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ABSTRACT: 
 
In GEOBIA some researchers concentrate on statistical optimization procedures such as the optimization of segmentation parameters 
or the selection of features suitable for class descriptions while others emphasize on the integration of so-called expert knowledge. 
By combining both approaches a classification can benefit from the advantages of either of them: Through statistical analysis 
subjectivity is reduced whereas through the inclusion of expert knowledge the advantages of GEOBIA over ‘traditional’ pixel-based 
approaches can be utilized to a greater extent. This paper discusses for twelve common GEOBIA tasks grouped into four stages (pre-
classification, segmentation, classification, and post-classification) whether the application of statistical measures or decisions based 
on expert knowledge seems most suitable and if trial-and-error runs remain necessary. The presented approach is exemplified using 
a real-world application of classifying large-area QuickBird imagery of an agricultural area in western Kenya. 
 
 

1. INTRODUCTION 

In recent years much research in the field of GEOBIA has been 
carried out on topics such as e.g. the use of ancillary data 
(Blaschke and Lang, 2006), segmentation quality assessment 
(e.g. Neubert et al., 2008), the optimization of segmentation 
parameters (e.g. Radoux and Defourny, 2008; Möller et al., 
2007), and the selection of features suitable for class 
descriptions (e.g. Marpu et al., 2008; de Stefano et al., 2008). 
Many of these studies present valuable advancements to the 
remote sensing science. By using statistical optimization 
measures subjectivity is reduced which is often caused by 
fraught trial-and-error runs or sole visual judgement. Without 
the integration of such objective quality measures classification 
results can become random and strongly depend on the 
experience of the image analyst. Others emphasize on expert 
knowledge (e.g. Hay and Castilla, 2008; Lang, 2008). This 
integration of a priori knowledge is commonly stated to be one 
of the key advantages of GEOBIA over ‘traditional’ pixel-based 
approaches (cf. Platt and Rapoza, 2008). Without its 
incorporation a rule-based classification approach is not very 
different to a simple sample-based nearest neighbour (NN) 
classification approach. 
 
In order to benefit from the advantages of both approaches they 
should be combined within an integrative work-flow. I.e. 
statistical optimization approaches should be applied and expert 
knowledge should be incorporated wherever appropriate. In this 
context crucial questions to decide upon are: At which step of 
the classification is which approach to be applied? For which 
particular tasks do trial-and-error runs remain the only or the 
most suitable option? Studies conducted so far often 
concentrate on only one particular aspect in a rather isolated 
manner, i.e. little research has focused on the bringing together 
of the two approaches. This paper addresses this gap by 

discussing the applicability of the approaches for common 
GEOBIA tasks resulting in a systematic, structured 
classification scheme. The theoretical considerations have been 
applied to a real world classification task, i.e. to the 
classification of land use / land cover (LULC) for a large 
heterogeneous area (473 km²) covered by very high spatial 
resolution satellite imagery. The scheme presented here is in 
particular suited to large heterogeneous landscapes where NN-
like approaches are not sufficient but which require the 
development of sophisticated rule sets. 
 

 

 
 

Fig. 1: Coverage of 717 km² QuickBird imagery (polygon) for 
Kakamega Forest and surrounding farmland in western Kenya.  
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2. RESEARCH CONTEXT AND PREPARING STEPS 

2.1 Study site and background 

Research is conducted based on QuickBird imagery of the 
farmland surrounding Kakamega Forest in western Kenya 
(Fig. 1). The forest is known for its botanical uniqueness 
(Althof, 2005) and considered the easternmost remnant of the 
Guineo-Congolian rain forest belt (Wagner et al., 2008). Today, 
only 50% of the officially gazetted forest area is covered by 
natural forest (Mitchell et al., 2009). Large parts of the forest 
are affected by disturbance; commercial exploitation began 
with gold exploration in the 1930s and continued with logging 
activities until the late 1980s (Mitchell, 2004). 
 
The farmland surrounding Kakamega Forest is characterized by 
small-scale subsistence agriculture. In literature typical farm 
sizes are stated to range between 1 and 7 ha (Jätzold and 
Schmidt, 1982), and 0.4 and 1.6 ha along the western and 
southern forest edge (Gibbon, 1991). Main cash crop 
cultivations are sugar cane in the northern and tea in the 
southern part of the area under investigation; besides the 
cultivation of maize and beans plays a key role for household 
consumption (Gibbon, 1991). The area exhibits one of Kenya’s 
highest rural population densities with an average of 643 people 
/ km² (determined in a 2 km buffer around the forest; Lung and 
Schaab, 2009) amplifying the pressure on the forest e.g. caused 
by the collection of firewood (Mitchell and Schaab, 2008). 
 
