
A REGION-BASED APPROACH FOR DESCRIBING URBAN MORPHOLOGY BASED 

ON SUB-PIXEL ESTIMATION OF SEALED SURFACE COVER 
 

T. Van de Voorde a, *, W. Jacquet b c, F. Canters a 

 
a
 Dept. of Geography, Cartography and GIS Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, 

Belgium - (tvdvoord, fcanters)@vub.ac.be 
b
 Dept. of Mathematics, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium – wolfgang.jacquet@vub.ac.be 

c 
Dept. of Physics, Vision Lab IBBT, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium 

 

 

KEY WORDS:  Urban remote sensing, Urban morphology, Land use, Spatial metrics, Greater Dublin Area 

 

 

ABSTRACT: 

 

Earth observation provides regular information on urban development and could provide an important contribution to map and 

monitor structural characteristics of expanding cities. While most contemporary remote sensing research in urban environments tends 

to focus on high resolution satellite imagery, urban monitoring and modelling applications usually rely on extensive historic archives 

of landuse maps with a large geographic extent. Medium resolution images therefore seem better suited for these applications. Their 

lower resolution, however, inhibits studying urban morphology and change processes at an intra-urban level. In this research, we 

circumvent that problem by developing spatial metrics for use on continuous sealed surface data produced by sub-pixel classification 

of Landsat ETM+ imagery covering the city of Dublin, Ireland. Metrics we developed are based on the shape of the cumulative 

frequency distribution of estimated sub-pixel fractions at block level, as well as on spatial variation of sub-pixel fractions within each 

urban block. A MLP classifier is then used to relate the metric variables to urban landuse classes selected from the MOLAND 

topology. In combination with density information derived from the sealed surface maps, our approach allows producing maps 

describing urban morphology and intra-urban dynamics. These maps are a valuable source of information to aid the calibration of 

land-use change models. 
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1. INTRODUCTION 

 

More than half of the earth’s inhabitants reside in urban areas 

and their share in the global population is still increasing 

(Martine, 2007). While spatial expansion of cities is a natural 

consequence of demographic trends on which local and regional 

policy-makers have little grasp, local policy should consider 

how population growth is translated into spatial patterns of 

urban growth. Urban sprawl and increased soil sealing provide 

symptomatic evidence for the fact that many European and 

North-American cities grow faster spatially than 

demographically. A study of the European Environment Agency 

confirms this and reports that European cities have expanded on 

average by 78% since the mid-1950s, while during the same 

period population increased by only 33% (EEA, 2006). 

Effective urban management and planning strategies are 

therefore essential to temper the consequences of urban land 

consumption on the natural and human environment. To 

develop and monitor such strategies and to assess their spatial 

impact, analysing and characterising changes in urban structure 

is of great consequence. Data from earth observation satellites 

provide regular information on urban development and could in 

that way contribute to mapping and monitoring structural 

characteristics of expanding cities. A rather novel approach in 

this research area is to describe urban form by means of spatial 

metrics, i.e. quantitative measures of spatial pattern and 

composition which have recently shown considerable potential 

for structural analysis of urban environments (Herold et al., 

2005). Spatial metrics derived from satellite imagery may help 

to describe the morphological characteristics of urban areas and 

their changes through time (Ji et al., 2006). However, because 

high resolution satellite imagery is only available since around 

2000, historic image archives mostly consist of medium 

resolution (MR) data such as from the Landsat or SPOT 

programmes. Such images are cheap, widely available and offer 

a wealth of information that may be useful for urban monitoring 

purposes at strategic planning levels, especially when a historic 

perspective of 10 years or more is required. On the other hand, 

the lower resolution of these data makes them more suited for 

small-scale studies at city-level or at the level of large 

administrative units or counties and less suited for intra-urban 

analysis. This is because many details on intra-urban structure 

and composition are lost due to the occurrence of different 

scene elements within the pixel (Cracknell, 1998). Spectral 

unmixing approaches, which allow characterising land-cover 

distribution at sub-pixel level, may partly compensate for this 

lack of spatial detail, and may render medium-resolution 

imagery more useful for urban studies (Rashed et al., 2001). In 

an urban context, these approaches are frequently used to map 

sealed surface cover (Weng, 2008), an important structural 

element of urban areas. 

