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Abstract : With the increasing amount of geographic vector database
available over the world, the remote sensing community has a
strong potential to quickly produce up-to-date geographic prod-
ucts. In this paper, we propose a geographic object-based image
analysis to bridge the gap between the image processing and the
geographic vector database. The key component of the method
is the automated sample selection refined by a statistical outlier
detection algorithm. A preliminary image labelling is performed
based on the intersection between a geographic vector database
and the result of a multiscale image segmentation. Each class
is then cleaned by a non-parametric trimming procedure that it-
eratively excludes outliers in order to keep only the most rele-
vant training samples. Eventually, each image-object is classified
based on a maximum likelyhood and new classes are created by
decision rules. This method was succesfully applied to two study
areas in a temperate and a Mediterranean region. The object-
based thematic overall accuracy was close to 75%, which was as
good as the accuracy of the vector data in the temperate region
and a significant improvement in the Mediterranean area. The
proposed framework showed very promising results, but further
work could still improve the classification step in order to take
the most out of the selected training samples.

1 INTRODUCTION

Ecosystem and land management increasingly rely on analysis,
statistics and modelling outputs derived from GIS database for
decision support and strategic planning (Hese and Schmullius,
2009; Lowell and Astroth, 1989; Aydöner and Maktav, 2009).
The quality of the geospatial database is therefore of paramount
importance in the decision making process. These data have to
be appropriate in terms of thematic content, date and scale. For
example, in an agricultural area, harvesting induces a land cover
change but not a land use change. This land cover change, from
crop to bare soil, has a dramatic impact on water run off that has
to be accounted for in hydrological processes. As another ex-
ample, urbanisation results in both a land use and a land cover
change by the construction of new buildings and up to date infor-
mation is here crucial for land use planning. Finally, scale issues
should not be neglected in analysis. For instance, they can appear
along ecotones such as forest boundaries. If the scale is too fine,
it is not possible to unambiguously delineate them and if it is too
coarse the precision is not sufficient to detect progressive change.

The first geospatial data were produced by ground surveys, which
have integrated modern technologies such as GNSS or TPS for
accurate positioning and are now collected in digital format in-
side geographic vector database. Remote sensing from airborne
or spaceborne sensors is a possible alternative to these ground
surveys. The main advantages of remote sensing are its ability to
cover large remote areas and to provide updated observations on
a frequent basis. Nowadays, the (semi-)automated interpretation
of remotely sensed imagery to provide high quality geographic
database is a main challenge of the earth observation community.
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Depending on the sensor type, the challenges of the workflow
may consern different stages. In the case of very high spatial
resolution optical images, the main issue is typically the spectral
variability inside a given class, which is, for instance, particularly
high in forests due to the differences in crown lighting or in urban
areas due to the diversity of small spatial objects.

Since the early days of image processing, supervised classifica-
tion of earth observation data relies on a highly interactive step
to delineate calibration or training sample set used to transform
the image radiance values into a map labelled according to the
selected typology. While unsupervised method are also common,
the most recent developments concern supervised classification
algorithms such as support vector machine, maximum likelihood,
k-Nearest Neighbours or artificial neural networks (Huang et al.,
2002; Blanzieri and Melgani, 2008; Ashish et al., 2009) which
all rely on quality training samples (Frery et al., 2009). On the
other hand, the increasing availability of earth observation im-
agery calls for mass processing chains requiring the automation
of the relevant training data set selection. Huang et al. (2008) pro-
posed to automatically select the training samples in forest based
on the dark object concept, that is assuming that the darkest veg-
etation type is always the forest. Unfortunately, this kind of a
priori assumption is only feasible for a limited number of land
cover classes. Another approach consisted in processing a chain
of Landsat image one by one based on a first classification and
extracting the training sample of the next image on the overlap-
ping region with a classified image (Knorn et al., 2009). In this
case, the main disadvantage was a loss of accuracy at each step.