The BIOTA East Africa research project (see www.biota-
africa.de) funded by the German Federal Ministry of Education 
and Research (BMBF) aims at recommendations towards a 
sustainable use and conservation of forest biodiversity. Through 
results obtained by the object-based analysis of the QuickBird 
imagery a spatial typology of the agricultural matrix will be 
derived. Scenarios of rural livelihood based on this typology 
can contribute to landscape planning taking into account socio-
economic impacts on land use and the influence of landscape 
elements on biodiversity (Schaab et al., 2009). 
 

2.2 Image and ancillary data, software used 

The QuickBird satellite provides very high spatial resolution 
imagery with a ground sampling distance of 0.61 m for pan-
chromatic and 2.44 m for multi-spectral images (DigitalGlobe, 
2004). Due to the large extent of the area under investigation in 
east-west direction (Fig. 1) two overflights were necessary 
which took place in late February and early March 2005. A 
total of 717 km² were acquired of which 473 km² covers 
farmland. Thorough pre-processing was conducted including 
corrections of atmospheric and orographic influences, a special 
mosaicing procedure, and a testing of different pan-sharpening 
algorithms (Lübker and Schaab, 2008b). 
 
During a field trip in 2007 ground truth information was 
collected for twelve study sites sized approx. 2 km². A total of 
636 samples were recorded of which about 2/3 refer to land use 
information and 1/3 to structural elements (Lübker and Schaab, 
2008a). For five selected study sites a subsequent detailed 
visual interpretation was carried out at a scale of approx. 
1 : 1,000. For each site between 2,500 and 4,000 objects could 
be identified. As image derivates the Soil Adjusted Vegetation 
Index (SAVI) was calculated based on the pan-sharpened 
imagery, and an edge image was generated based on the Canny 
Algorithm using the panchromatic image band. Further, 
ancillary data is available from a topographic map with a scale 
of 1 : 50,000 (from 1970): a digital elevation model (DEM) 
generated from counter lines (Herz, 2004), and a river dataset. 
In addition a boundary between the farmland and the actual 
forest was visually interpreted based on the QuickBird imagery. 
These data sets are used as ancillary data in the classification 
stage. 
 
All segmentation and classification steps were conducted within 
the eCognition Developer 8 software. Pre-processing and the 
derivation of the SAVI were carried out with Erdas Imagine 9, 
whereas ArcGIS 9 was used for the preparation of the ancillary 
and reference data, during tiling and stitching, and for 
evaluating different segmentation results.  
 

Tab. 1: Choice of appropriate approach (statistical analysis, trial-and-error, expert knowledge)  
for common tasks of GEOBIA, grouped by processing stages. 

 
stage task statistical analysis trial-and-error expert knowledge

general classification strategy   X 
grouping of classes   X pre-classification 

choice of image derivates  (x) X 

segmentation optimization of segmentation parameters X   

selection of relevant features X (x) (x) 
definition of thresholds (x) X  
use of ancillary data (x) (x)  
definition of a priori constraints   X 

refinement of class descriptions  X (x) 

classification 

order of classification  (x) X 

cartographic generalization  (x) X 
post-classification 

checking for logical errors  (x) X 
 

X: most appropriate approach; (x): optional application 
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preparations (definition of current tile, 
on-the-fly loading of image layers)

classification

 preparations (creation of edge layer, 
layer normalization)

 for each of the 4 groups of classes:

  segmentation

  calculation of scene variables

  for each class:

   creation of temporary level

   classification based on selected 
Seath features  

   refinement of classification 

   re-shaping

 post-classification (e.g. checking for 
logical errors, treatment of small and 
unclassified segments, final re-shaping)

export of results (as shapefile)

classification stage

segmentation stage

post-classification 
stage

 parameter optimization

feature selection

image 
derivates

ancillary data

 
 

Fig. 2: Outline of the rule set used for the LULC classification, 
incl. stage of the classification, input from statistical 
optimization procedures, use of image derivates and  

ancillary data. 