The main objective of this paper is to examine the possibilities 

of using MR satellite images for characterising intra-urban 

spatial structure. Previous studies have either used spatially 

more detailed data or have treated cities at more coarse levels of 

analysis. Because of this, they usually applied patch or 

landscape-based spatial metrics on discrete, categorical land-

cover maps. Our aim in the present study is to characterise 

intra-urban morphology with newly developed region-based 

spatial metrics calculated on a continuous sealed surface map 

derived from MR satellite imagery through spectral unmixing. 

In a second step, the structural characteristics captured by these 

metrics are used as variables in a supervised classification 

approach in order to establish a link between urban morphology 

and broadly defined land-use types. The result is a land-use map 

reflecting both urban density and functional characteristics of 
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the urban fabric at the time of image acquisition. The method is 

applied on the city of Dublin, Ireland using 30m resolution 

Landsat ETM+ imagery. The approach can easily be repeated 

for each image in a time-series to analyse changes in urban 

structure. It may therefore add value to the extensive historic 

archives of MR images by characterising urban growth patterns 

at a reasonably detailed level and on an intra-urban basis. 

 

 

2. DATA AND SCALE OF ANALYSIS 

The study area for this research is Dublin, the political and 

economic capital of Ireland and home to over 40% of the 

country’s population. A Landsat TM image (path 206, row 23) 

acquired on May 24th 2001 was used for characterising the 

urban morphology of the study area. The image was 

geometrically co-registered to the Irish Grid projection system 

and the raw digital numbers were converted to exoatmospheric 

reflectance according to the formulas and calibration parameters 

presented by The Landsat 7 Users Handbook (Irish, 2007). An 

existing land-cover map, derived from a 1m pan-sharpened 

Quickbird image acquired on August 4th 2003, was used to 

obtain reference data for training and validating the sub-pixel 

classifier. Reference land-use classes were acquired from the 

European MOLAND land-use map of Dublin for the year 2000.  

Spatial metrics are calculated within a spatial domain, i.e. a 

relatively homogeneous spatial entity that represents a basic 

landscape element. Naturally, the definition of the spatial 

domain directly influences the metrics and will depend on the 

aims of the study and the characteristics of the landscape 

(Herold, et al., 2005).  In this study, the basic entities of 

analysis were defined by intersecting detailed urban road 

network data for Dublin with the MOLAND land-use map of 

2000.  This provided us with a large number of blocks that are 

relatively homogeneous in terms of land use. Given the 

resolution of the image data, blocks smaller than 1 ha. 

(corresponding to approximately 11 pixels) were topologically 

removed. The threshold of 1ha. corresponds to the minimum 

mapping unit employed for urban areas within the MOLAND 

dataset.  In all, 5767 spatial units were used in the analysis. 

 

 

3. METHODS 

3.1 Deriving a sealed surface map by spectral mixture 

analysis 

One of the most commonly used methods for deriving sub-pixel 

sealed surface fractions is LSMA, linear spectral mixture 

analysis (e.g. Ward, et al., 2000). In this approach, a pixel’s 

observed reflectance is modelled as a linear combination of 

spectrally pure “endmember” reflectances (van der Meer, 1999). 

The advantage of LSMA is that it is a physically based model 

that does not require extensive training data, but only the 

definition of end-member signatures. Applying LSMA 

effectively, however, requires that the endmembers can be 

defined unambiguously and that they can be related to 

meaningful land-cover types. This is often not the case in 

multispectral data of urban areas because of spectral confusion 

between artificial sealed surface and non-urban surface types 

such as bare soil (Van de Voorde et al., 2009). In studies where 

fractions of only a single land-cover class are required, linear or 

non-linear regression analysis provides an interesting alternative 

for unmixing. Several authors have successfully applied bi-

variate or multiple regression to relate sub-pixel impervious 

surface or vegetation cover as a dependent variable to the 

spectral values of Landsat pixels or derivatives thereof (e.g. 

