite imagery due to the high density of urban features. As 

the problem of shadowing causes reduction or total loss of 

spectral feature information, we have developed a methodology 

that provides a useful approach for the classification of shadows 

in urban areas using a multitemporal set of this type of imagery 

and LiDAR data. However, changes may occur in ancillary data 

acquired at different dates, which may introduce errors in the 

classification. A simple approach, such as a bimodal histogram 

splitting, combined with a Spectral Shape Index provided an 

efficient way of separating shadows from non-shadows. The use 

of a multitemporal set of QuickBird imagery with different 

acquisition geometries was useful in restoring the spectral 

information casted by urban features in the 2007 image. For this 

approach to be completely effective, satellite azimuths angles of 

both images should be similar while sun azimuth angles should 

be as opposite as possible. LiDAR data was crucial to separate 

features with different elevation values, especially for the non-

vegetated features. Without this segmentation level it would 

(a) 

(c) 

(b) 
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have been extremely difficult to differentiate at a lower level 

those non-vegetation features into buildings, transport units and 

bare soil. LiDAR data was not so useful in the discrimination of 

vegetated features once the DSM, used to generate the nDSM, 

was interpolated from the last pulse of LiDAR returns. 
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