 
 

3. CLASSIFICATION WORK-FLOW DESIGN 

3.1 Grouping GEOBIA tasks into stages 

A LULC classification by means of GEOBIA usually consists 
of different tasks. We suggest grouping these tasks into four 
stages (Tab. 1): a) pre-classification, b) segmentation, c) 
classification, and d) post-classification. Tasks commonly 
carried out in the pre-classification stage include considerations 
on the general classification strategy, on a grouping of LULC 
classes, and on the choice and use of image derivates. The 
segmentation stage deals with segmenting the imagery into 
meaningful objects. In the actual classification stage tasks 
carried out include the selection of features relevant to class 
descriptions, the definition of feature thresholds, the refinement 
of class descriptions, the definition of a priori constraints, the 
use of ancillary data, and in case of a consecutive classification 
also the order in which classes are classified. During the post-
classification stage the preliminary classification result is 
further improved by applying cartographic generalization 
techniques and checking the results for logical errors.  
 
The boundaries of these stages can be ambiguous. Tasks of the 
post-classification stage like cartographic generalization and 
checking for logical errors can also be integrated into the actual 
classification stage when appropriate. In the case of 
classification-based segmentation (see Benz et al., 2004) the 
segmentation task directly interacts with the classification stage. 
 
3.2 Rule set development 

The rule set for classifying LULC in the farmland surrounding 
Kakamega Forest as used in the process tree of eCognition is 
summarized in Fig. 2. It comprises the three stages 
segmentation, classification and post-classification; since in the 
pre-classification stage only general decisions are made it is not 
apparent here. In the sequence of rules the segmentation stage is 
interweaved with the classification stage since it has to be 

carried out for each group of LULC classes separately. After 
the segmentation, scene variables are defined based on quantiles 
which account to the spatially varying conditions. 
 
For large amounts of data (here more than 30 GB of imagery), 
tiling and stitching is necessary due to memory limitations. 
When a server license is not available this process is rather 
laborious in eCognition. Certain workarounds exist within 
eCognition but are little suitable for large projects such as the 
one presented here. For this study the processing of 300 tiles 
was necessary. Additional rules in the beginning and at the end 
of the rule set facilitate the work-flow by automating the 
loading of image layers and the export of the classification 
results as a shapefile. 
 
The rule set is a result of structured considerations for each 
classification task whether it should be based on statistics, 
expert knowledge or trial-and-error. It demonstrates how the 
actual classification was carried out practically.  
 
3.3 Classification work-flow 

3.3.1 Pre-classification stage 
 
By deciding on a general classification strategy we understand 
here the choice between a) classifying all desired LULC classes 
or groups of classes at once or b) making use of a consecutive 
classification of classes or groups of classes where the order of 
classification matters. While the first strategy better allows for 
defining fuzzy class membership values, the latter comes closer 
to the procedure applied during a visual interpretation. In any 
case the decision for one or the other is solely based on expert 
knowledge since statistical analysis as well as trial-and-error 
runs would by far be too complex and seem little promising. In 
the classification carried out it was decided for a consecutive 
classification strategy in order to include experiences gained 
from the visual interpretation. Objects not assigned to any class 
had to be treated separately. 
 
For a broad classification of LULC classes a grouping of 
classes representing the segmentation levels is useful. Like this 
the characteristics of the individual classes regarding object size 
and shape are accounted for while at the same time the number 
of segmentation levels is kept at a feasible number. Again, this 
task depends on the experience of the analyst but can be revised 
during the statistical parameter setting optimization (see below). 
For the farmland classification the classes were combined into 
four meaningful groups (Tab. 2) that were reviewed during 
parameter optimization. For the grouping experiences gained 
through the visual interpretation based on ground truthing were 
once more valuable. 
 
Image derivates such as vegetation indices and edge layers can 
help to improve segmentation and classification quality. The 
choice of image derivates is mainly based on expert 
knowledge, e.g. obtained from literature, and trial-and-error 
runs. Literature sources and trial-and-error runs let to the 
assumption that the SAVI and a Canny edge layer would be 
suitable for the here discussed classification. Their suitability 
for the segmentation of the four class groups as well as their use 
in class descriptions was also verified in statistical analyses (see 
below). 
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Tab. 2: Grouping of LULC classes derived in the classification 
of the farmland surrounding Kakamega Forest. 

