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ABSTRACT:

Over the last few years, the increased availability of high resolution remote sensing imagery has opened new opportunities for road
traffic monitoring applications. Vehicle detection from satellite images has a potential ability to cover large geographical areas and
can provide valuable additional information to traditional ground based counting equipment. However, shadows cast from trees and
other vegetation growing along the side of the road cause challenges since it can be confused with dark vehicles during classification.
As the intensity properties of dark vehicles and vegetation shadow segments are visually inseparable in the panchromatic image, their
separation must be exclusively based on shape and context. We first present a method for extraction of dark regions corresponding to
potential shadows by the use of contextual information from a vegetation mask and road vector data. Then we propose an algorithm for
separating vehicles from shadows by analyzing the curvature properties of the dark regions. The extracted segments are then carried
on to the classification stage of the vehicle detection processing chain. The algorithm is evaluated on Quickbird panchromatic satellite
images with 0.6m resolution. The results show that we are able to detected vehicles that are fully connected with the cast shadow, and
at the same time ignore false detections from tree shadows. The performance evaluation shows that we are able to obtain a detection
rate as high as 94.5%, and a false alarm rate as low as 6%.

1 INTRODUCTION

Traffic statistics is a key parameter for operation and develop-
ment of road networks. Vehicle counts based on automated satel-
lite image analysis can provide useful additional information to
traditional ground based traffic surveillance. A significant advan-
tage of satellite based technology is that it does not require in-
stallation and maintenance of equipment in the road. Moreover, a
satellite image can cover large geographical areas, as opposed to
traditional ground based traffic measurement equipment. Satel-
lite imagery are therefore particularly suitable for creating short
term traffic statistics of specific locations.

Several algorithms for vehicle detection in remote sensing have
been developed during the last decade. Most of the examples
found in the literature use aerial imagery with resolutions in the
range 10-30 cm, see e.g., (Hinz, 2005, Holt et al., 2009, Zhao and
Nevatia, 2003). Some examples using satellite imagery, where
current commercially available sensors have panchromatic reso-
lution as good as 0.5-1.0 m, also exist, e.g., (Jin and Davis, 2007,
Zheng and Li, 2007, Pesaresi et al., 2008, Eikvil et al., 2009,
Larsen et al., 2009).

We have developed a strategy for automated vehicle detection in
very high resolution satellite imagery. Evidently the ideal choice
of methods for automatic vehicle detection depends on the con-
ditions in the image, which again depends on location, type of
road, traffic density, etc. We have decided to focus on typical
Norwegian roads, which are characterized as narrow, curvy, and
sparsely trafficated compared to highways in other countries from
which published studies exist. Moreover, a frequent problem is
that much of the road surface is hidden by shadows from trees
along the side of the road. Dark vehicles are particularly difficult
to detect along roads where such shadows are present. Often the
vehicle is ”connected” to the tree shadow, and the gray level pixel
intensities do not provide enough information to discriminate the

vehicle from the shadow. To solve this problem, we propose a
method based on analyzing the border contour of the shadows
(with the connected vehicle), and propose criteria based on the
curvature and normal vector to localize the vehicle.

The vehicle detection strategy consists of a segmentation stage,
where image objects representing vehicle candidates are found,
followed by feature extraction and classification. During the seg-
mentation stage (Section 3.3), interesting image features are first
located using a scale space filtering approach, which effectively
and robustly detects possible vehicle candidates. The spatial ex-
tent of the detected objects are then defined using a region grow-
ing approach. At this stage of the processing, the objects are ana-
lyzed in order to separate tree shadows from dark vehicle objects
(Section 3.4). Finally, we perform feature extraction and classi-
fication of objects as vehicles or non-vehicles, and derive vehicle
counts from the classified image (Section 3.5).

In this work we concentrate on the tree shadow problem as a
part of a complete processing chain for the derivation of vehi-
cle counts from satellite images. Thus the stages of the algorithm
that are not related to the tree shadow problem will only briefly
be explained. The interested reader is referred to (Larsen and
Salberg, 2009) for a complete description of the vehicle detection
chain.