On the other hand, ancillary data have been used to also improve
the automation of change detection workflows, for instance using
machine learning to build a knowledge base (Huang and Jensen,
1997). Nevertheless, image-to-vector land cover change detec-
tion of automated classification are still rare, in spite of the great
potential of conflation and integration methods. In this case, the
information from two digital maps are combined to produce a
third map that is better than both initial maps (Saalfeld, 1988;
Cobb et al., 1998). Based on matching algorithms, these methods
are used for reducing boundary conflicts (Butenuth et al., 2007) or
network registration (Chen, C.-C. and Knoblock, C.A. and Sha-
habi, C., 2006) using, e.g., edge detection filter and snakes. Some
applications used both image and vector data to detect the change
(Schardt et al., 1998; Knudsen T., 2003), but image classification
often remained a necessary intermediate step for conflation.

Recent studies achieved automated detection of new buildings
based on colour information (chrominance) extracted from match-
ing buildings between a vector database and an aerial photograph
(Ceresola et al., 2005). A similar approach was used to classify
land cover with training areas extracted from the vector database
(Walter, 1998, 2004), but in this case the presence of discrepan-
cies inside the training dataset and the spectral heterogeneity of
the land cover classes reduced the accuracy of the classification.
Geographic Object-Based Image Analysis (GEOBIA) addresses
this issue by processing groups of pixels as single objects instead
of independent individual pixels (Hay and Castilla, 2008). Based
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Figure 1: False color composite of the Quickbird image showing
a subset of the study area and a detail of the pansharpened image.

these groups of pixels, called image-objects, more robust charac-
teristics and faster classification can be expected.

In this study, we propose a methodological framework that com-
bines the information of an existing geospatial vector data with
remote sensing data in order to build a new updated and upgraded
vector database. We aimed at selecting consistent training sam-
ples using an automated procedure. This procedure was based on
a non-parametric probabilistic approach to perform an unsuper-
vised screening of image-objects to train a supervised classifica-
tion.

2 DATA AND STUDY AREA

Two study areas were considered in this paper. The first one is
located in a region of Southern Belgium called ”Famenne” and
the second in a region of Southern France called the ”Massif des
Maures”. In both cases, a Quickbird image was processed using
a land cover GIS database. The respective type of landscapes and
GIS database were however quite different.

The method was implemented on a 40 km2 study area in Fa-
menne. The landscape in Famenne is very fragmented. It mainly
consists in small villages, crop fields, pastures and temperates
forests. These forests include deciduous and coniferous stands,
dominated by oaks, beeches and spruces. Figure 1 illustrates
this diversity near one of the villages. We used two fine scale
geographic database to test the proposed method. The image
was a Quickbird scene acquired in April 2007, at the beginning
of the vegetation period for deciduous trees, and is partly cov-
ered by clouds. It was orthorectified by the RPC model refined
with a first order polynomial based on 5 sub-metric ground con-
trol points. The panchromatic and the multispectral images were
then resampled at 70 cm with a cubic convolution and pansharp-
ened using the Bayesian Data Fusion algorithm(Fasbender et al.,
2008). The image was compared with a 1:10 000 vector database
of 2005 produced by the Belgian National Geographic Institute.
It included 31 land use classes that were grouped into 21 land
cover classes. The main discrepancy expected between the image
and the geospatial vector database is the presence of hedges and
isolated trees dispersed in the landscape. These spatial objects
were not included in the polygon layer of the vector database but
are observed on the image. On the other hand, some land cover
changes can be expected because all the forest in the area are
exploited, so there are some clear cut. Furthermore, there can
be small land use changes such as new roads or buildings may
also be present, but but since the landscape is not quickly chang-
ing, these are expected to be very limited. At the end, two land
cover classes were added to the 21 existing classes, one for forest
change and one for hedges and isolated trees, as well as a ”no
data” class for clouds and shadows.