Bauer et al., 2008). Yet also in this case, obtaining accurate 

sealed surface fractions in the presence of spectrally similar 

non-urban land-cover types within the scene remains 

problematic. To circumvent this problem, we first developed a 

mask identifying pixels that belong to the urban area with an 

unsupervised classification approach. The resulting map was 

subsequently enhanced by a knowledge-based post-

classification approach (Van de Voorde et al., 2007).  The final 

classification consisted of 4 classes: urban areas including 

mixed sealed surface/vegetation pixels, pure vegetation pixels 

(e.g. trees, crops, pasture), bare soil and water. Validation was 

carried out by a visual sampling of about 1% of the image pixels 

(2897 pixels). Pixels belonging to the classes soil, water and 

pure vegetation were considered to have zero sealed surface 

cover. Pixels within the bounds of the area belonging to the 

urban class were considered as mixtures of sealed surfaces and 

vegetation, and they were therefore subjected to sub-pixel 

analysis. Because sub-pixel fractions are required for just a 

single end-member, we decided to apply a stepwise multiple 

regression with the vegetation fraction as independent variable, 

assuming that within the urban area the fraction of sealed 

surfaces is the complement of the vegetation fraction. A map 

with sealed surface proportions could then be derived by 

subtracting the vegetation fraction from one. To define the 

regression model and for validating it, an initial sample of 

approximately 10 000 pixels was randomly drawn from the part 

of the Landsat image overlapping the already available high 

resolution land-cover map, which was downsampled to 30m 

resolution for calculating reference proportions of vegetation 

cover. Pixels in the sample that underwent changes in 

vegetation cover between the acquisition dates of the Landsat 

image and the Quickbird image used to derive the land-cover 

map were filtered out by a temporal filtering technique based on 

iterative linear regression between NDVI values (Van de 

Voorde et al, 2009). From the unchanged sample pixels 

coinciding with the urban mask, a random sample of 2500 

training and 2500 validation pixels was finally selected. The 

accuracy of sealed surface proportions was assessed for the 

validation sample with two error measures. The mean absolute 

error of the sealed surface fraction (MAESealed) was used as a 

measure of the error magnitude. It is calculated as the mean 

across the validation sample of the absolute differences between 

sealed surface fractions predicted by the regression model and 

the corresponding reference proprortions derived from the 

ground truth. In addition, the mean error (MESealed) was 

calculated without using absolute values for the difference 

between predicted and reference proportions. It was used to 

indicate a possible bias in the proportion estimates (over or 

underestimation). 

 

3.2 Characterising urban morphology within predefined 

spatial units 

A simple approach to relate the sub-pixel sealed surface 

proportions within a spatial entity (block) to urban morphology 

is by calculating the fraction of sealed surface cover for each 

block, i.e. the mean of the per-pixel sealed surface fractions. 

This provides a variable that expresses built-up density at block 

level. With this variable, the study area was stratified into 4 

urban density classes using criteria defined in the MOLAND 

typology: 0-10% (non-urban land), 10-50% (discontinuous 

sparse urban fabric), 50-80% (discontinuous urban fabric) and 

more than 80% (continuous urban fabric). Blocks with less than 

10% sealed surfaces were directly labelled as non-urban land. 

Blocks with more than 80% sealed surface cover were 
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considered as continuous, dense urban fabric which could not 

be characterised further in terms of morphology. The remaining 

3494 blocks with 10%-80% sealed surface cover were further 

analysed because they belong to morphological distinct land-

use types such as sparse residential areas, industrial zones, etc. 

These could not be distinguished based on just the average 

sealed surface cover, which is only a general measure of 

composition that does not take spatial context into account. To 

describe the spatial pattern of sealed surface fractions within 

each block, we first calculated spatial variance (SV), a simple 

measure for spatially explicit characterisation of block 

morphology: 
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where  

 n = number of pixels with the block  

 ki = number of neighbours of pixel i  

 fi  = subpixel sealed surface fraction 

 

To further characterise the blocks, we also examined the 

cumulative frequency distribution (CFD) of the proportion 

sealed surface cover of the Landsat pixels within each block. 

