
MULTIRESOLUTION SEGMENTATION: A PARALLEL APPROACH FOR HIGH

RESOLUTION IMAGE SEGMENTATION IN MULTICORE ARCHITECTURES

P. N. Happ a, R. S. Ferreira a, C. Bentes b, G. A. O. P. Costa a, R. Q. Feitosa a

a
 Department of Electrical Engineering, Pontifical Catholic University of Rio de Janeiro (PUC-Rio)

Rua Marquês de São Vicente 225, Gávea, CEP 22453-900, Rio de Janeiro, RJ, Brazil

(patrick, rsilva, gilson, raul)@ele.puc-rio.br
b
 Dept. of Computer and Systems, Rio de Janeiro State University (UERJ)

Rua São Francisco Xavier 524, Maracanã, CEP 20550-900, Rio de Janeiro, RJ, Brazil

cristianabentes@gmail.com

KEY WORDS: Remote Sensing, Image Processing, Parallel Processing

ABSTRACT:

In automatic image interpretation, the process of extracting different objects that compose an image is one of the primary steps. This

process is known as image segmentation and consists of subdividing an image into meaningful regions, also called segments, which

will be classified in a later step. Many of the existing segmentation algorithms, however, have high computational cost for large

images as the currently high-resolution remote sensing images. The main focus of this paper is to tackle this problem by using

parallel processing. The idea is to explore current multi-core architectures available in commercial processors in order to speedup the

segmentation process. A multithreading parallel implementation of a region growing algorithm proposed originally by Baatz and

Schäpe (2000) is presented that aims at providing better execution times, while delivering a similar outcome produced by the

sequential version. The algorithm is able to work with any number of threads, which is defined as an input parameter, so as to take

full advantage of the upcoming processors having any number of cores. The current parallel implementation was tested on three

different images on a quad-core processor and obtained up to 2.6 of segmentation speedup.

1. INTRODUCTION

The image segmentation procedure has been an issue widely

discussed in the field of digital image processing and computer

vision. Segmentation algorithms for region growing group

pixels or sub regions into larger regions, based on a set of initial

points (called seeds) that grow annexing adjacent regions that

have similar properties (e.g. texture or color). This class of

algorithms has been usually applied especially in the remote

sensing area. The disadvantage is the high computational cost

for large images (Wassenberg et. al., 2009).

The aim of this paper is to develop a parallel implementation

for the image segmentation algorithm proposed in (Baatz et al.,

2000). The idea is to harness the parallel processing capability

present in most modern processors, specifically the multiple

computing cores in one processor. Therefore, the proposed

solution does not require special hardware and can run on low-

cost machines that are commercially available.

The parallel implementation is based on the division of the

process into threads. Since the segmentation quality is a crucial

step for classification (Blaschke et al., 2001, Pal et al., 1993),

the parallelization process should not compromise the results.

Another concern was to keep the segmentation result regardless

of execution speed of each thread. The algorithm was built

using the OpenMP library (Chapman et al., 2008) for

programming with shared memory and was executed on a

processor with four cores (quad-core). It was reached almost 2.6

in acceleration of the overall execution time.

The remainder of this paper is organized as follows. The next

section provides a brief description of the region growing

algorithm proposed by Baatz and Schäpe. In the following

section, the proposed parallel implementation is described. In

section 4, the results of an experimental analysis of performance

are presented and section 5 concludes the work with the main

conclusions and directions for future work.

2. SEGMENTATION BY REGION GROWING

This section briefly describes the sequential algorithm of region

growing proposed by Baatz and Schäpe and used in the system

Definiens (formerly eCognition) (Definiens, 2008).

The method is an iterative process of local optimization, which

minimizes the average heterogeneity of the generated segments.

The measure of heterogeneity used in the algorithm has a spatial

component and a spectral component. The spectral

heterogeneity is defined on the values of the spectral responses

of the pixels contained in a segment. This measure is

proportional to the weighted average standard deviation for

each band.

Spatial heterogeneity is based on two shape attributes:

smoothness and compactness. The degree of compactness is

defined as the ratio between the perimeter of the segment and

the square root of its area (number of pixels it contains). The

smoothness is defined as the ratio between the perimeter of the

object and the perimeter of the minimum boundary rectangle

(bounding box).

Initially, each segment represents a single pixel of the image

and all pixels are associated with a certain segment. The

segments grow to the extent that they are united with their

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-4/C7

neighbours, and the smallest increase in heterogeneity is used as

a criterion for selecting the neighbour with which a segment

will be attached. To simulate a parallel growth, each segment is

selected only once for each iteration.