2 IMAGE AND ANCILLARY DATA

To be able to detect vehicles, satellite images of high resolution
are required. In this study we apply six Quickbird satellite images
with 0.6m ground resolution in the panchromatic band covering
the period from 2002 to 2009.

Geographical information about the location and width of the
road are available, and used to define a road mask. However, the
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quality of this data was not sufficiently high, and the road mask
was drawn manually.

3 METHODS

Before we present the vehicle detection algorithm we provide
some background information on curves and spline models that
constitute a central part of separating dark vehicles from shad-
ows.

3.1 Tangent, normal vector and curvature of a parametrized
curve

Let c(τ) = [x(τ), y(τ)]T be a parametrization of a curve. The
unit tangent vector is defined as

t(τ) = v(τ)/‖v(τ)‖ (1)

where v(τ) = [x′(τ), y′(τ)]T is the derivative of the curve.
Now, consider the second derivative a = [x′′(τ), y′′(τ)]T . This
may be decomposed into two components, one that is parallell
and one that is orthogonal to v(τ), i.e. a(τ) = a||(τ) + a⊥(τ).
The parallel component of the projection of a(τ) onto v(τ) is
a||(τ) = a||(τ)v(τ), where a||(τ) = aT (τ)v(τ)/‖v(τ)‖2.
The normal vector n(τ) to the parametrized curve is defined as
the unit vector in the direction of a⊥(τ), i.e.

n(τ) = [nx(τ), ny(τ)]T =
a⊥(τ)

‖a⊥(τ)‖ , (2)

where

a⊥(τ) = [x′′(τ), y′′(τ)]T

− x′′(τ)x′(τ) + y′′(τ)y′(τ)

[x′(τ)]2 + [y′(τ)]2
[x′(τ), y′(τ)]T . (3)

We define the normal direction as

φn(τ) = tan−1(ny(τ)/nx(τ)). (4)

The signed curvature of the contour measures the rate of change
of the tangent (derivative of the tangent with respect to the arc
length) and is given as (Nixon and Aguado, 2002)

κ(τ) =
‖t′(τ)‖
‖v‖ =

x′(τ)y′′(τ)− y′(τ)x′′(τ)

([x′(τ)]2 + [y′(τ)]2)3/2
. (5)

Note that the curvature of a circle with radius R is κ(τ) = 1/R.

3.2 Thin plate regression splines

Assume that we are given a set ofN sample points of a silhouette
contour. To create a parametrized representation c(τ) of the sam-
ple points we will model the components x(τ) and y(τ) using a
thin plate regression spline (TPRS) (Wood, 2003). The TPRS is a
smoothing spline which is beneficial when the curve is estimated
from a noisy silhouette contour. At location τ the ”smoothed”
function x(τ) (similar for y(τ)) may be expressed as (Green and
Silverman, 1994, Wood, 2003)

x(τ) =
NX
i=1

δiη(|τ − τi|) + α1τ + α0, (6)

where

η(|τ |) =
Γ(−3/2)

24π1/2
|τ |3, (7)

and N is the number of sample points of the contour. The pa-
rameters δi and αj are estimated using the algorithms given in

(Wood, 2003). One of the key points in (Wood, 2003) is reduced
rank modelling of the estimation problem, in the sense that the
smoothed function is constructed by an eigen decomposition and
truncation of the solution of the thin plate spline smoothing prob-
lem. The obtained basis is optimal in the sense that the trunca-
tion is designed to result in the minimum possible perturbation
of the thin plate spline smoothing problem for a given bases di-
mension. The maximum number of degrees of freedom refers
to the dimension of the truncated bases. Hence, N variables δi,
i = 1, 2, . . . , N may be modelled using only M variables, and
the total number of unknowns to estimate is M + 2 given by
β = [β1, β2, . . . , βM , α0, α1]T .

