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ABSTRACT:

Hemispherical photography has received renewed interest to describe plant canopies and measure canopy gap fraction from which
important biophysical variables such as leaf area index (LAI) can be derived. This kind of remote sensing imagery is typically processed
by setting a threshold on the histogram of a given image feature to segmentthe image and separate target from non-target pixels.
Selecting such a threshold can be complicated due to varying image acquisition conditions and to the difficulty of defining canopy gaps.
Having an operator who individually analyses images can be prohibitivelytime consuming for some applications, such as validating
LAI products retrieved from satellite remote sensing where large numbers of samples are necessary. This paper presents how object-
based image analysis can be applied to digital hemispherical photographyin order to estimate automatically biophysical variables in a
batch mode using the dedicated software CAN-EYE. The method is demonstrated by applying it to 114 sets of images obtained over 30
maize fields visited at several dates along the 2009 crop growing in Belgiumand the Netherlands. The results obtained by the automatic
method are comparable to those obtained by manual processing using CAN-EYE and this holds for DHPs acquired at different maize
growth stages and with different viewing configurations. These encouraging results indicate object-based segmentation approach has
great potential to provide efficient and automated solutions for hemispherical photography.

1 INTRODUCTION

The role of plant canopies in the terrestrial ecosystems cannot
be undermined. Photosynthesis, transpiration and energy bal-
ance are all related to the quantity of green foliage within these
canopies. Many agronomic, ecological and meteorological ap-
plications require information on the status of plant canopies by
way of biophysical variables. Leaf area index (LAI) is amongst
the most frequently used. It is defined as half the total developed
area of green leaves per unit ground horizontal surface area (Chen
and Black, 1992). Other biophysical variables of interest are the
fraction of ground surface covered by green vegetation (FVC)
and the fraction of absorbed photosynthetically active radiation
(FAPAR). Remote sensing has proven to be an invaluable tool
to estimate biophysical variables over large extents at a frequent
rate. However, in situ measurements are ultimately necessary to
calibrate and validate remote sensing products.

LAI measurement procedures are either direct or indirect (Gower
et al., 1999, Bŕeda, 2003, Jonckheere et al., 2004). Direct meth-
ods generally involve destructive harvesting techniques and litter
fall traps. While they are extremely time-consuming and labour-
intensive, direct methods are more accurate and thereby serve as
reference for more pragmatic indirect approaches. Indirect meth-
ods rely on measuring the gap fraction of the canopy, or the prob-
ability of a light ray missing all foliage elements while passing
through the canopy (Gower et al., 1999, Weiss et al., 2004). Gap
fraction can be measured using several dedicated commercial in-
struments (e.g. LAI-2000 and AccuPAR) or by deriving it from
hemispherical photography. Digital hemispherical photography
(DHP) are obtained from a camera with a mounted hemispheric
(fish-eye) lens pointed either upwards towards the sky from be-
neath the canopy or downwards from a position above the canopy.
The result is a wide-angle colour image of the canopy from which
green plant tissues can be identified (see figure 1). Compared to
other indirect LAI measuring techniques, DHP have proven to be
more robust (at least over croplands) by having a low sensitivity
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to illumination conditions and by providing an accurate spatial
sampling of gap fraction (Garrigues et al., 2008).

Figure 1: Example of a digital hemispherical photograph taken
from above a maize canopy in the downwards configuration

To derive canopy gap fraction from DHPs, green plant elements
need to be identified and isolated from the rest of the image. This
step is the most critical to accurately retrieve LAI from the pic-
tures. Several software propose an interface allowing a user to
set a threshold on some colour or index in order to achieve this
classification operation. Selecting such a threshold can be com-
plicated due to varying image acquisition conditions and to the
difficulty of identifying canopy gaps, especially when looking
downward on dense canopies. To validate remote sensing prod-
ucts, important field campaigns with a large set of samples are of-
ten necessary and images are sometimes acquired in sub-optimal
conditions (e.g. direct instead of diffuse light, inadequate con-
trast). To ensure that measurements can be taken over a large ge-
ographic extent, it might be necessary to dispatch several teams
on the field simultaneously, each with a measuring unit (camera
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+ lens) which may be of lower quality due to budget constraints.
A reduction in the quality of both the camera (increasing noise)
and the hemispheric lens (which might have stronger chromatic
aberration) reduces quality of the DHP, thus complicating gap
fraction estimation (Inoue et al., 2004). Having an operator who
individually analyses images can be prohibitively time consum-
ing and heavily dependent on the operator’s subjectivity. Under
all these conditions, a reliable and robust automatic method to
classify DHPs is definitely interesting.

The motivation of this research is to explore how object-based im-
age analysis can be used to overcome the above-mentioned prob-
lems. A classification method of DHPs is proposed that couples
multiresolution segmentation with a transformation of the colour
space to produce binary masks which delineates the green veg-
etation elements from the rest of the photograph. Such binary
masks can then be ingested in DHP processing software with a
batch mode in order to provide biophysical variables such as LAI
from large amounts of images.