The 300 km2 test area of the ”Massif des Maures” was used to as-
sess the method performance in another context. This landscape

is mainly composed of mediterranean forest, with dispersed res-
idential buildings along the coast and vineyards in between. The
image, acquired in June 2006, had already been orthorectified by
the French National Geographic Institute. This image was cloud-
less and the main differences expected between the image and the
map were the recently burnt and the cleared forest area, which are
key elements for the fire fighters. The vector database used for
image processing was CORINE Land Cover 2000, a 1:100 000
European land cover map with a hierarchical legend. The five
first-level classes of CORINE and an additional ”degraded for-
est” class were used in the study.

3 METHOD

The proposed method is outlined in figure 2 and the different
steps are detailed in this section. The segmentation process and
the selected parameters are described in section 3.1. The result-
ing image-objects are then labelled based on the vector database
in order to build the training samples which are cleaned by iter-
ative trimming (section 3.2). Eventually, the process was com-
pleted by the classification of all image-objects according to the
selected land cover typology (section 3.3).
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Figure 2: Outline of the method

3.1 Segmentation

The segmentation of remote sensing image is a critical step in
geographic object-based image analysis. In the perspective of
land cover classification, image-objects should be as close as pos-
sible to their homologous spatial objects as represented in the
vector map. For the currently existing segmentation algorithms,
this is difficult to achieve in a single-step segmentation because
spatial objects have very different sizes and textures. When the
image-objects are too large (under-segmentation), they may be
overlap with different spatial objects (mixed objects) or include
small artefacts (inclusions). On the other hand, if image-objects
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are too small, they may only partially correspond to the spatial
object (over-segmentation), which reduces the performances of
object-based classification. Instead of aiming at the single best
set of parameters, we took advantage of the multi-scale structure
of the segmentation algorithm to adapt our segmentation result to
the different land covers.

In this sudy, the multi-resolution segmentation algorithm was used
for the segmentation (Baatz and Schäpe, 2000). This segmenta-
tion algorithm can be tuned based on three parameters: the scale,
the weight of shape constraint and the type of shape constraint
(smoothness or compactness). The scale parameter is a threshold
on the shape and the spectral variability of each object. Spec-
trally homogeneous object therefore tend to be larger than spec-
trally heterogenous ones. The shape constraint can help to re-
duce the effect of the spectral variability and is therefore useful to
reduce over-segmentation of spectrally heterogenous spatial ob-
jects, such as the forest. In order to build the most reliable statis-
tics for object-based classification, the objects need to include as
many pixels of the same class as possible. The inclusions in the
objects were detected based on a three level image-object hierar-
chy.

The lower level was built first and focused on the spectral simi-
larity of adjacent pixels. The scale parameter was 30 and shape
was not accounted for at this stage. The upper level was then built
with a large scale parameter (100) and a compact shape (shape pa-
rameter 0.3). A previous study (Radoux and Defourny, 2008) on
the choice of segmentation parameters indeed showed that a high
compactness was particularly useful to delineate textured objects.
Finally, an intermediate level was created by merging the image-
objects of the lower level based on the spectral difference be-
tween them. The mean spectral values of image-objects from the
intermediate level were then compared with the statistics of the
corresponding image-object in the upper level in order to detect
inclusions. With this goal in mind, let us assume that the pixels
inside each upper-level image-object follow a Gaussian distribu-
tion, which is reasonable because, by construction, image-objects
consist in a large number of pixels of similar spectral value. Af-
ter estimating the parameter of this distribution from the observed
pixels, a 95% confidence interval of the pixel values was built for
each upper-level image-objects (µ+/−1.96σ). If the mean value
of the intermediate-object is outside of the interval, it is consid-
ered as an outlier image-object inclusion and the statistics of the
upper-level objects are updated with the remaining intermediate-
level objects. In the text, the term ”image-object” will refer to
these upper-level image-objects with statistics computed without
accounting for the outlier image-objects inclusions from the in-
termediate level.

