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ABSTRACT: 

 

The landscape patches that are fundamental to landscape ecology may be considered as objects to be extracted from remotely sensed 

imagery. The accuracy with which objects may be characterised varies as a function of the spatial resolution of the imagery used. In 

general terms, a coarsening of the spatial resolution degrades the characterization of objects, notably through an increase in the 

proportion of mixed pixels which cannot be appropriately represented by conventional hard classification techniques. Accurate 

landscape mapping may often require either the adoption of fine spatial resolution imagery or use of sub-pixel scale analyses of 

coarse spatial resolution imagery. As the former is often impractical, the full realization of the potential of remote sensing as a source 

of information on landscape objects requires developments in sub-pixel scale techniques. In this paper, a new method of super-

resolution mapping based on a unifying framework of image halftoning, inverse halftoning and Hopfield neural network techniques 

is proposed as a means of gaining accurate information on landscape patches from coarse spatial resolution images. Fine temporal 

resolution of coarse spatial resolution remote sensing systems is exploited by fusing the time-series data as an input for the super-

resolution mapping. The accuracy of the analyses is evaluated relative to conventional a hard classification technique using object 

characterization. The results show that the proposed hybrid method is considerably more accurate than standard hard analyses in 

estimating the shape of the objects. The results also demonstrate that objects that are smaller than a pixel, which are missed using the 

hard classification techniques, can be detected using the super-resolution mapping.  
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1. INTRODUCTION 

The landscape patches that are distributed spatially on the 

Earth’s surface are very essential in studies related to ecology 

and geography. The nature of the landscape patches may 

influence ecological processes that occur or evolve in an area. 

One of the ways to study the landscape patches is by observing 

them with remote sensing imagery. Through remote sensing 

imagery, landscape patches can be extracted and treated as 

objects. Several physical characteristics such as area, perimeter, 

shape, orientation and spatial formation can be calculated from 

an object. The accuracy with which objects may be 

characterised varies as a function of the spatial resolution of the 

imagery used. Relatively, the accuracy obtained in fine spatial 

resolution imagery is higher than coarse spatial resolution 

imagery.  

 

Although fine spatial resolution imagery provides detailed 

information, such imagery may be unavailable and expensive. 

Moreover, the image extent is not large. Alternatively, a low-

cost solution to acquiring landscape information can be realized 

by exploiting the information content of coarse spatial 

resolution imagery. The size of an area covered by this imagery 

is large. However, the coarse spatial resolution imagery contains 

a higher proportion of mixed pixels than pure pixels. In this 

sense, a mixed pixel is a pixel that contains several classes of 

land cover whereas a pure pixel only occupies a single class.  

 

Various types of land cover can be distinguished using land 

cover classification techniques. Conventional hard classification 

techniques tend to map a mixed pixel into one specific class 

which represents the highest proportion of the class within the 

pixel while ignoring other classes. Consequently, this approach 

could deteriorate the quality of landscape patch appearances in 

the coarse spatial resolution imagery. To allow a pixel to 

accommodate more than one land cover class, a classification 

scheme that is able to map land cover classes at the sub-pixel 

scale is required.   

 

Super-resolution mapping is a technique which allows mapping 

at the sub-pixel scale. Several super-resolution mapping 

techniques have been proposed such as spatial dependence 

maximisation (Atkinson, 1997), sub-pixel per-classification 

(Aplin and Atkinson, 2001), linear optimisation technique 

(Verhoeye and De Wulf, 2002), Hopfield neural network 

(Tatem et al., 2001a; Tatem et al., 2001b; Tatem et al., 2002), 

two-point histogram optimisation (Atkinson, 2008), genetic 

algorithms (Mertens et al., 2003), wavelet coefficients 

prediction using feed-forward neural networks (Mertens et al., 

2004) and pixel swapping (Thornton et al., 2006). All of these 

techniques take a single coarse spatial resolution image as their 

input. Although they may be used to derive a map at a finer 

spatial scale than the input imagery, there are many concern 

with their use.  

   

Additional information, normally a finer spatial resolution 

image can been incorporated into the super-resolution mapping 

to increase the accuracy of land cover mapping and to decrease 

the uncertainty of locating the land cover (Nguyen et al., 2006). 