2 MAIN BODY

2.1 Theoretical Background

After reviewing and testing many different automatic threshold-
ing algorithms for DHPs, Jonckheere et al. (2005) concludes
that there is still room for improvement and that new and more
complex algorithms are necessary, especially to smooth the im-
ages and remove noise. Whether it is automatic or manual, DHP
thresholding is a type of image segmentation. The division of the
image in segments is generally based on grey-level histograms
computed on the entire pixel population. This neglects the spa-
tial adjacency of the pixels corresponding to the target vegeta-
tive elements and may lead to ‘salt-and-pepper’ effects. Some
thresholding methods exploiting the spatial dependency of pixels
in a neighbourhood (Abutaleb, 1989) have been shown to perform
well on DHPs (Jonckheere et al., 2005). However, an approach
where spatially adjacent and spectrally similar pixels are grouped
in image-objects before applying thresholding (as it is done in
object-based image analysis) has never been applied to DHP to
our knowledge. In this paper, the multiresolution segmentation
algorithm (Baatz and Schäpe, 2000) implemented in Definiens
Developers 7 software (Definiens, 2008) is tested on DHPs. It
has the advantage of being repeatable, applicable on multivariate
imagery and sensitive to the shape of the studied objects.

Most of the literature on thresholding DHPs is focused on upward
looking imagery acquired under forest canopies. Under these
conditions, the 3 camera channels (RGB) are highly correlated
and typically only one is used. Attention is placed on images
obtained in both upward and downward configurations for lower
canopies such as crops. When looking downward, gap fraction
estimation is more problematic because (i) the soil background is
generally less homogeneous than the sky and (ii) lower vegetation
elements are difficult to discriminate when overshadowed by the
higher leaves. On the other hand, when looking downward the 3
RGB channels can be exploited to separate green vegetative ele-
ments from the soil background. Complications arise for setting
thresholds when illumination conditions vary. To mitigate these
effects, the RGB colour space can be transformed to different pro-
jections in order to achieve optimal separation of vegetation ele-
ments from the rest of the image (Panneton and Brouillard, 2009).
For example, Kirk et al. (2009) uses the red and green channels to
derive greenness and intensity indicators to better classify vegeta-
tive elements to estimate LAI from (non-hemispherical) imagery.

2.2 Methodology

DHPs were acquired various maize fields in Belgium and the
Netherlands at different stages along the 2009 growing season.
The visited fields are distributed within 3 different agro-ecological
regions: (1) theHesbayeregion in central Belgium, dominated
by agricultural land use given its high soil fertility; (2) theCon-
droz region, located south of the former and characterized by a
more variable topography of alternating plateaus and valleys; and
(3) theFlevolandpolder in central Netherlands which consists of
fertile and flat recovered land.

To test cost-effective conditions, the measuring equipment is com-
posed of a low-cost Canon PowerShot A590 camera mounted
with a Besel Optics wide angle lens allowing an effective field
of view of 60◦. The resulting image size is 2448 by 3264 pixels.
Images were acquired using both downward and upward looking
configurations. When looking downwards, the camera–lens sys-
tem is attached to a pole in order to take pictures at about 1 m
above the top of the canopy. A minimum of 8 pictures are taken
within a range of about 50 by 50m for every visited field. Each
set of DHPs constituted in this way is supposed to represent the
canopy’s variability (Weiss et al., 2004) and will produce a single
value for a given biophysical variable. A total of 30 fields were
visited at various dates along the season to result in 114 sets of
DHPs images.

As mentioned before, the object-based image analysis is realized
using Definiens Developer 7 software (Definiens, 2008). Since
the multiresolution algorithm runtime is roughly proportional to
the number of image object mergers, most computing time is
spent to create rather small image objects of 2-4 pixels (Definiens,
2008). To accelerate the multiresolution segmentation, the first
processing step is a quadtree segmentation which divides the im-
age into elementary squared units which do not necessarily have
the same size (see fig 2b). Two features are then calculated for
each object based on the mean object value of the 3 RGB chan-
nels. The first is hue, which is a gradation of colour defined as:
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where theR,G andB are the red, green and blue channels ex-
pressed as numbers from 0 to 1, andMIN andMAX are re-
spectively the smallest and the greatest of the RGB values. The
resulting value of hue,H, is a position in the colour wheel ex-
pressed in degrees. The interest of the transformation is that hue
provides colour information which is independent of the illumi-
nation conditions. The second feature is simply the ratio between
the green and red object mean values which has already been used
to discriminate between green plant tissue and soil (Kirk et al.,
2009). Once these features are calculated for each squared ob-
ject, a multiresolution region growing algorithm is applied based
onR, G andH. A scale parameter of 10 was chosen. The homo-
geneity criterion is conditioned by shape at 20%, which itself is
divided evenly between compactness and smoothness (Definiens,
2008). The resulting objects (see fig 2c) can then be classified
based on their meanH andG/R values to yield a binary clas-
sification (see fig 2d). In this case, the classification is based on
membership functions over theH andG/R features which where
obtained using a sample set of objects from several different im-
ages.

