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ABSTRACT: 

A method is proposed for building and road detection on VHR multispectral aerial images of dense urban areas. 
Spatial and spectral features of segmented areas are classified using a 3-class SVM integrating some a priori and 
contextual information to handle unclassified patterns and conflicts. Geometrical object features and additional 
information improve the classification accuracy in the difficult case where many building roofs are grey like the 
roads and have similar geometry. Also, road network regularization is suggested to improve the classification 
accuracy.  

 
1. INTRODUCTION 

Classification accuracy on remote sensing images is important 
for development planning, emergency response or earth survey. 
A current challenge is to provide both accurate and automatic 
classification algorithms. We aim at extracting roads and 
buildings in urban area aerial images. Our images have a very 
high spatial resolution (VHR) of 0.5m per pixels and have three 
optic spectral bands (RGB multispectral channels). 
Classification applications in remote sensing usually work at the 
pixel level, using only spectral information. Also, extracted 
pixel spectral features are usually classified with the Gaussian 
maximum likelihood (ML) supervised classifier (Bi, 06). 
However, VHR urban images contain a significant amount of 
spatial information, which should be used to make possible the 
precise identification of small structures such as houses or 
narrow roads. Contextual information can be used by means of 
Markov random fields (MRF) (Ja, 02), morphological profiles 
(MP) (Pa, 05; Fa, 08; Tu, 09) or image segmentation (Ta, 09; 
Li, 04; Ta, 10; Si, 10) approaches. 
The MPs techniques are fast and intensively used in 
hyperspectral imaging. In that case, a pixel is often described by 
both a spectral and a geometrical pattern (the MPs), which can 
be concatenated to form a composite pattern before 
classification (Fa, 08). Geometrical features generally invalid 
the Gaussian assumption for class distributions and 
nonparametric supervised classifiers such as decision trees, K-
neirest-neighbours (Bi, 06), neural networks (Fa, 2006; Be, 99) 
or kernel methods such as Support Vector Machines (SVMs) 
(Bi, 06; Fa, 08; Tu, 09) are generally used. With multispectral 
images, SVMs often provide a better classification accuracy 
than other methods (Me, 04; Fo, 04), because they handle small 
ratio between the number of available training samples and the 
number of features. However, SVMs were designed to solve 
binary classification problems, and multi-class SVMs are 
generally handled by the “one-against-all” or the “one-against-
one” strategy (Bi, 06; Me, 04). 

The use of image segmentation approaches overcomes the scale 
selection problem of the MPs methods (Ta, 10). One way to use 
segmentation consists in merging the segmentation map with 
the results of a classical pixel wise spectral classification by 
assigning to a segmented area the predominant pixel class 
within it (majority vote) (Ta, 09, Ta, 10). Other works suggest 
computing spectral pattern over segmented area (Ta, 10) and 
then (object) patterns are classified.  
 
In the part 2 of this paper the two previous methods using 
segmentation are compared with the classical pixel wise spectral 
classification procedure, in the case where each method uses a 
3-class SVM classifier handled by the “one-against-all” 
strategy. Unfortunately, due to the presence of class overlaps, 
problems of bad detection for the class “building” and of false 
alarm for the class “road” occur. Because we are in the context 
of dense urban VHR images with class “road”, “building” and 
“other”, class geometries are more characteristic and 
discriminative with respect to each other than with most of the 
previous works. Thus a solution is presented in part 3 consisting 
to perform a better exploitation of the available spatial 
information (provided by segmentation) by computing object 
geometrical features over segmented areas, and then classifying 
the composite spectral-spatial (object) patterns as previously 
with a 3-class SVM classifier. The fact to concatenate spectral 
and spatial patterns improves class separability. However, 
another limitation is that the final class attribution is performed 
by applying the “winner-take-all” rule to the binary SVM 
classifier discriminant function values (Me, 04), because this 
information can suffer from a lack of reliability. In order to 
overcome this problem, a solution using contextual information 
and a priori knowledge is suggested in part 3 to handle conflicts 
and non-assigned patterns. In part 4, a road network refinement 
is suggested, filling the gaps in the roads and smoothing road 
borders, on the basis of straight segment detection. Part 5 is the 
conclusion. 