The fusion factor (f) expresses the increase of heterogeneity

resulting from the union of two segments. Before a union

operation, the fusion factor is calculated for each of the

neighbours of the selected segment. The neighbour which has

the minimum fusion factor is chosen for merge. However, the

union only occurs if the fusion factor is under certain threshold,

defined as the square of the scale parameter, which will be

denoted at this point of the text by the letter e. This procedure

continues merging segments until no more unions are possible.

The fusion factor contains a component for the spectral

heterogeneity (hcolor) and a component for the spatial

heterogeneity (hshape) (1). The relative importance of spatial and

spectral components is defined by the color factor (wcolor).

shapecolorcolorcolor hwhwf).1(. −+=
 (1)

Equation 2 shows the formulation of spectral heterogeneity;

where the selected segment is obj1, obj2 is the analyzed

neighbour and the obj3 is the result of merge with obj2 and

obj1. In this equation c is the index of the spectral band and wc

is an arbitrary weight set for band c; σ is the standard deviation

of the pixels in the band c, considering all the pixels belonging

to segment obji; and n is the number of pixels in obji, for i =

1,2,3.

))..(.(2

2

1

1

3

3

obj

cobj

i

obj

cobj

obj

cobjccolor nnnwh σσσ∑ −=
 (2)

Spatial heterogeneity is influenced by the compactness degree

of the segment and the smoothness of its edge (3). The measure

of spatial heterogeneity, therefore, has two components: the

component relative to compactness hcmpct and the smoothness

component hsmoothe. The relative importance of these two

components is defined by the factor of compression, wcmpct.

smoothcmpctcmpctcmpctshape hwhwh).1(. −+= (3)

Equations 4 and 5 show the formulations of the components of

compactness and smoothness. In these equations l is the

perimeter of the segment obji and b the perimeter of the

corresponding minimum bounding box for i = 1,2,3.

).).(.
2

2

2

1

1

1

3

3

3

obj

obj

obj

obj

obj

obj

obj

obj

objcmpct
n

l
n

n

l
n

n

l
nh +−=

 (4)

).).(.
2

2

2

1

1

1

3

3

3

obj

obj

obj

obj

obj

obj

obj

obj

objsmooth
b

l
n

b

l
n

b

l
nh +−=

 (5)

The growth of the segments is constrained, therefore, an

adjustable criteria of heterogeneity. This adjustment can be

done by choosing the scale parameter (e), the weights of the

spectral bands (wc), the factor of color (wcolor) and the

compactness factor (wcmpct). The changes on the scale parameter

directly influence the size of the generated segments. Moreover,

the relevance of each spectral band, the relative importance of

shape and color, and between compactness and smoothness, can

be adjusted through the parameters of the algorithm.

3. PARALLEL IMPLEMENTATION

The parallel implementation of the region growing algorithm

proposed by Baatz and Schäpe uses the library OpenMP for

parallelization and follows the division of computing in

different threads that share the same data area in memory. The

main idea of this solution consists in splitting the image into

regions, that will be denoted tiles. Each tile is processed by a

different thread, that perform a local region growing, using the

sequential algorithm, with some synchronization actions.

This parallel approach, however, faces two major obstacles: (i)

the treatment of boundary segments, i.e. segments that have at

least one neighbour who does not belong to its tile, (ii) the

reproducibility of the final result.

Regarding the treatment of the border segments of each tile, the

main difficulty stems from the threads running in parallel. This

can cause simultaneous treatment of the same segment for more

than one thread. This could be avoided with the use of critical

sections (zones where only one thread can execute at a time) to

update the segment. Using critical sections, however, may cause

great impact on segmentation performance, if the contention

caused by waiting for critical sections is roughly the same as the

gains from parallelization

In relation to the reproducibility of results, this is a problem

inherent to the execution time of each thread. In other words,

one thread can perform its task more quickly than others and

may generate different orders of visitation for the segments,

which affects the final result of segmentation. Even for

sequential segmentation, if the seeds are visited in a different

order, the result of the segmentation is modified. The

reproducibility of the segmentation result, however, is an

important goal, since it allows scientists from different locations

to generate segmentations of the same image, and thus look at

the same result.

To let the segmentation process be actually independent of the

speed of the threads and to avoid excessive contention for

critical sections, the segments located on the boundaries at the

tiles are treated separately in the algorithm. These segments,

called from now on frontier segments, are included in a list of

segments to be treated. At the end of each step of segmentation

(after all segments have been visited), the frontier segments will

be processed sequentially. Therefore, the growth of regions of

each thread will be independent, with no need for critical

sections in the code.