The calculations required to derive canopy structure information
from gap fraction are performed using a dedicated free software
called CAN-EYE (http://www.avignon.inra.fr/caneye). CAN-
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(a) Subset of the input image

(b) Result of quadtree segmentation

(c) Result of the multiresolution segmentation

(d) Final binary classification

Figure 2: Illustration of the automatic processing on a subset of
an hemispherical photograph taken over maize from above the
canopy.

EYE differs from other DHP software by calculating other bio-
physical variables besides LAI, such as FVC and FAPAR. The
input is a set of either RGB images (in manual mode) or bi-
nary mask (in batch mode). When using CAN-EYE interactively
(RGB images), it is possible to discard undesirable images or part
of images (e.g. due to sun glint). In the batch mode, such images
need to be screened out before the processing outside of the CAN-
EYE environment. It is worthwhile to mention that when used in
the interactive mode, the software applies an automatic colour
segmentation in which the total numbers of distinctive colours
is reduced to 324. This reduction of the radiometric resolution
simplifies the subsequent manual thresholding operation. An ex-
tra advantage of CAN-EYE that enables the use of lower quality
optics is that it has an integrated module to calibrate the measur-
ing instrument (camera + fisheye system) by finding the optical
centre’s coordinates and estimating the projection function.

2.3 Results and Discussion

The method is validated by comparing the results with those ob-
tained using CAN-EYE interactively. Two different users pro-
cessed the same 15 image sets. Six extra sets, processed by a third
operator, are also included in the validation set. The confronta-
tion of interactive versus automatic results is shown on figure 3.
Overall, the automatic results provides comparable results when
confronting them to those obtained interactively for the 3 bio-
physical variables (LAI, FVC and FAPAR) and for both upward
and downward configurations. The automatic method does yield
higher estimations for LAI and FAPAR when canopies with low
biomass are examined. This suggests that gap fraction is system-
atically underestimated early in the growing season when canopy
cover is low. Further fine-tuning might be necessary to ensure
that the classification is unbiased in these circumstances.

Validation with interactive use of CAN-EYE is not feasible for all
114 sets of images. However, since the DHPs were acquired at
different times along the season, an idea of the estimation quality
can be inferred by looking at the temporal consistency. This is
illustrated in figure 4. For the sake of clarity, this figure only
presents the mean and standard deviation of all LAI estimations
in a region at a given time. Although the estimations might not
be ideally distributed in time (i.e. fields could have been more
frequently visited, especially in Flevoland), a difference between
the 3 regions can already be noticed. For example, the regional
LAI growth curve for Condrozis slightly shifted towards later
dates compared to theHesbayecurve.

An expected improvement in the thresholding quality by using
the automatic method comes from removing the salt-and-pepper
effect that can occur while classifying manually. As seen on fig-
ure 5, such risk is eliminated under an object-based approach
since the classification is performed on the mean object values
instead of individual pixels. This approach has the advantage to
remove noise like a smoothing operation would do, but without
the disadvantage of blurring the edges.

3 CONCLUSIONS AND PERSPECTIVES

This paper presents how object-based image analysis can be ap-
plied to digital hemispherical photography in order to estimate
automatically biophysical variables in a batch mode using the
dedicated software CAN-EYE. The demonstration on DHPs ac-
quired on maize canopies with both downward and upward con-
figurations shows that the results obtained by the automatic method
are comparable to those obtained by manual processing. This
observation seems to hold at different growth stages along the
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Figure 3: Confrontation of biophysical variables obtained us-
ing the automatic methodology against those obtained by dif-
ferent interpreters (one per marker colour). Triangles pointing
downward (upward) represent results from digital hemispherical
photography acquired looking downward (upward) towards the
canopy. The biophysical variables assessed here are green area
index (top), fraction of vegetation cover (middle) and fraction of
absorbed photosynthetically active radiation (bottom).
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Figure 4: Temporal evolution of regional LAI estimations along
the crop growing season within the 3 different study zones. The
mean and standard deviation of all LAI estimations is resumed at
a given time and for each region.

Figure 5: The salt and pepper effect potentially present when
thresholding based on the histograms (left) is avoided when ob-
jects are first delineated (right).

season, albeit some improvements need to be addressed to avoid
underestimation of gap fraction in the early stages. The applica-
bility of the approach to other crops still needs to be investigated.
Whereas delineating other broadleaved crops should be straight-
forward, working on dense cereal canopies is certainly not so
trivial due to smaller leaf size and more ambiguity in gap frac-
tion definition (e.g. overshadowed lower leaves can be mistaken
for bare soil).

In a domain that is largely been dominated by image segmenta-
tion using histogram thresholds, object-based segmentation ap-
proach has great potential to provide efficient and automated im-
age processing solutions. Although the approach presented here
already provides encouraging results, it must be reckoned that
object-based analysis is used in a very simple way leaving much
room for improvement and fine-tuning. For example, the mem-
bership functions used to classify the object are obtained by em-
pirical sampling in a series of images. This manual operation
could easily be replaced by totally automatic approach by first
identifying some objects with strict and reliable default member-
ship functions and then use region growing segmentation algo-
rithms. Such alternation between segmentation and classification
could also be employed to refine delineation of leaves. Improve-
ments could also come from using a more adapted colour space
to differentiate vegetation from non-vegetation.
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