 

 
 

group A group B group C group D 

river 
dirt road 
tarmac road 
house 

tree / shrub 
vegetation 
shadows 

homestead 
bare soil 

maize 
tea 
sugar cane 
napier, 
sweet potato 
fallow land, 
grass land, 
grazing area 
minor shrub 
vegetation 
burnt land 
fish pond 

 
 
3.3.2 Segmentation stage 
 
In the segmentation stage the optimization of segmentation 
parameters is crucial since all subsequent classification steps 
depend on the segmentation quality. Since eCognition’s region-
based multiresolution segmentation comprises five degrees of 
freedom (Lübker and Schaab, 2009) trial-and-error runs seem 
inappropriate for solving such a multi-dimensional problem. 
Expert knowledge might be incorporated to some extent as 
a priori constrains for an optimization procedure. However, 
optimal segmentation settings can differ greatly for different 
imagery and LULC classes. This lets statistical analysis to be 
the best suited option. The optimization of segmentation 
parameters carried out in the farmland classification is based on 
a two-step procedure using empirical discrepancy and goodness 
methods. As a discrepancy method the ‘area fitness rate’ was 
introduced comparing candidate segmentations with the 
reference data obtained through visual interpretation while an 
‘objective function’ was used as goodness method. Parameter 
settings were optimized per individual group of classes; the 
optimization accounts for all five degrees of freedom. For a 
detailed description of the methodology and its implementation 
see Lübker and Schaab (2009). 
 
3.3.3 Classification stage 
 
The selection of features to be used in class descriptions and 
the settings of their thresholds can be seen as the core task of 
any rule set development since the quality of a class description 
determines how correctly this class can be distinguished from 
others. Selecting the most relevant features for a class 
description can either be accomplished through excessive trial-
and-error comparisons or through statistical analysis. Such 
analyses are based on reference data and calculate class 
separability expressed through e.g. Bhattacharyya distances. 
Expert knowledge can be of advantage when selecting input 
features for analysis or in order to limit trial-and-error runs. 
Feature selection tools assist the user also in the definition of 
thresholds to be used in class membership definitions. For 
large and heterogeneous areas under investigation, however, 
extensive trial-and-error runs in spatially well distributed image 
subsets remain a necessity. Instead of using fixed threshold 
values quantiles can be defined as scene variables that to some 
extent account for spatially varying conditions in large area 

coverage. In the classification carried out the Seath tool (Marpu 
et al., 2008) was used that calculates class separability based on 
Bhattacharyya distance. From the twelve study sites (see 
Chapter 2.2) 980 sample objects were selected and used as input 
data for the statistical analysis. 69 different object 
characteristics including layer values, shape, texture, and 
customized features such as image ratios were tested for. The 
features as suggested by the tool were not directly adapted to 
the rule set; instead the ten best scoring features were further 
investigated visually. Thresholds had to be determined in the 
way suggested above for large areas, i.e. by making use of 
quantiles. 
 
The use of ancillary data for GEOBIA is an often discussed 
topic in literature (Blaschke and Lang, 2006), supported by the 
fact that with software like eCognition the integration of data 
from multiple sources and of both raster and vector 
representation into remote sensing applications has become 
straight forward. What ancillary data is to be used in a 
classification scheme is after all determined by its availability. 
The use of ancillary data strongly depends on expert 
knowledge; however, trial-and-error runs as well as statistical 
approaches can be used in order to further improve their 
employment. For the presented classification only limited 
ancillary data were available (see Chapter 2.2). In the rule set 
the farmland boundary was used to exclude non-farmland areas 
such as Kakamega Forest for further investigations, buffered 
river data was used for the classification of riverine grass and 
shrub vegetation, and slope derived from the DEM was used as 
limiting factor for the classification of certain crop types. The 
latter example shows that the usage of ancillary data overlaps 
with the task referred to as description refinement. Approaches 
applied rely on expert knowledge though to some extent trial-
and-error was applied, e.g. when testing for different buffer 
sizes and slope angles. 
 
Similarly to the refinement of class descriptions the definition 
of a priori constraints can help to enhance the classification 
result by further restricting the class description. These limiting 
definitions are based on expert knowledge and may involve 
ancillary data, minimum area sizes, and relations to already 
classified objects. Constraints used in class definitions of the 
discussed study include minimum sizes for parcels and houses, 
the assumption that certain crop types are not cultivated on 
slopes, and the relation between homesteads and houses. 
 