Amongst the additional information that have been used in the 

super-resolution mapping are LIDAR (Nguyen et al., 2005), 

geo-statistical data (Boucher and Kyriakidis, 2006), fused 



 

images (Nguyen et al., 2006) and panchromatic imagery 

(Atkinson, 2008). Fine spatial resolution remote sensing 

systems such as SPOT 5, IKONOS and QuickBird provide both 

multispectral and panchromatic imagery. The panchromatic 

images usually have finer spatial resolution than the 

multispectral images.  

 

However, not all remote sensing systems are able to acquired 

finer spatial resolution image along with the main imagery. 

Coarse spatial resolution remote sensing systems such as 

MODIS, MERIS and AVHRR are not designed to capture 

panchromatic images. Exploiting the fine temporal resolution of 

these systems may solve the problem of acquiring additional 

information. The fine temporal repeat cycle of these systems 

enables time-series images of a same spatial resolution to be 

combined together. The fine temporal resolution characteristic 

of these systems may confine from acquiring significant 

changes on the Earth’s surface that might be occurred if the 

observation of the satellite systems takes a long period of time.  

 

The imagery of a site acquired on different dates typically 

differs in subtle ways, with the location of pixels varying 

slightly due to, for example, minor orbital translations of remote 

sensing satellites. The slight differences between images can be 

exploited by combining a time-series coarse spatial resolution 

images into an integrated image which may contain more 

information than a single coarse spatial resolution image 

(Packalen et al., 2006).  

 

The aim of this paper is to estimate accurate landscape patches 

characterization by combining multiple coarse spatial resolution 

images. A new super-resolution mapping algorithm will be 

presented which is suitable for processing multiple input images 

of the same spatial resolution.  Results will be presented based 

on patch or object characterization.  

 

2. STUDY AREA AND DATASETS 

The study area covers approximately a 20km2 area located in 

Quebec province, Canada. It is situated between latitudes 

55o08’35”N and 55o06’08’’N and between longitudes 

77o41’39”W and 77o36’30”W. The area that is near the Hudson 

Bay contains an abundance of lakes of various size, shape, 

orientation and spatial formations. Landsat ETM+ near IR band 

image with a spatial resolution of 30m of this area was used 

since land and water are very separable in this band. Figure 1 

shows the image of the area. 

 

 
Figure 1.  Landsat ETM+ near IR band image of 30m per pixel 

 

In this study, we modelled multiple time-series observations of 

remote sensing imagery by generating multiple coarse spatial 

resolution images from a fine spatial resolution image in Figure 

1. The image in Figure 1 was down-sampled by a factor of 8 to 

a spatial resolution of 240m pixel. To model the slight orbital 

translations, the initial position of an image for the down-

sampling operation was sub-pixel shifted randomly in 

horizontal and vertical directions from one image to another (Lu 

and Inamura, 2003). Figure 2 shows one of the simulated coarse 

spatial resolution images.  

 

 
Figure 2.  One of the simulated coarse spatial resolution images 

with a spatial resolution of 240m 

 

3. METHODOLOGY 

In this study, a new super-resolution mapping algorithm is 

proposed based on a unifying framework consisting of an image 

halftoning method (Lau and Arce, 2001), inverse halftoning 

(Venkata et al., 1998) and an active surface threshold optimized 

by a Hopfield neural network (Shen and Ip, 1997). Figure 3 

illustrates a graphical flowchart of the new super-resolution 

mapping algorithm. The algorithm begins in Step 1 with an 

acquisition of a time-series coarse spatial resolution images. In 

Step 2, all the images were soft classified using a fuzzy 

membership function (Foody et al., 2005) to produce proportion 

images. In Step 3, every pixel in a proportion image was sub-

divided into a matrix of sub-pixels by creating repetitive 

information obtained from the original pixel (Fisher, 1997).   

 

All the proportion image that differ slightly from one to another 

in the time series data were assumed to be translated linearly 

(e.g. horizontal and vertical) in a sub-pixel scale. The amount of 

sub-pixel shifting was calculated using an iterative back-

projection method (Irani and Peleg, 1991) and was used to 

counterbalance the position of every image before being 

combined into a fused image as shown in Step 4. This step was 

implemented to ensure that information from multiple images 

can be set in the correct location.   