The division of image in tiles, and consequently the division of

work in threads, can impact the final result of segmentation. To

achieve better performance in a given architecture with

multiples cores, the ideal is that the number of threads is always

equal to the number of processor cores available. In our

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-4/C7

implementation, the user defines the number of threads that will

run on the processor. This guarantees the same

tile division and the reproducibility of segmentation results for

different architectures.

3.1 Initial Load Distribution

The first step of the algorithm consists in determining the

number of tiles to be generated. The number of tiles

corresponds to the amount of threads. If only a thread exists, the

computation is sequential. For two or more threads, the image is

divided into distinct areas, as shown in Figure 1. Each thread is

responsible for processing the pixels included in its tile.

Figure 1. Division into tiles for two, four and eight threads

3.2 Growth Step

After the initial division of the image, begins the growth stage

begins. Each thread executes the region growing algorithm

inside its own tile. Initially, the thread marks all pixels of the

tile as segments to be visited and organizes them into a list of

segments. The segments are included in this list in the same

order that they will be visited. In order to start the growth from

relatively distant segments, the segments are included according

to their relative distance in the image.

A thread visits each segment on its list, and analyzes the

heterogeneity increases for each of its neighbours. If at least one

of the neighbours does not belong to the tile treated by that

thread, the segment is included in the list of frontier segments.

Otherwise, the segment is processed normally and marked as

visited. The neighbour that results in the less heterogeneity

increase is considered the best neighbour. If this best neighbour

is considered, by the fusion factor, as part of the segment, then a

merge occurs. This procedure is repeated until the entire list of

segments in each thread is covered. Figure 2 gives an example

of a segmentation divided into four tiles, showing on green the

frontier segments.

After all the threads finish their computation, the frontier

segments are handled. The list of frontier segments is traversed

sequentially by a single thread, using the same region growing

algorithm. The frontier segment list is visited in an interleaving

fashion, one frontier segment from each tile at time. Thus, the

segments remain visited in a distributed way.

After the list of frontier segments is processed, the growth stage

is completed, and the algorithm starts a new step, with another

growth stage. The new growth stage starts in the same way, with

a number of threads computing the segments of each tile. In this

stage, however, the list of segments of each thread is composed

by the segments generated in the previous step. This process is

repeated, generating new steps, until no merge occurs in a step

or until a maximum number of steps is reached.

Figure 2. Frontier segments on green in four tiles

4. RESULTS

In this section, the results obtained with the parallel

implementation of the region growing segmentation are

presented. The following sections describe the environment

used in the experiments, the test images, and the segmentation

results, along with the evaluation of the performance obtained

with the parallelization.

4.1 Test Environment

The experiments were all performed on an Intel Core 2 Quad

2.40 GHz, 2 GB of RAM.

Three images with different sizes and features were used. They

are named as Im1, Im2 and Im3 and exposed, respectively, in

Figures 2, 3 and 4. Image sizes are presented in Table 1. All

images were used to evaluate the performance gains and also

used to compare the result generated from parallel segmentation

to the result from sequential segmentation.

Image Size (pixels)

Im1 1000 x 1000

Im2 2000 x 2000

Im3 2800 x 2800

Table 1. Images used for experiments and its sizes

Figure 2. Im1

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-4/C7

Figure 3. Im2

Figure 4. Im3

4.2 Results of Parallel Segmentation

Figures 6, 8 and 10 show the result of the sequential

segmentation for Im1, Im2 and Im3. Figures 7, 9 and 11 expose

the results of parallel processing of the same images.

Figure 6. Result of sequential segmentation for Im1

Figure 7. Result of paralell segmentation for Im1

Figure 8. Result of sequential segmentation for Im2

Figure 9. Result of parallel segmentation for Im2

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-4/C7

Figure 10. Result of sequential segmentation for Im2

Figure 11. Result of parallel segmentation for Im2

It can be noted in the Figures the similarity between the results

of parallel and sequential segmentation. There are also no

important differences in the central region, the most challenging

area, where the segments belonging to the boundary of the tiles

are. The divergences that can be observed in the segmentation

results are due solely to the difference in the order in which

segments are processed, which could occur even in a sequential

algorithm if this order is modified. It is important to notice that

for the same number of threads, all the segmentation results are

exactly the same no matter how many times the parallel

algorithm runs.

4.3 Performance Evaluation

The performance of the proposed parallel algorithm has been

evaluated using the same three images and varying the number

of threads. Table 2 presents the execution time of segmentation

against the number of threads executed. Note that execution

time of the segmentation is reduced with the increase in the

number of threads.