For most LULC classes a single class description based on 
statistically determined features alone might not be sufficient. 
An additional refinement of class descriptions using further 
rules and/or sub- or temporary classes becomes necessary. 
Here, rules using context-based features such as distance or 
neighbourhood relations to already classified objects can be 
defined. In order to set-up these rules trial-and-error runs 
present the most realistic option. However, at this stage the rule 
set can become very complex and a testing of what elementary 
effect a single used features and defined rule has on the end 
result can become challenging. The LULC classification 
presented is thus based on numerous trial-and-error runs, 
although building these complex rules could as well be 
considered the result of expert knowledge.  
 
The order of a classification, i.e. in which sequence classes are 
classified, plays only a role in consecutive classifications. When 
following the approach of a visual interpretation, classes that 
contain rather small objects and that are relatively easy to 

increase in object size 
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delineate are classified first. The decision on a particular 
classification order is based on expert knowledge; trial-and-
error runs may be used in order to confirm the assumptions 
made. In Tab. 2 the order in which the LULC classes were 
classified can be seen: the four groups were consecutively 
classified from A to D, within each group from top to bottom. 
For some otherwise difficult to classify LULC classes a 
preliminary classification of a class from a higher segmentation 
level was necessary. In the case of tea, sugar cane, and fallow 
land / grass land / grazing area also some trial-and-error tests 
had to be conducted. 
 
3.3.4 Post-classification stage 
 
In the context of GEOBIA different kinds of cartographic 
generalization can be applied: a) shape generalization 
enhancing objects by smoothing their outline or making them 
follow geometric shapes like e.g. a rectangle or circle; b) 
merging of over-segmented objects, and c) omission of very 
small objects by defining minimum sizes. These generalization 
techniques can also be referred to at an earlier stage of 
classification for the refinement of class descriptions, i.e. the 
two tasks overlap. The application of such generalization 
techniques requires expert knowledge, their degree of 
utilization must, however, be tested by trial-and-error. In the 
study presented generalization techniques were e.g. applied to 
over-segmented parcels (merging) and tree / shrub vegetation 
(smoothing of outline). Further improvements regarding the 
shape of houses would have been desirable but suitable 
processes are rarely available. 
 
While a checking for logical errors should already be 
conducted as part of the refinement of class descriptions during 
the classification stage, it can again become necessary towards 
the end of the classification chain to change objects based on 
classes from a higher level. Such a checking for logical errors is 
based on expert knowledge; similar to other tasks fine-tuning 
might also require some trial-and-error. In the classification 
carried out, some parts of maize parcels appear similar to bare 
soil and with a linear structure lead to a false classification as 
dirt road. This was for example addressed in the post-
classification stage. 
 
 

4. CONCLUSIONS 

Common GEOBIA tasks could be identified and grouped into 
four stages of classification. For each task it was discussed 
whether a statistical optimization procedure, the integration of 
expert knowledge, or trial-and-error runs are most applicable. 
These theoretical statements were underlined by a real-world 
example of classifying the agricultural matrix surrounding 
Kakamega Forest in western Kenya. This structured approach 
allows defining where in the classification chain the different 
approaches should be integrated. Like this classifications can 
benefit from the advantages of both approaches: Subjectivity is 
minimized where it is desirable while the inclusion of expert 
knowledge leads to more sophisticated rule sets. 
 
For the classification carried out statistical optimization 
analyses were used in only two out of twelve tasks identified, 
namely parameter optimization and feature selection. However, 
these two tasks are of essential importance for any 
classification. They require making numerous decisions which 
could easily exhaust the user when trying to find the best 
solution based on trial-and-error. Unfortunately, only very few 

ready-to-use and adjustable tools exist for these statistical 
optimization procedures. For the definition of thresholds and 
the refinement of class descriptions the application of trial-and-
error runs is indispensable while for six further tasks trial-and-
error is an option. The dependency on trial-and-error leads to a 
major drawback of object-based image analysis: In order to 
build solid and sophisticated rule sets for large-area applications 
of heterogeneous landscapes long developing times have to be 
accepted. In addition, expert knowledge plays an important role 
in the development of any work-flow. Out of twelve tasks seven 
rely on expert knowledge while for two further tasks its 
integration is optional. With this integration of context and 
human perception into rule set development the advantage of 
GEOBIA over pixel-based approaches is apparent. But at the 
same time it makes GEOBIA a complex matter requiring for 
expert users. 
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