A smoothing parameter λ plays an important role when using thin
plate regression splines (Wood, 2003). The smoothing parameter
is estimated as the value that minimized the generalized cross-
validation (see e.g. (Green and Silverman, 1994)).

Now, the derivative of the TPRS model x(τ) may easily be cal-
culated as

x′(τ) =

NX
i=1

δiη
′(|τ − τi|) + α1, (8)

where

η′(|τ |) = sign(τ)
3 Γ(−3/2)

24π1/2
|τ |2, (9)

and similarly the second derivate

x′′(τ) =

NX
i=1

δiη
′′(|τ − τi|) (10)

where

η′′(|τ |) =
6 Γ(−3/2)

24π1/2
|τ |. (11)

Note that it is the same parameters δi, i = 1, . . . , N , α1 and α0

involved in the expressions for x(τ), x′(τ) and x′′(τ), and the
parameter estimation is performed on an observed (noisy) curve.
This is beneficial, since computing the derivative numerically en-
hances any noise. The TPRS expression for x(τ) and y(τ) may
now be used to calculate the tangent, the normal vector and the
curvature of c(τ) analytically at any location τ on the curve.

Since the border contours are closed, we avoid edge effects in
c(τ) by extending the edges of the contour. Another factor that
needs to be determined is M . Here we have chosen M equal to
0.9 times the length of the contour. If M is too small the con-
tour will be over-smoothed, and desirable features will not be
captured.

3.3 Extraction of candidate vehicle image objects

Potential vehicles are located in a scale space filtering step. Since
vehicles have an elliptical shape in high resolution satellite im-
ages, we have extended the scale space circular blob detection
approach proposed by Blostein and Ahuja (Blostein and Ahuja,
1989) to the more general approach of detecting elliptical blobs.
The image is convolved with an elliptical Laplacian of Gaussian
filter

∇2G(x, y;σx, σy) =

„
(σ2
x − x2)

σ4
x

+
σ2
y − y2)

σ4
y

«
e
−
 
x2

2σ2
x

+ y2

2σ2
y

!

(12)
at various scales (σx, σy). At local extrema in the response im-
age, the size and contrast of best fitting ellipses are estimated
using analytical expressions for the response of an “ideal” ellipse
image to the ∇2G filter in addition to a σ-differentiated Lapla-
cian of Gaussian filter ( ∂

∂σx
+ ∂

∂σy
)∇2G. (The second filter
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(a)

(b)

Figure 1: White asterisk marks dark blob center, black asterisk
mark bright blob center. Only blob centers found within the road
mask and passing the size and contrast thresholds are displayed.

is needed since there are two unknowns, i.e., scale and contrast
(Blostein and Ahuja, 1989)). Locations at which the estimated
scale is close to the scale of the filter, and the estimated contrast
is higher than a preset threshold, are treated as points of interest,
i.e., as candidate vehicle center locations (Figure 1). Note that
the principal direction of the elliptical filter should match the ori-
entation of the road, and hence the vehicles in the image. Thus,
the image must be rotated prior to convolution with the filters.
Details of the scale space filtering step can be found in (Larsen
and Salberg, 2009).

After filtering, we extract the vehicle silhouettes from the list of
candidate vehicle centers, i.e., we define the spatial extension of
the blob surrounding the blob center. Once we have object silhou-
ettes, we can extract many features describing the objects, and
use classification to separate vehicles from non-vehicles. The
objects are found using a simple region growing technique, as
follows: Start at the pixel closest to the blob center, and grow
an object by including all neighbouring pixels that have inten-
sity below/above1 a given threshold, until no more pixels can be
included.

1The sign of the Laplacian of Gaussian filter is adjusted so that a local
minimum in the convolution response represents a dark blob, while a local
maximum represents a bright blob. Naturally, a dark threshold must be
used as an upper threshold for the intensities that can be included during
region growing of a dark blob, while a bright threshold is used as a lower
threshold when growing a bright blob.