 

Land cover classification divides different types of land cover in 

an image. Because only two types of land cover class (land and 

water) that need to be classified, a binary conversion of the 

fused image is required. Several super-resolution mapping 

techniques (Tatem et al., 2001a; Tatem et al., 2001b; Tatem et 

al., 2002; Thornton et al., 2006)  assign binary representatives 

based on a proportion of land cover within a pixel of a coarse 

spatial resolution image. In the earliest stage of those 

techniques, the binary representatives are assigned as values for 

sub-pixels of a coarse spatial resolution image. The arrangement 

of the binary values for the sub-pixels that appear to be a dot 

pattern is completely random. Unlike the existing techniques, 

our method arranged the binary representatives for sub-pixels 

using an error diffusion technique  (Floyd and Steinberg, 1976), 

which is a popular dithering technique in image halftoning 

operations as shown in Step 5. Then, using an inverse 

halftoning, the dot pattern created by error diffusion techniques 

in the binary image can be converted back into a continuous 

gray level image a shown in Step 6. The gray level image was 

fed into a Hopfield neural network to generate an optimized 



 

threshold using a paradigm of an active surface image as shown 

in Step 7. Finally, in the Step 8, the continuous image in Step 6 

was compared with the active surface image in Step 7 to classify 

the land cover into two different classes: land and water.  

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flowchart of the proposed super-resolution mapping 

algorithm procedure 

 

 

4. SHAPE CHARACTERIZATION 

Object shape may be characterized in many ways (Nixon and 

Aguado, 2002). Here the shape of objects was characterized by 

area, perimeter, circularity, length and orientation. Figure 4 

illustrates an example of shape characterization for an object. 

The area of an object was determined by measuring the quantity 

of pixels assigned for the object, while the number of pixels at 

the boundary of the object determines its perimeter.  

 

 

 

 

 
 

 

Figure 4. Object characterization 

 

 

The circularity of an object is calculated by circularity index as 
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(1) 

 

where A is area and P is perimeter. The index ranges from 0 to 

1, where values approaching 1 indicate that the shape is circular 

while values approaching 0 are used to represent that the shape 

is linear. The orientation of an object is calculated using Hough 

transform (Duda and Hart, 1972; Hough, 1962).  

 

 cos sinr x y    (2) 

 o90    (3) 

 

The sign of the orientation indicates the direction of the object.  

 

 

5. RESULTS AND DISCUSSION 

Results of the super-resolution mapping method were evaluated 

in terms of visual appearance, overall and individual lake 

characterizations. Figure 5 shows result of land cover 

classification applied on the (a) fine spatial resolution image of 

Figure 1, (b) a coarse spatial resolution using conventional hard 

classification, and (c) a combination of multiple coarse images 

using the proposed super-resolution mapping method. For 

comparative purpose, image in Figure 5(a) was referred as a 

reference image.  In Figure 5 two types of land cover were 

distinguished; land (white) and water (black).  

 

Visual comparison between the hard classified image (Figure 

5(b)) and super-resolution mapped image (Figure 5(c)) displays 

noticeable different in terms of the shape of the lakes and the 

number of the lakes. In the hard classified image, the shape of 

lakes appears to be blocky and suffered from a pixellation 

effect. In contrast, the shape of lakes in the super-resolution 

mapped image exhibits smooth boundaries. The resemblance 

between shapes in the super-resolution mapped image and the 

reference image is visibly closer than the shape of lakes in the 

hard classified image.  
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Step 1: Acquiring multiple observations of coarse spatial 

resolution image 

    

Step 2: Soft classification to produce proportion images 

 

Step 3: Sub-dividing a pixel into sub-pixels 

 

 

Step 4: Fusing multiple images 

 

 

Step 5: Initial localization of binary representatives using 

image half-toning 

 

 

Step 6: Inverse half-toning to convert a binary image into a 

continuous gray level image. 

 

Step 7: Optimizing active surface threshold using a 

Hopfield neural network 

 

 

Step 8: Image threshold = image in Step 6 – image in Step 7 

 

 



       
 

 

Figure 5. Land cover classification (a) on a reference image; (b) on a coarse spatial resolution image using hard classification 

method; and (c) multiple coarse spatial resolution images using the proposed super-resolution mapping method 

 