Image Average Time (seconds)

 1 thread 2 threads 4 threads

Im1 13.67 8 6.33

Im2 62.33 39.33 24

Im3 123.66 76 51

Table 2. Time elapsed for each segmentation process

The results suggest an even greater reduction of segmentation

time if more processors are used. Obviously, in the environment

tested, does not compensate to run a number of threads greater

than the number of processor cores. However, nowadays, many

high-performance systems present two or more multicore

processors sharing the same memory. The algorithm could

benefit from this type of architecture, reducing even more the

execution time.

Table 3 shows the speedup obtained by the suggested parallel

algorithm. The speedup is measured as the ratio between the

time of sequential execution and parallel execution time and

shows the relative increase of the parallel performance.

Image Average Time (seconds)

 1 thread 2 threads 4 threads

Im1 1 1.70 2.16

Im2 1 1.58 2.59

Im3 1 1.63 2.42

Table 3. Speedup obtained by parallel algorithm

As noted in this table, speedups of up to 2.59 were obtained.

The total utilization of four processor cores was not possible

due to the inherently sequential part of the algorithm. This part

is required to maintain the reproducibility of results.

Nevertheless, for very large images, reducing the segmentation

time in 2.5 times is an important result, considering that the

algorithm explores the full potential of the hardware present in

most of the current desktop computers.

In terms of the different images testes, it can be observed that

the segmentation of Im1 presented the greatest speedup for two

threads, but was the least benefited from the increase of 2 to 4

threads. In the other hand, Im2 segmentation achieved the

smallest speedup for two threads, but obtained the greatest

increase, reaching a speedup of almost 2.6 for 4 threads. It can

be observed that the speedups obtained are not only influenced

by the image sizes, but also by the spectral and spatial attributes

of image.

Another test was executed by varying some segmentation

parameters. Table 4 presents the time and the speedup achieved

when changing the color weight (wcolor) from 0.9 to 0.1, i.e.,

prioritizing shape to color.

Image Average Time (seconds) Speedup

 1 thread 4 threads 4 threads

Im1 17 7 2.42

Im2 72.33 29 2.49

Im3 143.33 55.67 2.57

Table 4. Time and Speedup obtained when wcolor = 0.1

Comparing the results presented on Table 3 with the values on

Table 4 it can be observed that the speedup obtained for Im1

and Im3 were better when the shape was prioritized, but the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-4/C7

same did not happen for Im2. This result reinforces that the

image features influences on the segmentation product.

5. CONCLUSIONS

This work presents a parallel region growing algorithm based

on the algorithm proposed by Baatz and Schäpe. It was

developed an algorithm using OpenMP threads in order to

leverage the parallel processing capability of current processors

with multiple cores.

The focus of this implementation was to improve the

performance of segmentation, keeping the reproducibility of

results. The computation is divided by tiles and the frontier

segments are processed sequentially. In terms of performance,

parallel implementation was about two and a half times faster

than the sequential segmentation. This is a very promising

result since it allows the exploitation of the vast processing

power of current processors with multiple cores.

In the future, the intention is to use the same principle of

division of work in tiles to write an out-of-core version of the

segmentation algorithm. This version would allow the

segmentation of images that do not fit in main memory. Thus, it

is expected that the image segmentation can handle extremely

large data efficiently and without requiring special hardware. It

is also expected to propose others parallel versions for different

hardware like clusters and GPUs (Graphics Processing Units).

6. REFERENCES

Baatz, M. and Schäpe, A. “Multiresolution segmentation: an

optimization approach for high quality multi-scale image

segmentation”. In: XII Angewandte Geographische

Informationsverarbeitung, Wichmann-Verlag, Heidelberg,

2000.

Blaschke, T. and Strobl, J. “What is wrong with pixels? Some

recent developments interfacing remote sensing and GIS”. GIS-

Zeitschrift für eoinformationssysteme, 2001.

Chapman, B., Jost, G., van der Pas, R. Using OpenMP: Portable

Shared Memory Parallel Programming. The MIT Press, 2008.

DEFINIENS, Image Analysis Software for Earth Sciences,

http://www.definiens.com/image-analysis-for-

earthsciences_45_7_9.html (último acesso 14 Novembro 2008).

Pal, N. R. and Pal, S. K., “A review of image segmentation

techniques”, Pattern Recognition, 26(9):1277-94, 1993.

Wassenberg, J., Middelmann, W. and Sanders, P., "An Efficient

Parallel Algorithm for Graph-Based Image Segmentation",

CAIP '09: Proceedings of the 13th International Conference on

Computer Analysis of Images and Patterns, 2009.