3.4 Separation of dark vehicle objects from tree shadows

If we restrict region growing to the road, i.e., if the region is not
allowed to grow outside the road mask, we get many tree shadow
objects that can easily be confused with dark vehicles (Figure 2).
On the other hand, by letting the region grow outside the road,
some vehicles would be joined with a tree shadow object (and
probably lost during classification), since some dark vehicles ap-
pear so close to a tree shadow that the vehicle can not be separated
from the shadow based on intensity features alone (Figure 3).

This dilemma can be solved if we look at how the human inter-
preter recognizes the car in Figure 3, i.e., by looking at the shape,
and not just the intensity. While the car has a similar dark gray
tone to the tree shadows, the shape of the region reveals that there
is a car connected to the tree shadow. Two criteria that can be
used to recognize such a shape are related to the transition zone
from car to shadow;

• the border contour of the region has strong negative curva-
ture.

• the outward normal vector of the contour points of the region
is in the same direction as the road.

These two criteria, form the basis of our algorithm for separating
dark vehicles from tree shadows. When growing a region from
a dark blob center, we must let the region grow outside the road
mask, to see whether it enters a vegetation shadow area. More
specifically, we let the region grow outside on the side of the road
where vegetation cast shadows are expected to come from. This
is determined by the sun angle, which is known at the time of
image acquisition. If the resulting region overlap the vegetation
shadow both inside and outside the road, we search the border
contour of the region for points that meet both the stated criteria.
Moreover, if the original region is divided along a line connecting
the mentioned points (from now on called “clip points”), and the
shape of the resulting sub region inside the road resembles the
shape of a vehicle, then this region should be considered a vehicle
candidate (Figure 4). Otherwise (if clip points are not found), we
assume that the region represents tree shadow only, and ignore it
in the further processing of the image. It may be that vehicles are
contained in regions were no clip points are found, however, we
have no means of distinguishing them from three shadows.

3.4.1 Clip point criteria When an object region consists of
both a dark vehicle and tree shadows, we call the border points
that mark the transition from vehicle to tree shadow clip points
(Figure 4), since they can be used to divide (“clip”) the region
into its two constituent parts. The border contour is found from
the binary image representing the region, using a straight forward
contouring algorithm. The extracted contour points are then mod-
elled using the TPRS model described in Sec. 3.2. A clip point τc
of the TPRS modelled border contour c(τ) is defined as a point
where

• the curvature κ(τc) < −0.2 (corresponding to a cirle of
R = 3.0m), and

• the difference between the (outward or inward) normal di-
rection of the contour and the orientation of the road is less
than five degrees, i.e. |φn(τc)−θr| < 5o, where θr denotes
the direction of the road.

The curvature and angle thresholds were selected based on prior
knowledge and trial and error on a few examples.
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(a) (b) (c)

Figure 2: Tree shadows. White asterisk marks dark blob center. Panchromatic image in (a), and corresponding segment images; in (b),
region growing is restricted to the road mask, while in (c), the region is allowed to grow outside the road.

(a) (b) (c)

Figure 3: Car connected to tree shadows. White asterisk marks dark blob center. Panchromatic image in (a), and corresponding segment
images; in (b), region growing is restricted to the road mask, while in (c), the region is allowed to grow outside the road.

The contour is traversed in both directions in turn, starting at a
point lying inside the road. The traversal stops when:

1. reaching a point lying more than two pixel units (1.2m) out-
side the road mask,

2. reaching a point outside the road mask for the second time,
or

3. reaching a clip point τc.

If clip points are found in both directions, some requirements are
necessary in to order extract a vehicle candidate from the shadow
mask. The region is divided (”clipped”) into two constituent parts
if:

1. The normal directions of the contour at the two clip points
have opposite signs, i.e. |φn(τc1)−φn(τc2)| is between 170
and 190 degrees.