2. TRADITIONNAL PIXEL AND OBJECT 
CLASSIFICATIONS WITH SVM 

Among the numerous existing supervised nonparametric 
classification methods, the compact kernel SVM classifier was 
chosen because of its superiority in terms of classification 
accuracy in the context of remote sensing images, and its ability 
to handle the curse of dimensionality (Bi, 06; Fa, 08; Me, 04; 
Fo, 04; Si, 10). The Gaussian kernel provides often the best 
results, and is used in this paper. In this case, the SVM 
algorithm has two parameters (for each class): the 
misclassification penalty term and the Gaussian width. 
 
2.1 Classification schemes 

In this part, three SVM-based classification methods are 
explained. These methods are already used in the literature, and 
are the followings: 
 
1- The classical pixel wise spectral classification with SVM. A 
pixel is first described by the 3-d RGB colour vector, and then 
patterns are classified with SVM. 
2- The object spectral classification with SVM. A segmentation 
algorithm is applied first to the image; second the 3-d RGB 
mean colour vector describes segmented areas, and third 
(object) patterns are classified with SVM. 
3- The resulting pixel classification map of method 1 is merged 
with a segmentation map established independently. The 
predominant pixel class within a segmented area is assigned to 
the whole area (majority vote). 
 
Note that methods 2 and 3 exploit geometrical information 
thanks to segmentation. In this paper, the mean shift 
segmentation algorithm is used (Ch, 95; Co, 02; Si, 10). Details 
about the mean shift can be found in previous works (Si, 10), 
and a result is shown on figure 1. 
 

 
Figure 1.  Mean shift segmentation results on a part of a colour 
VHR aerial image. 
 
In this paper we focus on building and road extraction. In order 
to achieve comparisons, both pixel and object SVM classifiers 
use the same 3-class training set, composed of four hundred 
“building”, four hundred “road” and two hundred “other” 
elements. It was built at the object level by manually assigning 
to a class some mean shift areas situated outside the 
classification area, and computing over each one the 3-d mean 
colour vector. Because the SVM algorithm is a 2-class 
classifier, our 3-classes are handled by the “one-against-all” 
multiclass SVM strategy. It consists in using three binary SVM 
classifiers independently, one for each class. For each class, first 

a 2-class training set is built by opposing the elements of the 
training set of the considered class to the elements of the two 
other classes. Second, the two SVM parameter values have to 
be set. We optimize them using cross-validation, by minimizing 
the false classification rate over a 2D-grid of ten thousand 
couples of values for the two tuned parameters. This is costly 
but ensures to find the global minimum. In order to have a very 
high precision, this procedure is repeated three times in a coarse 
to fine scheme. Finally, the optimal values are used to learn the 
classifier on the entire 2-class training set. When a new pattern 
x  is presented, each binary classifier first computes its linear 
discriminant function value (the SVM decision boundary is a 
hyperplane linear model in the final feature space (Bi, 06), 
which is a signed measure of the distance of x  with respect to 
the hyperplane, )(xd . Second, the final decision (class label) is 
established by looking to which side of the hyperplane x  
belongs; i.e. if 0)( >xd , x  is attributed to the considered 
class, else x  is not attributed to the class. Finally, when all the 
patterns are classified, we have three binary-labeled images 
(independent binary SVM classifier final decisions), one for 
each class. There are eight possibilities to handle, comprising 
four conflict situations (multiple assignments) and the non-
attribution case. A 3-class classifier is generally built by taking 
the final decision with the “winner-take-all” rule on the 
discriminant function values of the binary classifiers. This 
strategy enables to handle easily and automatically conflicts and 
unclassified patterns. 
 
