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ABSTRACT:

This article presents a method to assess the accuracy of vegetation maps for which contextual information has been included in the
classification process. It is well known that land use classification may benefit from combining spatial and spectral information.
Consequently, many classification techniques incorporating spatial information have been implemented. To compare various contextual
classification techniques, the shape of vegetation patches, in the spatially enhanced maps, are statistically linked to their counterparts
in the spectral classification result, on which these spatial enhancements are applied. To this end, measures for the change in shape of
patches are introduced. The shape of any patch is characterized by the edges between the patch and its neighbors. Therefore, patch
shape can be represented by an edge map in which each pixel gets the value of the number of classes that are different from the class
label of the central pixel in a four-adjacency neighborhood. Rather than defining a single metric for the edge map difference, an error
matrix is used to depict not only how many edges have changed with respect to the reference, but also by how much they have changed.
The method is tested on contextual classification results of heathland vegetation.

1 INTRODUCTION

Elements such as habitat loss, climate change and invasive alien
species are important causes of the current biodiversity crisis.
Many Western European heathland sites are under pressure by
this threat. The goal of the Habitat directive of the European
Union is to protect rare or endangered habitats or species. One
of the specific measures is the foundation of the Natura 2000
network (EEC, 1992), an ecological network of protected areas,
spread over the whole continent.

Nature conservation for these areas is the responsibility of the
European member states, each of which needs to take appropriate
measures to bring and maintain each site in a good conservation
status. Moreover, the member states are committed to report on
the status of the Natura 2000 sites, habitats and species on a reg-
ular basis. This way, it is possible to keep track of the trends and
take conservation measures whenever appropriate.

Such a commitment requires a thorough knowledge of the habi-
tats of every Natura 2000 site, both in terms of the distribution
of the habitat patches, as in terms of the quality of each patch.
Traditional methods, such as field surveys and visual interpre-
tation of aerial photographs, cannot fulfill these requirements by
themselves. They are expensive, time consuming and are strongly
subject to inter-surveyor errors.

Remote sensing can prove to be an important tool to aid in habi-
tat monitoring. Unfortunately, few readily applicable procedures
have been developed so far (Keramitsoglou et al., 2005, Kobler
et al., 2006). One reason for this is that habitats are usually not
homogeneous vegetation patches of a single or a few dominant
species. Instead, they show a high variety in facies at different
scale levels. At a large scale, the facies of the same habitat may
differ between regions as a result of climatic or soil conditions.
But also at a very fine scale, most habitats are in fact intricate
mixtures of different land cover types.
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To assess this gap, a framework has been developed to deal with
the complete trajectory, from breaking down habitats into land
cover types, to reconstructing the habitat types and their conser-
vation status from land cover classification results. This frame-
work has been developed for Western European heathlands and is
part of a Belgian multidisciplinary project on habitat status mon-
itoring, called Habistat (Haest et al., n.d.).

Within the Habistat project, a hierarchical classification scheme
has been constructed, reflecting the structural dependencies that
are present in the field. This scheme allows for incorporating
contextual information in the classification process. To this end,
classification is performed using a tree that resembles the hierar-
chy of the classification scheme, and modeling the spatial depen-
dencies as Markov Random Fields (MRF) (Geman and Geman,
1984), one for each node of the tree.

However, due to the nature of the ground reference data, which
is limited to isolated pixels in homogeneous areas, validating this
technique with conventional methods, like resubstitution, hold-
out or cross-validation, provides little information on transitions
between vegetation patches, and their spatial extent.

To address this issue, a method has been developed to link the
shape of vegetation patches, in any classification result that uses
spatial information, statistically to their counterparts in the spec-
tral classification results that these spatial methods stem from.
The effects of using spatial information can be pictured by in-
troducing measures for the change in shape of edges between
patches with respect to the spectral classification result.

Using these measures together with conventional methods, the
result from the hierarchical MRF classification is compared to the
result of a simple smoothing technique. This comparison shows,
as expected, that both methods provide smoothing, yet, at the
same time, the MRF result preserves patch shapes much better
than the simple smoothing result.

Section 2 describes the contextual classification framework and
the use of Tree-Structured Markov Random Fields. Section 3



introduces the patch-based validation method. Section 4 shows
experimental results on heathland data. Finally, section 5 presents
the conclusions and elements for future research.