 
Area Perimeter Circularity Length Orientation 

Lake HC SRM HC SRM HC SRM HC SRM HC SRM 

1 51.12 30.00 13.14 3.10 0.29 0.09 11.00 0.95 0.00 3.00 

2 144.00 9.75 17.44 6.76 0.14 0.32 1.00 1.00 33.00 20.00 

3 54.00 2.25 13.27 1.76 0.07 0.11 2.00 1.00 6.00 0.00 

4 192.75 71.88 30.70 8.82 0.04 0.03 1.61 2.07 1.00 2.00 

5 34.13 17.13 1.86 1.66 0.37 0.31 3.03 1.03 4.00 0.00 

6 35.25 23.13 8.69 1.83 0.12 0.37 0.00 1.00 16.00 10.00 

7 19.75 21.88 1.27 4.59 0.20 0.08 2.00 0.00 66.00 22.00 

8 388.90 332.70 53.91 38.25 0.07 0.00 4.04 2.25 16.00 1.00 

9 64.25 5.75 9.44 3.76 0.16 0.18 4.00 2.00 127.00 7.00 

10 26.75 24.38 33.63 8.83 0.52 0.18 15.38 0.69 25.00 2.00 

11 101.50 12.25 40.54 2.27 0.36 0.17 13.84 3.00 82.00 4.00 

12 14.13 1.00 1.66 6.93 0.23 0.34 2.00 1.00 31.00 14.00 

13 22.25 23.38 6.93 5.73 0.05 0.03 1.00 1.00 58.00 37.00 

14 39.75 11.13 1.544 12.485 0.18 0.33 3.00 2.00 142.00 28.00 

 1188.52 586.58 234.03 106.75 2.81 2.54 63.90 18.99 607.00 150.00 

Table 1.  Comparison of lake characterization in the hard classified (HC) image and the super-resolution mapped (SRM) image 

 

In terms of the number of lakes, the super-resolution mapping 

approach provided a representation for 36 of the 48 shown in 

the reference image. Only 15 lakes were found in the hard 

classified image. The size of the lakes that are missed in the 

hard classified image is smaller than a size of a pixel of a coarse 

spatial resolution image. In the super-resolution mapped image, 

several lakes that are smaller than a pixel of a coarse spatial 

resolution image are detectable although the quantity is not as 

many as in the reference image. Overall, the percentage of area 

for a land cover that is classified as water in the reference image 

is 14.72%, hard classified image (19.00%), and super-resolution 

mapped image (14.57%).  

 

There were 15 lakes detected in the hard classified image. One 

of them is located at the top edge of the image. This lake was 

ignored in the lake characterization analysis because its shape is 

incomplete. The remaining 14 lakes and their corresponding 

lakes in the reference image and in the super-resolution mapped 

image were indexed numerically for a comparative study of the 

lake characterization.  

 

Shape characterization analysis on the indexed lakes in each 

Figure 5 was summarized in Table 1. Each lake was 

characterized by area, perimeter, circularity, length and 

orientation. The column for each character in the Table 1 is 

further divided into two to describe the difference of shape 

characterization measured from the hard classified and the 

super-resolution mapped images. Each shape characteristic in 

both images was compared against the corresponding 

characteristic in the reference image. The magnitude of residual 

values for the comparison is given in Table 5. In general, shape 

characterization of lakes in the super-resolution mapped image 

tends to produce less error than the characterization in the hard 

classified image.  

 

Four types of shape characteristics: area, perimeter, length and 

orientation display considerable wide margins between results 

in the hard classified image and the super-resolution mapped 

image. In terms of circularity aspect, the margin between result 

of residuals in the hard classified image and the super-

resolution mapped image is rather narrow. This scenario 

occurred because 6 from the 14 lakes in the hard classified 
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image produce less circularity measurement error than lakes in 

the super-resolution mapped image.   

 

Apart from numerical comparisons, visual inspection on 

individual lake can be used to display the advantages of the 

super-resolution mapping method. The shape of the lakes in the 

super resolution mapped image tends to be preserved and 

displays close resemblance with the shape in the reference 

image. For example, in the super-resolution mapped image, the 

left side of lake #1 contains more area of water than in its right 

side. The asymmetrical feature of the lake #1 in the super-

resolution mapped image is almost similar to the shape of the 

lake #1 in the reference image. In contrast, hard classification 

method interprets the lake #1 as a symmetrical lake. Another 

example can be seen in lake #8, where the curve of the lake’s 

boundary in the super-resolution mapped image is curlier than 

the boundary of the corresponding lake in the hard classified 

image.   

 

Super-resolution mapping method deals considerably better 

than the conventional hard classification on mixed pixel 

problem. Lake that is degraded by high proportion of mixed 

pixel such as lake #4, which lies diagonally in Figure 5, 

contains fewer errors in terms of area, perimeter and circularity 

in the super-resolution mapped image than in the hard classified 

image.  Visually, the boundary of the lake #4 in the super-

resolution mapped image is smoother than lake #4 in the hard 

classified image.  