2.2 Experimental results 

The three classification methods of part 2.1 have been evaluated 
on the part of a multispectral VHR aerial image of dense urban 
area of figure 2.a. This image of Brussels centre (Belgium) 
contains 2393x1804 pixels, with a spatial resolution of 0.5m per 
pixel, and is composed of three optic spectral bands (RGB). 
Figure 2.b is the ground truth built by visual interpretation. The 
red on the ground truth corresponds to areas where it was 
visually difficult to discriminate roads and buildings, and thus 
road or building detections on these areas are considered as 
exact. The classification maps obtained with the three methods 
of part 2.1 are shown on figure 3. Some corresponding 
descriptive measures of classification accuracies are reported in 
table 1. They were computed from the 3x3 confusion matrix (in 
terms of pixels) between the considered 3-class classified image 
(examples are on figure 3) and the 3-class ground truth image 
(figure 2.b). 
Figure 3.a shows that the pixel wise spectral classification 
manifests a salt-and-paper appearance, as it is usually the case 
when only spectral information is used. It is can be seen in table 
1 that with this method, all classes suffer from a bad detection 
problem (especially the “building” and “other” classes). In 
addition, a false alarm problem occurs for the class “other”, and 
especially for the class “road”. The method 2 provides also poor 
results, with important bad detection problem for the “building” 
and “other” classes, and false alarm problem for the “road” 
class. 



   
 

   
Figure 2. Brussels centre: (a) part of a colour aerial image with 
a spatial resolution of 0.5m, (b) ground truth. 
 

   
 

   
 

   
Figure 3. 3-class SVM classification map obtained by: (a) pixel 
spectral classification (method 1), (b) object spectral 
classification (method 2), (c) majority vote over areas (method 
3). Classification accuracies are reported in table 1. 

 Pixel 
spectral 
SVM 

classification 
(method 1)  

Object 
spectral 
SVM 

classification 
(method 2)   

SVM + 
majority vote 

over area 
(method 3) 

 Overall 
accuracy 

0.56 0.54 0.60 

Producer’s 
accuracy 

road 

0.66 0.92 0.87 

Producer’s 
accuracy 
building 

0.55 0.43 0.55 

Producer’s 
accuracy 

other 

0.50 0.48 0.50 

User’s 
accuracy 

road 

0.30 0.31 0.34 

User’s 
accuracy 
building 

0.78 0.88 0.85 

User’s 
accuracy 

other 

0.65 0.82 0.81 

 
Table 1.  3-class classification accuracies (in percentage). The 
SVM final decisions are taken with the “winner-take-all” rule 
on the discriminant function values of the binary classifiers. 
 
A significant improvement is obtained with the method 3. 
However, results are still not satisfactory because the overall 
accuracy is only equal to 60%. Also, the problems of bad 
detection for the “building” and “other” classes and of false 
alarm for the “road” class remain. These problems are mainly 
due to the fact that in our case many building roofs and “other” 
areas have similar grey spectral signature as road pixels (class 
overlaps). In our context (urban VHR images, with class “road” 
and “building”), a solution to improve the class separability 
consists in exploiting more deeply the available geometrical 
information provided by segmentation. This can be performed 
by describing segmented areas with geometrical features and is 
the topic of part 3. 
 

3. SPECTRAL-SPATIAL OBJECT CLASSIFICATION 
WITH SVM 

In order to overcome the class overlap problems of the methods 
of part 2, we suggest computing some spatial object features. 
We consider the method 2 of part 2.1, and in addition with the 
mean colour vector we compute the area and the eccentricity of 
the segmented area. The eccentricity computation is described 
in (Si, 10). Finally, the 3-class SVM classifier operates now on 
5-d composite spectral-spatial object patterns. This suggested 
method is called the method 4. The classification maps obtained 
with it is on figure 4.b, and some corresponding descriptive 
measures of classification accuracies are reported in table 2. 
It can be seen in table 2 that the overall accuracy of the method 
4 is of 6% upper than the one of the method 3 (which is the best 
among the previous methods, see table 1). In fact, the 
“building” bad detection and the “road” false alarm problems 
are still present but significantly attenuated. It can be noticed 
however that the “other” bad detection problem remains 
unchanged; this is because the “other” class has no specific 
shape and size (geometrical features are not useful for this 
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class). This significant improvement with respect to previous 
methods shows that the concatenation of the spectral pattern 
with area and eccentricity features improves class separability in 
our context. However, the problems are not totally cancelled 
and that shows the presence of remaining class overlaps. It 
seems to be difficult to solve entirely this problem because in 
our context many building roofs and “other” areas have both 
similar grey spectral signature and rectangular geometry as road 
objects.  
 