2 CONTEXTUAL CLASSIFICATION

2.1 Framework

Within the project framework, the Natura 2000 habitats have been
translated into land cover types through a hierarchical classifica-
tion scheme with 4 levels of detail. The first level comprises only
6 classes: heathland, grassland, forest, sand dunes, water bod-
ies and arable fields. Level 2 and 3 mostly determine specific
habitat types of the Natura 2000 programme, containing 11 and
17 classes respectively. Level 4 comprises 24 classes, focusing
on vegetation structural elements that determine the conservation
status of the habitat types.

The unique way in which the data have been subdivided offers
the freedom of classifying on a per-level basis, but also allows us
to classify hierarchically, one level after another. In addition, in
search for obtaining more readily interpretable vegetation maps,
including textural/contextual features in the classification process
has been an important consideration.

It is well known that land use classification may benefit from
combining spatial and spectral information. Consequently, many
classification techniques incorporating spatial information have
been implemented.

In general, there are several strategies for including spatial infor-
mation in the classification process, among others:

• Performing classification after first segmenting an image
(Akcay and Aksoy, 2008, Driesen et al., 2009).

• Including spatial information in the feature vectors together
with the spectral information (Fauvel et al., 2008).

• Incorporating spatial information as prior information in a
Bayesian classification framework and modeling the depen-
dencies between neighboring pixels as Markov Random
Fields (MRF) (Berthod et al., 1996).

In (Poggi et al., 2005) a recursive supervised segmentation al-
gorithm based on a tree-structured Markov Random Field (TS-
MRF) is proposed. A binary tree is constructed, exploiting the
hierarchical structure exhibited in the image. The leaves of this
tree correspond to the end classes. The TS-MRF model describes
a K-ary label field by means of a sequence of binary MRFs, each
one corresponding to a node in the tree. The hierarchical structure
of the heathland data makes this technique especially interesting.

2.2 Tree-Structured Markov Random Fields

In the following, we assume y to be a data point and x to be a
class label out of a total of K classes. The applied classification
method is a supervised segmentation algorithm based on a Tree-
Structured Markov Random Field Model (TS-MRF). A random
label field X defined on a lattice S is an MRF with respect to a
neighborhood system η, if

p(x) > 0, ∀x ∈ X , and
p(xs|x− xs) = p(xs|xη(s)) (1)
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Figure 1: Example Tree.

for each site s, with η(s) the neighbors of s. The distribution of
an MRF corresponds to a Gibbs form (Li, 2001)

p(x) =
1

Z
exp [−U(x)] =

1

Z
exp

[
−
∑
c∈C

Vc(xc)

]
(2)

where Z is a normalizing constant, U(x) is the energy, c is a
clique, i.e., a set of neighboring sites, and the Vc(·) are called
potentials.

If, for sake of simplicity, the binary Potts model is used and only
two-site cliques are considered, then the clique potentials are a
function of the clique site, given by

Vc(xc) =

{
β(xc,xs), if xc 6= xs

0, otherwise
(3)

with β(k,l) > 0 the edge-penalty parameters for all pairs of
classes k and l.

The TS-MRF model describes a K-ary label field by means of a
sequence of binary MRFs, each one corresponding to a node t in
the tree T . As a result, rather than using a single set of parameters
which are estimated based on the whole image, multiple sets of
parameters become possible, each set adapted to the separation
between two classes. Fig. 1 shows an example tree with 4 end
classes.

In general, given a binary tree structure with K terminal nodes,
and consequently K classes, the number of internal nodes, and
therefore the number of parameters, when using the Potts model,
will be K − 1, rather than (1/2)(K − 1)K.

Assuming theK classes follow a Gaussian distribution for which
estimates of the means and the covariance matrices are known,
the algorithm iteratively optimizes the realization xt and the value
of βt for each node t of the tree, each time starting from a purely
spectral segmentation. In general, the algorithm looks as follows:

1. initialization: node t = 1, initialize St, the set of locations
classified as the class corresponding to node t, as S, the orig-
inal image

2. estimation: ∀s ∈ St, compute p(ys|xts = l(t)) and
p(ys|xts = r(t)), with l(t) and r(t) the left and right child
of t, using Maximum Likelihood Estimation (MLE).