2. The distance between the clip points does not exceed five
pixel units (3.0m), i.e. ‖c(τc1)− c(τc2)‖ < 5.

3. The resulting vehicle candidate object (i.e., the object that
corresponds to the part of the region inside the road after
clipping) is a connected region (i.e. it contains only one
silhouette).

4. The difference between the orientation of the vehicle θv can-
didate object and the orientation of the road θr is less than
45 degrees 2.

Also here the thresholds were selected based on prior knowledge
and trial and error on a few case studies.

3.5 Feature extraction and classification

For each image object, we extract a number of features that can
be used to separate vehicles from other type of objects. The ex-
tracted features include both radiometric, geometric, and context
based features. Using branch-and-bound feature selection we
found separate optimal feature sets for bright and dark objects.
For bright objects, the selected features are

• contrast, elongation, panchromatic intensity, standard devi-
ation, and mean sobel gradient of the region.

For dark objects, the features are

• ∇2G amplitude, contrast in the longitudinal direction, length,
area, perimeter, amount of overlap with the road edge, and
absolute difference between the angle orientation of the ob-
ject and the road angle orientation.

2The angle of the object is determined from the central moments as
θv = 0.5tan−1(µ11/(µ20 − µ02))
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(a) (b) (c)

Figure 4: (a) Same as Figure 3(a), but in addition, a white contour marks the border of the object region initially grown from the blob
center. (b) A solid line shows the contour, the star marks the start point for search along the contour, the circles mark points with
strongly negative curvature and opposite normal directions, both parallell to the road direction. (c) The dotted line shows the initial
contour, while the solid line is the contour of the new region (after clipping).

Classification is performed on bright and dark segments sepa-
rately. We use a K-nearest-neighbor classifier with K = 3. We
define two classes - vehicle and non-vehicle. Prior to classifica-
tion, the mean of the feature space is shifted to the origin, and
the features are scaled to unit total variance, neglecting class re-
lationships.

3.5.1 Extraction of vehicle positions The output from the
classification is an image in which each object is labeled as vehi-
cle or non-vehicle. Since a vehicle may be represented by more
than one object, the classification output images must be pro-
cessed to check for objects that should be merged. More specif-
ically, a bright vehicle may be represented by a bright and/or a
dark object (the vehicle shadow) (Fig. 1(b)). The final image
is constructed by adding the two images representing bright and
dark objects classified as vehicles. To ensure that bright vehicles
are not counted twice (the vehicle object and the shadow object),
bright objects are dilated in the direction of the expected shadow,
i.e., given the known position of the sun in the sky at the moment
of image acquisition, in order to ensure overlap of the objects.
The number of detected vehicles is then found by counting the
number of final vehicle objects.

4 EXPERIMENTAL RESULTS AND DISCUSSION

The methods were tested on a total of 48 sub scenes from six dif-
ferent satellite images. The scenes contain a total of 182 vehicles
(Tab. 1). All the objects were manually labelled as vehicle or non-
vehicle. Segments that represent car shadows were considered to
belong to the vehicle class, as they share similar geometrical and
spectral properties as dark vehicle segments. For classification,
testing was performed using one sub scene at the time, leaving
the objects from the relevant sub scene out of the training set
(leave-one-out approach). The classification error was 0.6% for
bright objects and 4.6% for dark objects.

Tab. 1 shows results for each of the six images as a sum of the re-
sults from the corresponding sub scenes. The number of vehicles
in the table corresponds to the number of vehicles that are visible
in the image and found by manual inspection. The segmenta-
tion result was manually inspected and compared to the marked
vehicle positions. Based on this inspection we found the num-
ber of vehicles that were correctly segmented, i.e., all vehicles
except those that fail to be segmented or are combined with a

Image Vehicles Correctly
seg-
mented
vehicles

Correctly
detected
vehicles

False
alarms

Østerdalen 2004 44 44 43 4
Østerdalen 2009 23 23 23 2
Kr. sund 2004 33 32 30 1
Kr. sund 2008 47 44 42 2
Sollihøgda 2002 9 9 9 0
Sollihøgda 2008 26 26 25 2