Our assumption was that the shape of this distribution function 

should be related to the morphological characteristics of the 

block it represents. Low and medium density residential land-

use blocks, for instance, contain more mixed sealed surface-

vegetation pixels than industrial areas, which are mostly 

characterized by larger building structures. The abundance of 

these mixed pixels in the former, and the predominance of pure 

sealed surface pixels in the latter case should be reflected in the 

shape of the CFD.  To express the CFD’s shape quantitatively, a 

logistic function was fitted using a nonlinear least-squares 

approach. In its basic form a logistic function describing the 

relation between the cumulative frequency Pi (f) of pixels with 

impervious surface fractions smaller than or equal to f  

occurring within a block i is given by: 
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The point of inflection for this function is 0.5 at a value for f of 

0.  To allow numerical fitting to CFD’s of different shape, this 

basic logistic function was scaled and translated along the x and 

y axes: 
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where 

  α, γ = scaling parameters of the x and y axes 

  β, δ = translation parameters  

 

In our analysis, we were only concerned with the part of the 

function domain and range that falls within the box defined by 

the interval 0 ≤ f ≤ 1 and 0 ≤ Pi(f) ≤ 1. 

Although the fitted function is fully determined by its four 

parameters, semantically more meaningful and more easily 

interpretable descriptors of the function’s shape may be derived.  

The position of the point of inflection I{Pi(f) , f)} is where the 

logistic curve changes from progressive to degressive growth, 

and can be determined from the second order derivative: 
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In case of a more “exponentially” shaped CFD, the point of 

inflection of the fitted curve lies outside the area of interest, i.e. 

the unit square. The offset of the function, or its intercept point 

with the y axis is a second useful characteristic and is given by: 
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The offset takes on values closer to 1 in case pure vegetation 

pixels are present within the spatial unit. 

 

3.3 Relating morphology to land use with MLP-based 

supervised classification 

Together with the average fraction of sealed surfaces and the 

spatial variance of sealed surface fractions within the blocks, the 

4 parameters of the fitted logistic curve were used as variables 

in a supervised classification. The primary objective was to 

assign each block with a sealed surface cover between 10% and 

80% (3494 in total) to one of 5 urban land-use types 

corresponding to aggregates of classes in the MOLAND 

scheme: urban green (comprised of urban parks, sports and 

leisure facilities), residential areas, commercial areas, industrial 

zones and public or private services. The urban green class was 

included because some urban parks have more than 10% sealed 

surface cover due to the presence of walkways and small 

constructions. Blocks with more than 80% sealed surface cover 

were directly assigned to a sixth class: “continuous urban 

fabric”. These blocks are too densely built to further 

characterise them based on the spatial distribution and the 

frequency distribution of constituent pixels with different sealed 

surface proportions. Likewise, pixels with 10% or less sealed 

surface cover were assigned to the class “non-urban land”. To 

obtain reference data for training and validation of the classifier, 

the predominant land-use class of each block was derived from 

the MOLAND land-use map of 2000.  Because the 5 target 

land-use classes are unevenly distributed, we adopted a 

stratified sampling approach to select training and validation 

samples. For each class, about 200 blocks were randomly 

selected. This set was then randomly split in two to obtain 

independent training and validation samples. 

A multi-layer perceptron (MLP) classifier was then used to 

assign the blocks to the land-use classes. MLP is the most 

commonly used neural network classifier in remote sensing 

applications (Atkinson, 1997). Neural networks have gained 

popularity in the field because in contrast to statistical 

classifiers they are non parametric and therefore make no 
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assumptions about the frequency distribution of the sample data 

describing each class. This property is particularly interesting 

when variables with non-normal distributions are used for 

classification, as is the case in this research. After a satisfying 

classification result was obtained, the resulting land-use map 

was intersected with an urban density map that was derived by 

averaging the per-pixel sealed surface fractions within each 

block and dividing them into the 4 classes discussed earlier (< 

10%, 10-50%, 50-80%, > 80%). 

 

 

4. RESULTS AND DISCUSSION 

4.1 Defining the urban area 

The overall accuracy and kappa index of agreement of the initial 

classification used to delineate the urban area are 93% and 89% 

respectively. The highest errors were found for the bare soil 

class, which has a producer’s accuracy of 68% and a user’s 

accuracy of 88%. This error was mainly caused by confusion 

between bare soil and vegetation, which can be attributed to the 

mixed pixel problem (e.g. within agricultural fields or pastures). 

The fuzzy nature of these classes at 30 meter resolution even 

makes it difficult to assign them unambiguously to a single class 

during visual interpretation. For the purpose of deriving an 

urban mask, confusion between vegetation and bare soil posed 

no problem as both classes were considered to have no sealed 

surface cover. Misclassification of bare soil into urban areas 

occurred less frequently, and mostly at or near construction 

zones. An urban mask was derived by aggregating the 

classification result into two classes: urban and non-urban. 