3. optimization: find the estimates of xt and βt as

(xt, βt) = arg max
(xt,βt)

p(xt|βt)p(y|xt) (4)

by iteratively fixing βt while computing xt and vice versa
until convergence, starting from βt = 0.



4. segmentation: Sl(t) is the set of locations classified as l(t),
Sr(t) the set of locations classified as r(t),
if t < K − 1, then t = t+ 1 and goto step 2, else exit.

Although, for simplicity, we described the TS-MRF technique us-
ing the binary Potts model, it is possible to generalize this to the
K-ary Potts model. Moreover, it is possible to build a TS-MRF by
integrating several reference MRF models, not necessarily of the
same type nor just binary. Specifically, in this work, the applied
tree is not binary and is no longer determined during classifica-
tion. Rather, it is built from the structural dependencies which
follow naturally from the hierarchy, that is already present in the
ground reference data (Thoonen et al., n.d.).

3 PATCH METRICS VALIDATION

Traditional ways of assessing the accuracy of classification re-
sults involve using the confusion matrix (Congalton and Green,
1999). A confusion matrix is a square array of numbers set out
in rows and columns that expresses the number of sample units
assigned to a particular category in a classified map relative to
the number of sample units assigned to a particular category in a
reference map. The accuracy obtained in this way is called the
thematic or labeling accuracy.

Moreover, the confusion matrix is a very effective representa-
tion of map accuracy because the accuracies of each map cate-
gory are described individually. A popular statistical measure for
the agreement of two classification results is the Kappa coeffi-
cient (Bishop et al., 1977).

However, collecting the reference samples is tedious and expen-
sive. As a result, more often than not, the reference samples are
sparse and do not model the shapes of structures in the scene.
In particular, when using classification methods that include con-
textual information, changes in shapes (i.e. changes in transitions
between classes) can be very subtle with respect to a pure spectral
classification result.

In order to compare thematic maps resulting from spatial classifi-
cation techniques, another reference and another methodology is
needed in addition to traditional references and methods.

3.1 Reference

In (Baraldi et al., 2005), the references are multiple unsupervised
cluster maps. In (Persello and Bruzzone, 2010), reference ob-
jects are defined by photo interpretation, using the high resolution
property of the investigated images.

An alternative strategy is to take the pure spectral classification
result that the contextual methods are closest related to as a ref-
erence. ‘Closest related’ means that the contextual methods use
the same spectral classifier in all cases.

When using this type of reference, the assumption is made that
the desired shapes are present in the spectral classification result,
but at the same time, they are clouded with noise.

With respect to the pure spectral classification result, the desired
properties of the contextual classification techniques are:

• Removing the noise, i.e. increasing the thematic accuracy,
as measured by traditional methods.

• Conserving the shape information, as measured by an alter-
native quality assessment method.

3.2 Methodology

As thematic accuracy is covered by traditional methodology, the
focus is on how to assess shapes in an appropriate fashion. A way
is to consider that a thematic map consists out of patches, collec-
tions of connected pixels with the same class label. The shape
of any of these patches is characterized by the edges between the
patch and its neighbors.

As a consequence, the shapes of the patches can be represented
by an edge map, for instance a 4-neighbor edge map, in which
each pixel gets the value of the number of classes that are differ-
ent from the class label of the central pixel in a four-adjacency
neighborhood, as shown in Fig. 2.
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(b) 4-neighbor edge map

Figure 2: A number of patches and the corresponding 4-neighbor
edge map

It follows that the 4-neighbor edge maps of both the classification
result and the reference can be compared to indicate how well the
shape information has been conserved.

In (Baraldi et al., 2005) the 4-neighbor edge map, alternatively
defined as a map in which each pixel gets the value of the num-
ber of four-adjacency pixels that do not have the same label as
the central pixel, was used to determine the spatial fidelity, by
calculating the mean and standard deviation of the absolute dif-
ference between the edge map of the classification result and the
unsupervised reference cluster maps.

However, the alternative definition presented here provides valu-
able information on how much each edge changes: Small changes
in patch shapes lead to smaller changes in absolute values of the
edge map. For instance, when an isolated single-pixel patch in
a homogeneous region disappears, its edge map value changes
from 1 to 0.

Additionally, a suitable way of representing this information is
by using a confusion matrix, allowing to extract more informa-
tion than possible from a single metric. The categories in this
confusion matrix are no longer vegetation classes, but one of the
five possible values the 4-neighbor edge map can take. Not only



does the confusion matrix indicate which edges remain the same
and which don’t, but it also indicates how drastic the change is.