Up to now, the 3-class SVM final class attribution has been 
performed by applying the “winner-take-all” rule to the three 
binary classifier discriminant function values. This is a 
straightforward procedure enabling to handle easily conflicts 
between classes (multiple assignments) and unclassified 
patterns. A conflict occurs when more than one discriminant 
function values are positives, and a non-assignment occurs 
when all the three discriminant function values are negatives. 
Such areas can be observed on figure 4.a, which is the 
superimposition of the three binary-labelled images obtained 
with the method 4. It can be noticed that with this example the 
conflict between “road” and “building” classes (in red) is more 
present than the other types of conflicts. Also, unclassified areas 
(in white) are relatively numerous. Discriminant function 
information can suffer from a lack of reliability. For instance, if 
all the discriminant function values are negatives, even the 
“winner” is on the bad side of the hyperplane. Also, in this case 
the “winner” is the closest from the hyperplane and the closer 
x  is from the hyperplane, the less reliable the decision is. An 
idea to overcome this limitation is to use some additional 
information in the final class attribution process (in case of 
conflicts or non-assignments), in addition to the discriminant 
function values. In our context, we can exploit some a priori 
knowledge and contextual information. Because unclassified 
areas are often larges, it is difficult to establish by visual 
observation some pertinent contextual rules to handle them. 
However, some a priori knowledge can be used. In fact, the 
detected “building” and “other” bad detection and  “road” false 
alarm phenomenon enable to assume that an unclassified area is 
probably not a “road” object, but rather a “building” or “other” 
one. This assumption has been confirmed by visual observation. 
Thus with unclassified areas we suggest considering only the 
discriminant function values of class “building” and “other” 
with the “winner-take-all” rule, preventing the “road” class 
attribution. Now conflict areas are investigated, with a focus on 
the road-building one because it is the single being significant. 
In that case, applying the “winner-take-all” rule on the three 
discriminant function values is theoretically suitable. However, 
visual observation has shown that contextual information can be 
advantageously used. For example, if buildings (or roads) 
mainly surround a conflict area, most of the time it is a building 
(or a road). These contextual rules have showed better 
efficiency than the “winner-take-all” rule on discriminant 
function values. The drawback is that contextual rules can be 
difficult to establish in case of more classes are defined, and 
depend on image content. It can also be noted that context 
exploitation is a post-classification processing step. This 
suggested method handling non-assignments with a priori 
knowledge and conflicts with contextual information is called 
the method 5. Its classification map is on figure 4.c, and the 
corresponding classification accuracies are in table 2.  
It can be seen that the overall accuracy is of 3% upper than the 
one of the method 4, and the most significant improvement is 
for the class “building” (producer’s accuracy of 73%). The 
“other” bad detection and the “road” false alarm problems are 

still present but attenuated. This significant improvement with 
respect to method 4 shows the importance of additional 
information.  
 

    
 

    
 

    
Figure 4. (a) superimposition of the tree SVM binary classifier 
final decisions. 3-class SVM classification map obtained by: (b) 
object spectral-spatial classification (method 4), (c) method 4 + 
a priori knowledge and contextual information (method 5). 
Classification accuracies are reported in table 2. 
 
 Object spectral-

spatial SVM 
classification with 
“winner-take-all” 

(method 4)   

method 4 + a priori 
knowledge and 

contextual 
information 
(method 5)   

 Overall accuracy 0.66 0.69 
Producer’s 

accuracy road 
0.85 0.79 

Producer’s 
accuracy building 

0.66 0.73 

Producer’s 
accuracy other 

0.50 0.54 

User’s accuracy 
road 

0.41 0.46 

User’s accuracy 
building 

0.82 0.80 

User’s accuracy 
other 

0.82 0.79 

 
Table 2.  3-class SVM classification accuracies (in percentage). 
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4. POST-CLASSIFICATION REGULARIZATION 