 

4.2 Sealed surface mapping 

The stepwise linear regression analysis carried out on the 

training data resulted in 4 statistically significant linear models 

(p < 0.05). The normalised infrared band (band 4) was selected 

first because of its high correlation of 0.83 with the independent 

variable, i.e. proportional vegetation cover. This variable alone 

explains almost 70% of the observed variation in sub-pixel 

vegetation cover. Adding band 5 leads to a model with slightly 

higher explanatory capabilities and lower standard errors, but 

adding more variables leads to redundancy. From this analysis, 

the following model was selected and subsequently applied to 

the entire image: 

 

 

 Vj = -1.584 + 0.007 B4 + 0.006 B5  (6) 

 

 

where 

 

 Vj = the estimated proportion of sub-pixel 

 vegetation cover (0-1) for pixel i 

 B4 = ETM+ band 4 (near infrared) 

 B5 = ETM+ band 5 (short-wave infrared) 

 

The sealed surface fractions estimated by equation (6) have a 

mean error of 0.0047 on the validation set consisting of 2500 

pixels sampled within the urban mask, with a 95% confidence 

interval of [-0.008; 0.0103]. This constitutes a negligible 

positive bias which implies that overestimations of sealed 

surface cover within some sample pixels are compensated for by 

underestimations within others. The mean absolute error 

provides a more clear perspective on the error magnitude. Its 

value of 0.1048 with a 95% confidence interval of [0.1011; 

0.1085] points to an average sub-pixel estimation error of about 

10%. This is acceptable given the constraints put on the 

unmixing approach in terms of geometric co-registration, image 

noise and autocorrelation effects.  

 

 

 
 

Figure 1   Sealed surface map, indicating the % sealed surface 

cover for each pixel 

 

 
 

Figure 2  Urban density map indicating average sealed surface 

cover inside each urban block 

 

Applying the regression model to all pixels that belong to the 

urban mask and setting all pixels outside the mask to zero 

provides a sealed surface map of the study area (fig. 1). This 

map was used as input layer for deriving morphological 

information for each urban block. 

Built-up density is an important indicator of urban structure that 

can readily be derived for each block from the sealed surface 

map as a spatial average. The resulting density map (fig. 2) 
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clearly shows the urban gradient from a compact and dense city 

centre to a low density, sprawled suburban zone with new 

residential developments to the northwest (Clonsilla, Hartstown, 

Tyrrelstown).  While sealed surface density is easy to compute, 

it does not allow distinguishing between different land uses 

found within the area. 

 

 

4.3 Characterising urban morphology 

The frequency distribution of per-pixel sealed surface fractions, 

on the other hand, proves to provide important clues on a 

block’s morphology and its functional use (fig. 3). As could be 

expected, low and medium density residential blocks contain 

more mixed sealed surface/vegetation pixels than industrial 

areas. The abundance of these mixed pixels is reflected by a 

sigmoid shaped cumulative frequency distribution (CFD), 

whereas the predominance of pure sealed surface pixels in 

industrial areas results in a more exponentially shaped CFD.  

 

 
 

Figure 3. Cumulative frequency distribution of per-pixel sealed 

surface proportions and fitted logistic functions for a  

discontinuous residential block (red), an industrial 

zone (blue) and an urban green area (green).  

 

The offset of the curves on the vertical axis indicates the 

presence of pure vegetation pixels, which in turn may point to 

vacant plots covered by grass within, for instance, an industrial 

zone. Blocks with little or no built-up areas are represented by a 

line close to the top of the unit square bounding the graph. 