4 EXPERIMENTS AND RESULTS

For the study site of Kalmthoutse Heide, the airborne hyperspec-
tral data were obtained in June 2007 with an AHS sensor with a
ground resolution of approximately 2.5m. The range of 450nm-
2550nm is covered by 63 spectral bands. Fig. 3 shows a part of
the Kalmthoutse Heide image data.

During summer 2007, ground reference data were collected in
homogeneous plots of 10 meters diameter. The vegetation data
of the sampled plots, approximately 1200 in total, were analyzed
and plots were grouped in the 4-level hierarchical classification
scheme.

For the following analysis, only the plots in the nature reserve ar-
eas of Kalmthoutse Heide were used. Furthermore, not all plots
were categorized up to level 4. These limitations leave us with
a total of 678 plots for the 18 remaining level 4 categories. Fol-
lowing a hold-out strategy, 50% of these plots were per class ran-
domly selected for training, while the remaining 50% were used
to assess the thematic accuracy.

Figure 3: Part of the Kalmthoutse Heide image data

To make a fair comparison, all classification results have been
obtained using the same spectral classifier, a Support Vector Ma-
chine (SVM) classifier with a Radial Basis Function kernel. The
techniques under comparison are

• a classification using the TS-MRF technique with the ex-
tended tree that resembles the classification scheme and a
3× 3 window (or second-order neighborhood).

• a pixel-based classification followed by a simple smoothing
done by a majority analysis (MA), in which a pixel gets the
class of the majority of its direct neighbors. Window sizes
of 3× 3, 5× 5 and 7× 7, respectively, are used.

Fig. 4 shows a part of the TS-MRF classification result. The
shades of purple represent heathland classes, yellow colors are
sand dunes, dark green are forest types while light green are
grasslands and blue represents water.

Figure 4: TS-MRF classification result

4.1 Thematic Accuracy

Table 1 shows the overall accuracy and the Kappa coefficient for
the various techniques. All three of the simple majority analysis
results show a higher thematic accuracy than the TS-MRF result,
that also shows an increase with respect to the spectral classi-
fication result. However, visually, the result from the majority
analysis using a 7×7 window does not look promising, as shown
in Fig. 5. Indeed, the thematic accuracy does not provide a lot of
information on the spatial fidelity.

Classification Overall Accuracy Kappa coefficient
Spectral 85.88% 0.8457

TS-MRF 86.77% 0.8553

MA 3× 3 89.34% 0.8835

MA 5× 5 89.60% 0.8863

MA 7× 7 89.01% 0.8798

Table 1: Thematic Accuracy

Figure 5: Majority analysis with a 7× 7 window



4.2 Spatial Fidelity

To measure the spatial fidelity, confusion matrices are constructed
for the 4-neighbor edge maps, as defined in section 3.2, using the
spectral classification result as the reference map.

Table 2 shows the percentage confusion matrix for the TS-MRF
result and Table 3, 4 and 5 show the same matrix for the Majority
Analysis results with window sizes of 3 × 3, 5 × 5 and 7 × 7
respectively.

0 1 2 3 4
0 95.9% 68.6% 41.9% 23.5% 13.2% 64.0%
1 4.0% 29.7% 43.4% 41.3% 33.5% 28.5%
2 0.1% 1.6% 13.9% 27.3% 32.7% 6.6%
3 0.01% 0.04% 0.8% 7.5% 16.7% 0.9%
4 0% 0.003% 0.02% 0.3% 4.0% 0.07%

100% 100% 100% 100% 100% 100%

Table 2: Edge percentage confusion matrix of the TS-MRF result

0 1 2 3 4
0 53.7% 50.8% 50.5% 50.0% 49.5% 51.2%
1 36.7% 38.9% 38.9% 38.8% 38.8% 38.4%
2 8.6% 9.2% 9.5% 10.0% 10.4% 9.2%
3 1.0% 1.1% 1.1% 1.2% 1.2% 1.1%
4 0.05% 0.05% 0.06% 0.06% 0.05% 0.05%