3.2 Automated training sample selection

The vector database explicitly contains the thematic information
to be extracted in the map. The transfer of this information was
performed based on a GIS-driven analysis. However, an attribute
transfer assumes that there are no discrepancies between the im-
age and the vector database, which is obviously not the case when
the vector database needs to be updated. A statistical outlier de-
tection was therefore performed in order to keep only the repre-
sentative image-objects for each class.

The GIS-driven analysis assumed that the most likely land cover
class for an image-object is the class of the vector database that
covers the majority of its area. A spatial intersection of the database-
objects and the image-objects was thus performed and the area of
each class was computed for each image-object. Each image-
object was then labelled according to the class with the highest

proportion in terms of area. The labelled objects were considered
as relevant class samples when at least 90 % of their area was
covered by the same class from the vector database.

After the preliminary labelling, a non-parametric iterative trim-
ming procedure was used to exclude outliers from the potential
training samples in order to avoid training sample contamination
by discrepancies. This statistical approach consists in computing
the probability density function (pdf ) of a class and excluding
the outliers in an iterative way so that the estimation of the pdf
is improved at each step. At each step, the pdf is thus estimated
with the remaining observations and the new outliers are detected
based on these improved parameters. A threshold (α) is chosen to
find the minimum pdf values likely to belong to the main distri-
bution and the observations with a smaller pdf value are excluded
accordingly(equation 1).





∑

{x∈Rd|f(x)≥t}
f(x)∆x



− (1− α) (1)

where f(x) is the pdf. Contrary to Desclée et al. (2006) and
Duveiller et al. (2008) who used Gaussian distribution in forest
change detection, we used non-parametric distributions to adapt
to more complex cases. These non-parametric pdf were com-
puted on a regular grid by replacing each observation by a Gaus-
sian kernel (Silverman, 1986). More details on the implementa-
tion can be found in Radoux and Defourny (2010). It is worth
noting that each observation was weigthed by its area in order to
avoid over-evaluating the contribution of a large group of small
image-objects inside a group of a few very large objects (isolated
trees in a crop field, boats on the sea).

In Famenne, two different statistical thresholds were tested. The
first threshold was 0.03, which has a low sensitivity to outliers but
a low probability to exclude image-objects really belonging to the
class. The second threshold was set to 0.15, which is likely to de-
tect most of the outliers but with a risk of higher proportion of
false positive. The sensitivity of the subsequent classification re-
sults was assessed with these two opposite parametrisations. Due
to the large proportion of change expected in the Maures region,
only 0.15 was used there.

3.3 Classification

The classification of the image-objects proceeded in two steps.
Based on the image-object characteristics of the training sets, the
first step classified the image-objects not included in the train-
ing samples. The second step refined the resulting classification
based on the GIS-driven probabilities and some specific classifi-
cation rules based for handling discrepancies.

The three most discriminant characteristics were selected for the
classification of all objects. The maximum likelihood classifica-
tion algorithm, based on the theorem of Bayes (equation 2), is
then used to find the most probable class Ci conditionnally to the
image-object characteristics X .

P (Ci|X) = P (X|Ci)P (Ci)/P (X) (2)

where P (Ci|X) is the probability to observe Ci conditionally to
X and P (X) is a normalising value that can be ignored in this
case. Contrary to the classical approach that could be limited by
its Gaussian assumption Frery et al. (2009), the non-parametric
pdf was computed for each class based on the trimmed training
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samples in order to estimate P (X|Ci). Furthermore, as we as-
sumed that the vector database is globally reliable, we estimated
the prior P (Ci) based on the proportion of each class in the vec-
tor database, contrary to many application of maximum likeli-
hood classification that need to assume that all classes have the
same probabiliy due to a lack of information. With a large num-
ber of classes, the use of this prior information is of paramount
importance to reduce the risks of contamination of the classifica-
tion by very unlikely classes.

After the maximum likelihood classification, a set of decision
rules was applied to the classified image-objects in order to defini-
tively label the image objects. These rules were of two types: re-
fining the classification based on the geographic vector database
and handling discrepancies that require the creation of new classes.