This part aims at improving the classification accuracy by 
performing a refinement of the road network, filling the gaps in 
the roads and smoothing road borders, on the basis of straight 
segment detection. 
Consider a 3-class labelled image such as the one of figure 4.c. 
First, a binary image containing the road network (closed and 
one pixel width) boundaries is formed (the white pixels in the 
example of figure 5.a). Second, straight segments are detected 
on this image (the pixels in red in figure 5.a). Third, segments 
are associated according to two sets of geometrical rules 
forming some rectangular areas (the red and blue pixels of 
figure 5.b), which are then set to the class “road” in order to 
regularize the road network. 
Straight segment detection principle: the user enters two 
parameters, which are the number of pixels of a segment and a 
threshold on the residual (quality of the fit). First the binary 
image is scanned, and for each white pixel encountered, a 
neighboring white pixel is searched and so on up to the imposed 
number of pixels is reached. Then a first test is applied to the 
segment: the distance between the first and the last pixel must 
be larger than the number of points multiplied by 3/4. In case of 
success, the straight line model parameters are estimated by 
mean squares, and the squared root-mean-square error (residual) 
is computed in order to assess a quality measure. A second test 
is then applied: if the residual is lower than a threshold 
(provided by the user), a straight segment is detected, and 
parameters are stored in an array as well as the residual. At the 
end, we have a list of straight segments. This list is then ordered 
with respect to the residual values, and a non-maxima 
suppression with respect to the residual is performed in order to 
avoid aggregates. A segment is eliminated if the distance of one 
of these two extremities is smaller than 7 pixels from a higher 
residual segment, and if the extremity projection belongs to this 
second segment.  
Segment association principle: two geometrical sets of rules are 
used to associate segments. The first handle the case of two 
close and collinear segments. Two segments are associated if 
the distance between their centers is lower than a threshold 
given by the user, and if the angular distance is lower than 3°, 
and if the distance from a center of one segment to the straight 
line of the other (and vice-versa) is smaller than 5 pixels. In 
case of association, a resulting straight line is build between the 
farthest extremities of the two segments and class “road” is 
attributed to the a 15-pixel width rectangle on the road side on 
this line if more than half of the pixels on this area are initially 
of class “road”. The second set of rules handle the case of two 
close, parallel and non-collinear segments. If the two distances 
from the centers to the lines belongs to the interval in are 
comprised between 7 and 25 pixels, and if the angular distance 
is lower than 3°, and if the distance between the segment 
centers is lower than a threshold given by the user, and if the 
mean of the centers of the two segments belongs to the road 
sides of the two segments, an association is performed. Then 
class “road” is attributed to the part between the two segments if 
more than half of the pixels on this area are initially of class 
“road”. 
We have used the segment detector algorithm with a number of 
pixels equal to 30, and with a threshold on the residual equal to 
10. Then with the segment association algorithm the two 
thresholds (for rule 1 and 2) were equal to 180 and 100 pixels. 
This four parameter configuration is noted {30, 10, 180, 100}. 
Two other configurations were tested, {50, 20, 380, 200} and 
{80, 100, 600, 400}. Results were combined to work with 
several segment lengths (figure 5.b shows the final 

combination). It can be seen in table 3 that the overall accuracy, 
and most of the other measures, are better than without 
regularization (compare with method 4 in table 2).                                                          
 

     
 

     
Figure 5. (a) white: road network boundaries on a part on the  
image of figure 2.a, red: straight line segment detected ; (b) the 
red and blue rectangle areas (resulting from two different 
segment associating rules) are set to class “road” for road 
network regularization (method 6). 
 
 method 5 + segment regularization 

(length 30, 50 and 80 pixels) (method 6)   
 Overall accuracy 0.72 

Producer’s 
accuracy road 

0.81 

Producer’s 
accuracy building 

0.75 

Producer’s 
accuracy other 

0.55 

User’s accuracy 
road 

0.49 

User’s accuracy 
building 

0.81 

User’s accuracy 
other 

0.79 

 
Table 3. Classifier of method 5 with regularization classification 
accuracies (in percentage). 
 

5. CONCLUSION 

Building and road detection on VHR aerial images of dense 
urban areas has been investigated. The suggested approach 
contains segmentation and classification algorithms especially 
well adapted to multispectral data, and both spatial and spectral 
information are used at the object level. The full exploitation of 
the geometry improves class separability, attenuating the bad 
detection and the false alarm problems. However, problems are 
still present because in our case even geometry is not enough to 
suppress class overlaps. A second suggestion is to integrate a 
priori knowledge and contextual information around objects in 

a

b

method 6 
 



the decision process, attenuating again these problems, above 
all for the “building” class. Finally, a post-classification 
algorithm has been suggested to regularize the road network, 
improving the classification accuracy. 
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