100% 100% 100% 100% 100% 100%

Table 3: Edge percentage confusion matrix of the MA 3×3 result

0 1 2 3 4
0 68.7% 67.3% 67.0% 66.8% 66.4% 67.5%
1 27.2% 28.5% 28.6% 28.7% 29.0% 28.2%
2 3.8% 3.9% 4.1% 4.3% 4.4% 4.0%
3 0.3% 0.3% 0.3% 0.3% 0.3% 0.3%
4 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

100% 100% 100% 100% 100% 100%

Table 4: Edge percentage confusion matrix of the MA 5×5 result

0 1 2 3 4
0 76.5% 75.8% 75.4% 75.3% 75.1% 75.8%
1 21.3% 22.0% 22.2% 22.2% 22.5% 21.9%
2 2.1% 2.2% 2.3% 2.3% 2.3% 2.2%
3 0.1% 0.1% 0.1% 0.1% 0.2% 0.1%
4 0.002% 0.003% 0.003% 0.003% 0% 0.003%

100% 100% 100% 100% 100% 100%

Table 5: Edge percentage confusion matrix of the MA 7×7 result

Edge value ‘0’ indicates areas with no edges, the homogeneous
areas. Most of these areas areas are kept unchanged in the TS-
MRF result. Furthermore, the results for edge value ‘1’ are more
or less comparable across all the techniques. This is to be ex-
pected, as it comprises the isolated-pixel areas, that are easily
filtered away by all the techniques in the experiment.

For the more complex edges, it is clear that, not only does the TS-
MRF result have the highest values on the diagonal, moreover,
the values that have changed are closer to the diagonal than in the
majority analysis case. Therefore, the changes in edge complex-
ity are less drastic. The rows for the majority analysis results are
more or less constant, no matter what window size was selected.

5 CONCLUSIONS AND FUTURE WORK

A qualitative method was introduced to assess the accuracy of
thematic maps that were constructed incorporating spatial infor-
mation in the classification process. The method is built upon the
selection of an alternative reference, the spectral classification re-
sult that the spatial enhancements are related to, and an alternative

methodology, focusing on measures for the change in shapes of
edges between the patches.

The method was tested on real data of heathland vegetation. On
this data, a recursive supervised segmentation algorithm, based
on a Tree-structured Markov Random Field (TS-MRF) was ap-
plied as one of the contextual methods.

The quality assessment confirms what can be expected from in-
tuition: the TS-MRF technique provides smoothing, but, at the
same time, conserves edges better than methods like, for instance,
majority filtering.

The method presented here is not intended for stand-alone use.
It only provides information about the spatial fidelity of a tar-
get map. Therefore, it should be used together with conventional
methods that measure thematic accuracy. Naturally, it is possible
to use the presented method together with another type of refer-
ence map.

For future work, investigations should be done on how to summa-
rize the information drawn from the edge map confusion matri-
ces (for instance a weighted Kappa coefficient). More alternative
contextual methods should be compared using the technique to
explore the potential.
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Scheunders, P., n.d. A classification framework for habitat status
reporting with remote sensing methods. In preparation.

Keramitsoglou, I., Kontoes, C., Sifakis, N., Mitchley, J. and
Xofis, P., 2005. Kernel based re-classification of earth obser-
vation data for fine scale habitat mapping. Journal for Nature
Conservation 13(2-3), pp. 91–99.

Kobler, A., Deroski, S. and Keramitsoglou, I., 2006. Habitat map-
ping using machine learning-extended kernel-based reclassifica-
tion of an ikonos satellite image. Ecological Modelling 191(1),
pp. 83–95.

Li, S., 2001. Markov Random Field Modeling in Image Analysis.
second edn, New York: Springer-Verlag.

Persello, C. and Bruzzone, L., 2010. A novel protocol for accu-
racy assessment in classification of very high resolution images.
IEEE Transactions on Geoscience and Remote Sensing 48(3),
pp. 1232–1244.

Poggi, G., Scarpa, G. and Zerubia, J. B., 2005. Supervised seg-
mentation of remote sensing images based on a tree-structured
mrf model. IEEE Transactions on Geoscience and Remote Sens-
ing 43(8), pp. 1901–1911.

Thoonen, G., Hufkens, K., Vanden Borre, J., De Backer, S. and
Scheunders, P., n.d. Mapping the conservation status of heath-
land vegetation using hyperspectral remote sensing in a hierar-
chical classification framework. Submitted to IEEE Transaction
on Geoscience and Remote Sensing.