3.4 Accuracy assessment

The thematic accuracy of the method was assessed based on a
probabilistic sample of image-objects selected from the object
list. Based on the distribution of the size of the objects and the
number of objects in the maps, the number of sampling units was
set to 700. The reference dataset was created by photointerpre-
tation after overlaying the image-object boundaries on the pan-
sharpened image. Photo-interpretation ambiguities were resolved
by a complementary field survey conduced in 2008 with a GPS. In
the ”Maures” region, there was no field validation but the photo-
interpretation of the 1200 image-objects selected on the Quick-
bird image was assisted by a reference vector database from the
local fire fighters. The object-based classification accuracy (CA),
reflecting the performance of the classifier, and the object-based
overall accuracy (OA), reflecting the quality of the resulting map
(Radoux et al., xxxx), were computed based on equations 3 and
4, respectively.

ĈA =
1

n

n∑
i=1

Ci (3)

ÔA =
1

sT

(
n∑

i=1

CiSi + ĈA

N∑
i=n+1

Si

)
(4)

where n is the number of sampling units and N the total num-
ber of objects in the map; Ci = 1 when the ith image-object is
correctly labelled and 0 otherwise; sT is the total area of the map
and Si the area of the ith image-object.

4 RESULTS

The outliers detection in the multiscale segmentation scheme im-
proved the class characteristics by reducing the internal class vari-
ance. This effect was particularly useful for the standard devi-
ation of the pixels inside image-objects, but also for the mean
values when the area of the artefacts was large compared with
the upper-level image-objects. Around 15% of the intermedi-
ate level image-objects were detected as inclusion and this de-
tection was particularly effective in homogeneous classes. Figure
3 shows some typical inclusions for different land cover classes.
On the other hand, about 10% of the image-objects selected in
the reference database of the Famenne site were considered as
mixed. This occurred when two different land cover shared ap-
proximately the same area inside the upper segmentation level,
so that lower-level image-objects could not be separated.

0 100 20050 Meters

Figure 3: Inclusions (in grey) extracted from the upper-level
image-objects (bold black) illustrated on a subset in the Mau-
res region: road segments (top left), buildings (centre) and forest
gaps (bottom right).
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Figure 4: Preliminary labelling illustrated on a subset of the Fa-
menne study area. From left to right, Quickbird image, labelled
image-objects and vector database from the Belgian NGI.

About 60% of the image-objects had an overlapping proportion
above 90% and all classes were represented in the training set ex-
cept railways and rivers in Famenne that were always hidden by
tree alignments. However, the class ”reed-bed” was remove from
analysis because it only corresponded to three objects. Figure 4
shows the candidate training samples resulting from the intersec-
tion of the images-objects and the vector database in Famenne.

In Famenne, the iterative trimming excluded respectively 6.3 and
30.3% of the potential training samples with 0.03 and 0.15 thresh-
olds, respectively. In case of unfrequent land cover classes (less
than 30 image-objects), the trimming did not modify the class
distribution because their variability was too high to decide ei-
ther or not a single observation should be part of the distribu-
tion. In the ”Maures” region, the only statistical threshold tested
was 0.15, resulting in screening out 25% of the potential train-
ing image-objects. Qualitatively, the correspondance between the
image-object outliers and the spatial object outliers was better in
the Maures than in Famenne, where the clear cut detection in
deciduous forest was very poor due to the absence of leaves on
deciduous trees at this period.

The results of the classification workflow were satisfactory, but
the thematic overall accuracy was improved thanks to a priori
probabilities derived from the vector database. In Famenne, the
values of the overall and classification accuracy were higher for
α = 0.03 (see table 1). As the vector database was very good
at the beginning, it can be seen that it is difficult to improve its
overall accuracy when adding new classesas they are additional
sources of errors. On the other hand, it is worth noting that the
overall accuracy increased from 75 to 77% in the best case when
the mixed objects were not accounted for in the reference data
set. In the Maures region, the object-based overall accuracy was
of 74%, which significantly improved the overal accuracy of the
original vector database (≈ 60% if we consider that the CORINE
land cover had to include a ”degraded forest” class). Table 2
shows the confusion matrix per image-objects.