Total 182 178 172 11

Table 1: Experimental results

non-vehicle object into a joint segment. The number of correctly
detected vehicles and the number of false alarams are found by
comparing the final vehicle objects (cf. Sec. 3.5.1) to the true ve-
hicles in the image. From this we see that the detection rate, i.e.,
the fraction of vehicles that are detected, is 94.5%. The false de-
tection rate, i.e., the number of false alarms divided by the num-
ber of vehicles, is 6.0%.

As seen in Tab. 1, the detection rate ranges from 89.4% to 100%
among the six images. The performance also vary with the lo-
cation. For example, all the segmentation errors occurred in the
Kristiansund images. These images contain more clutter (e.g.,
differences in the two road lanes, road surface material patches,
lane markings, etc.) than the images from the other locations. The
Østerdalen images have more false alarms compared to the num-
ber of vehicles than the images from the other two locations. A
fair explanation is that the traffic density is lower in Østerdalen.
Actually, the average number of false alarms per km is 0.12 in
Østerdalen, while it is 0.17 and 0.32 in Kristiansund and Sol-
lihøgda, respectively.

Omission errors occur almost exclusively in cases where the re-
gion growing routine fails. In each of these vehicle cases, a blob
was located during the filtering step, but the grown object fails to
capture the actual shape of the vehicle, hence the object is classi-
fied as non-vehicle.
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5 SUMMARY AND CONCLUSIONS

We have presented an approach for vehicle detection using very
high resolution satellite imagery. We have focused the attention
on smaller highways representing typical Norwegian road condi-
tions, i.e., relatively narrow roads, low traffic density and rural ar-
eas where roads are often partially covered by tree shadows. The
processing chain starts with a panchromatic satellite image and a
corresponding road mask, and consists of the steps segmentation,
feature extraction and classification.

The proposed segmentation strategy is based on a Laplacian of
Gaussian filter which is used to search through the image for el-
liptically shaped ”blobs”, i.e., regions of relatively constant inten-
sity that is brighter or darker than the local background. Although
this approach is robust towards local contrast changes, and ex-
tracts nearly all the vehicle positions in the image, it also finds
many candidates representing other kinds of objects.

In particular, shadows pose a special challenge since the intensi-
ties of shadowed areas are similar to dark vehicles. However, us-
ing our novel apporach only two false alarms are caused by tree
shadows - one of which represent a tree shadow region whose
shape resembles that of a vehicle. The fact that there are so few
errors caused by tree shadows is a significant and important im-
provement compared to previous results (Larsen et al., 2009).
Other false alarms are caused by e.g. vehicle shadows, trailor
wagons (counted in addition to the vehicle pulling it), or spots in
the road surface.

Compared to our previous study (Larsen et al., 2009), the de-
tection rates have been significantly improved, and may in many
cases now be considered acceptable for operational use. The blob
detection strategy has proved to be especially useful for this ap-
plication, since almost all the vehicles in our data set represented
a local extremum in the image response to convolution with the
elliptical ∇2G filters. However, there are still some aspects that
should be adressed. First of all, the approach for handling tree
shadows is new, and validation on more data may be needed be-
fore it can be used for operational use. Secondly, false alarms
due to double count of the same vehicle should be avoided. The
vehicles should be classified into groups based on size, e.g., car,
van, and truck/bus/trailor wagon. Object regions that are located
close to each other must be seen in context to determine whether
they belong to the same vehicle. Finally, for operational use, the
roads must be automatically localized in the satellite image. The
position of the mid line of the road is available as vector data to-
gether with rough estimates of road width. However, in order to
construct a road mask, these data must be co-registered with the
satellite image. As of today, this requires a considerable amount
of manual labor. It is therefore necessary to develop algorithms
for automatic rectification of the road mask to match the satellite
image.
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