Fitting a transformed logistic function (equation (3)) to the 

observed frequency distribution provides 4 numerical 

parameters (table 1). Together, these parameters represent the 

frequency distribution of pixels with different amounts of sealed 

surface cover within the blocks, and as such may provide 

information that is helpful to discriminate between different 

land-use classes.  For the example of the residential area shown 

in fig. 2, the block has a value of γ (scaling y-axis) close to 1 

and a value of δ (translation y-axis) near 0, while the value of α 

is close to minus two times the value of β, thus indicating that 

the position of the point of inflection lies close to the middle of 

the unit square. For the industrial area shown in fig. 2, only a 

part of the sigmoid function’s left side is required to obtain an 

optimal fit. Consequently, the right hand side of the function is 

shifted outside the area of the unit square, which is reflected in 

the values of the parameters α and β.  The location of the 

function’s point of inflection thus reflects the distinct shapes of 

industrial versus residential land. For the sigmoid-shaped 

residential curve in fig. 3, the point of inflection lies at 

[0.59;0.51]. For the more exponentially shaped industrial curve, 

it is located outside the graph’s area at [2.07;80.57]. Also for 

the CFD of the industrial area shown in fig. 2, the value for the 

offset different from zero indicates that part the block’s area is 

covered with pure vegetation pixels, vacant plots covered with 

grass in this case. Indeed, an offset value of 0.09 implies that 

9% of the pixels within this block are pure vegetation pixels. 

The green curve near the top of the graph in fig. 2 represents an 

urban park that consists for 72% of pure vegetation pixels and 

contains only a small amount of mixed pixels. 

 

 α β γ δ Ix Iy 

O
ffset 

Resi-

dential 11.0 -6.5 1.0 0.0 0.6 0.5 0.0 

Indus-

trial 5.0 -10.3 161.0 0.1 2.1 80.6 0.1 

Urban 

Green 4.0 -2.3 0.4 0.7 0.6 0.9 0.7 

 

Table 1  Function parameters and derived parameters of some 

typical land use classes 

 

4.4 Relating urban morphology to urban land use 

To obtain a map characterising urban morphology and land use, 

the 4 CFD parameters were used in combination with average 

per-block sealed surface cover and spatial variance in a 

supervised classification strategy. The MLP classification 

produces an overall accuracy of 72% if 5 classes need to be 

identified (table 2).  Especially the classes “commercial areas” 

and “services” have a low accuracy due the high degree of 

confusion. A classification with three classes (residential, non-

residential, urban green) provides an acceptable overall 

accuracy of 86% . 

 

MOLAND 

land use class 

5 classes UA|PA  3 classes UA|PA 

Residential 82.39% 73.17% 80.41% 78.63% 

Industrial 79.12% 87.76% 

Commercial  28.73% 22.43% 

Services 55.90% 45.81% 

95.43% 88.93% 

Green 67.65% 73.50% 62.69% 82.87% 

Overall 

accuracy 71.98%  86.15%  

 

Table 2  User’s accuracy (UA), producer’s accuracy (PA) and 

overall accuracy of urban land use classification  

 

The result of the MLP land-use classification with all variables, 

intersected with the urban density map (fig. 4), represents the 
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urban structure of Dublin rather well. Most misclassification 

between residential and non-residential areas occurs near the 

dense urban centre. This is related to the smaller block sizes in 

that area, which makes the frequency distribution of sealed 

surface proportions less reliable, and to the higher building 

density near the centre. The critical scale at which the analysis 

becomes less reliable will depend on the ratio between block 

size, image resolution and size of urban objects important for 

structural analysis 

 

 
 

Figure 4. Morphological/functional map of Dublin derived from 

the Landsat image 

 

 

5. CONCLUSION 

Maps of urban morphology or structure are useful to urban 

planners and are especially valuable as input for calibrating 

urban land-use change models. The aim of this study was to 

characterise urban morphology inside predefined spatial regions 

using medium resolution remote sensing data.  This type of data 

is available since the 1970’s and allows composing the 

extensive time-series required for model calibration. In this 

paper we proposed a method to describe structure based on per-

pixel sealed surface proportions within each region. These 

proportions were obtained by spectral unmixing of the satellite 

data. Three types of metrics were used to characterise the 

composition and spatial distribution of sealed surfaces within 

the regions: average sealed surface cover, spatial variance and 

the shape of the cumulative frequency distribution of the sealed 

surface proportions described by fitting a transformed logistic 

function. This approach showed promising results when applied 

to distinguish general morphological/functional land-use types 

such as residential versus non-residential land (industrial/ 

commercial/services). The distinction among the two functional 

classes residential/employment is important in the context of 

urban growth models because they represent the “push” and 

“pull” factors driving urban land-use change. The results of this 

study are currently being used to improve the calibration of the 

MOLAND urban growth model of the Greater Dublin Area. 

Future research should focus on determining optimal scales of 

analysis in relation to block size and image resolution. 
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