The geolocation quality was not quantitatively assessed, but the
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Table 1: Overal and classification accuracy (n=694) in the Fa-
menne study area for different scenarios

Process OA (%) CA (%)

α = 0.03 without decision rules 71 71
α = 0.15 without decision rules 70 69

α = 0.03 with decision rules 75 75
α = 0.15 with decision rules 72 72

Original vector database 75 75

Table 2: Confusion matrix (n = 1200) for the classification of the
multispectral Quickbird image in the Maures region

Urb. Agri. For. Water Degr.F.
Urban 259 10 25 4 28

Agriculture 27 150 49 0 36
Forest 2 0 261 0 42
Water 1 0 0 24 0

Degraded forest 39 33 57 0 153

results were consistent with the photo-interpretation. In the Fa-
menne area, the high quality of the geographic vector database
was maintained in the results. It was therefore preferable to keep
the generalized lines. In the Maures, however, there was an obvi-
ous improvement of the object delineation, as illustrated on figure
5.

5 DISCUSSION

The proposed workflow showed that geographic object-based im-
age analysis could help to bridge the gap between remote sensing
image interpretation and GIS database. For both case studies, the
object-based overall accuracy was close to 75 % without any in-
teractive training data set selection. Most of the errors concerned
the additional classes (degraded forest, hedges, clear cuts...) not
initially included in the existing database and artefacts such as
the clouds and their shadows. It is also worth noting that the con-
fusion with ”water” in the Maures region were due to shallow
water along the coast. These results are thus promising towards
an operational image processing, yet different parts of the process
could still be improved.

• Segmentation improved the labelling automation and the class
discrimination. Despite the performance of the segmenta-
tion algorithm, it remained a critical step due to the ne-
cessity to adjust several parameters. The main issue is the
creation of mixed image-objects. The use of a multi-scale
approach was able to strongly reduce the number of these
mixed image-objects, but was not able to remove all of them.

• The second issue is the selection of image-object character-
istics for trimming and classification. More than 10 different
variables were used as first and second best choices for the
trimming of the 22 different classes (the 21 existing land
cover classes and the expected shadows). However, only
three variables were included for the classification because
of the selected algorithm performance. Other feature selec-
tion method or classification algorithms better adapted to
large dimensional spaces (kNN, SVM) could possibly pro-
vide better results.

Nevertheless, the proposed sample selection method proved to be
robust and can benefit from the numerous existing vector database

0 1 20.5 Kilometers

Figure 5: New delineation from the GEOBIA (right) compared
with the original data (left)

to train any classification algorithm. It is then of paramount im-
portance to properly define the legend, and fully documented land
cover typology supported by classification systems such as LCCS
(Di Gregorio and Jansen, 2000) should help to better incorporate
to information for a direct image-to-map comparison. Otherwise,
it is necessary to adapt the land use class of the geographic vector
database into land cover classes before performing the analysis.
This was done for the NGI vector database, which was primarily a
land use geographic database. Furthermore, it is worth noting the
ambiguity of the forest class, which are not necessarily covered
by tree in their land use definition.

The proposed method could also be used to facilitate map update
by detecting the discrepancies between the image and the map
for each class. As the values of the trimmed pdf are computed
for every image-object and every class, these can be stored in the
database to document the likelihood of the discrepancies.

6 CONCLUSION

The proposed method provided a GEOBIA framework to com-
bine the information of a remote sensing image with a vector
database. Thanks to its flexible statistical approach, the method
could be used on different study areas without changing its imple-
mentation. After building appropriate image-objects and optional
decision rules for the labelling of new classes, the all process did
not require any manual labelling and relied on a single tuning pa-
rameter. Further work is necessary to select the best parameters
for the classification or to use classification algorithms designed
for large dimensionnality. As the proposed method provides large
and clean training samples, these methods would be used in opti-
mal conditions.
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