 

Using hard classification mapping, adjacent lakes that are 

situated close to one another tend to be merged into a large 

single unit lake. In the hard classified image, Lake #11 is 

interpreted as one unit of lake, although in the reference and 

super-resolution mapped images, this lake is actually constitute 

of two lakes. Therefore, the super-resolution mapping method is 

potentially more able to avoid merging of adjacent lakes than 

the hard classification method.  

 

Reliance on a single input image into land cover classification 

operations may not be able to provide sufficient information 

about the contents and its location in an output image. In the 

hard classified image, lake #12 is located slightly lower than its 

corresponding lakes in the reference and the super-resolution 

mapped image. The offset position of the lake #12 in the hard 

classified image is because the hard classification method takes 

single coarse spatial resolution image as its input. In contrast, 

the proposed super-resolution mapping method fused a time-

series coarse spatial resolution images, thus, avoiding a problem 

of the slight shifted position and increasing the certainty of land 

cover location.  

 

Further analysis was done on lakes that were omitted from the 

hard classified image but were detected in the super-resolution 

mapped image. To highlight those lakes, other irrelevant lakes 

were represented in light gray as shown in Figure 6. In general, 

the size of the highlighted lakes is smaller than a size of a pixel 

in a coarse spatial resolution image. The lakes were indexed 

alphabetically from lake #a until lake #g as shown in Figure 

6(b) and its corresponding lakes in the reference image are 

shown in Figure 6(a). It should be noted that the spatial 

resolution of the reference and the super-resolution mapped 

images is 30m per pixel, whereas the spatial resolution of a 

coarse spatial resolution image is 240m per pixel. The smallest 

lake that can be detected by super-resolution mapping method is 

lake #a. The characteristics of this lake in the reference image 

are: 3600m2 (area); 300m (perimeter); 0.50 (circularity); 180m 

(length); and 0o (orientation). The characteristics of lake #a in 

the super-resolution mapped image are: 5400m2 square pixels 

(area); 300m (perimeter); 0.75 (circularity); 150m (length); and 

0o (orientation). Based on the comparison on these values and 

on visual appearance, the super-resolution mapping method was 

able to estimate a land cover mapping for lakes that are smaller 

than a size of a coarse spatial resolution image pixel markedly.  

 

The proposed super-resolution mapping method may be able to 

estimate the area and perimeter of a lake and produce results 

that are almost identical with the reference image smaller than a 

size of a pixel of a coarse spatial resolution image. However, 

one of the limitations of this method is that it may not be able to 

estimate the exact shape of lakes. The shape of the lake #g in 

the super-resolution mapped image is less than it should be as in 

the reference image. The effect of this limitation is that it tends 

to expand the size of lakes such as lakes #b, #c, #d, #e, #f, and 

#h. Although the proposed method may not be able to 

reconstruct the exact shape of lake, the technique demonstrated 

reasonable results of estimating the shape of the lakes at the 

sub-pixel scale of a coarse spatial resolution image.  

 

Ellipse X in Figure 6(a) contains three small lakes in the 

reference image, while ellipse X in Figure 6(b) contains an 

estimation of those lakes in the super-resolution mapped image. 

The location of a lake that is situated in the middle of the ellipse 

is approximately comparable in the two images. The result of 

the super-resolution mapping caused other lake in the super-

resolution mapped image to be fragmented into two, although 

their location is approximately the same compare to the location 

of their corresponding lake in the reference image. The shape of 

the third lake in the circle X of the reference image is well 

estimated in the super-resolution mapped image, but not located 

in the exact position.  

 

 
(a) 

 

 
(b) 

 

Figure 6. Object characterizations on small lakes that are 

omitted in the hard classified image. (a) A reference image, (b) 

a super-resolution mapped image 
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6. CONCLUSION 

This paper proposes a new super-resolution mapping algorithm 

exploiting the multiple coarse spatial resolution images of a site 

in a time-series manner. The proposed method unified an image 

halftoning method, inverse halftoning and an active surface 

threshold which is optimized by a Hopfield neural network. The 

super-resolution mapping method was validated with a 

paradigm of object orientation using shape characteristics of a 

number of lakes. In all the evaluation series, the proposed 

super-resolution mapping method demonstrated greater 

capability than the conventional hard classification method by 

producing higher accuracy of characterizing landscape patches 

at the sub-pixel scale. The ability of the super-resolution 

mapping method to map land cover at the sub-pixel scale 

enhances the value of coarse spatial resolution images. The 

potential of this method will be beneficial to ecological and 

morphological studies.   
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