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ABSTRACT: 
 
A multi-scale object-based classification was carried out using data from three different sensors to map classes of interest in the 
framework of the EPISTIS project. This project aims to highlight the spatio-temporal patterns that underlie the epidemiology of 
certain diseases and more particularly of bluetongue in this case-study.  A SPOT5 10m XS image of Sardinia taken in the springtime 
was segmented and the land-cover/land-use classes that are the most easily discriminated were mapped using a thresholding 
approach. Subsequently, a DEM was used as ancillary data to map the riparian vegetation. The remaining vegetation classes were 
then mapped using a nearest-neighbour algorithm. ASTER features, notably derived from the SWIR bands, were used in addition to 
SPOT in the feature space to improve vegetation discrimination. Images taken in the springtime allow for a good discrimination 
between semi-natural vegetation and arable land, which was the initial objective. However, project developments implied further 
discrimination within the arable land. Due to their spectral similarity at this resolution in a patchy Mediterranean landscape, a 
number of classes could not be sufficiently well classified even using additional textural and contextual features. Therefore, data 
derived from MODIS vegetation indices time series were included in the classification process so as to account for the vegetation 
dynamics and improve the classification results. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

The EPISTIS project aims to highlight the spatio-temporal 
patterns that underlie the epidemiology of certain diseases, and 
more particularly of bluetongue in this case-study. Bluetongue 
is an arthropod-borne viral disease of ruminants. All ruminant 
species - sheep, goats, cattle, buffaloes, antelopes and deer - are 
susceptible. Of the domestic species, sheep are the most 
severely affected. The vectors of bluetongue are culicoides 
(biting midges). Over the last 10 years, the bluetongue virus has 
dramatically spread throughout southern Europe (OIE WAHID, 
2009). In Italy, bluetongue first appeared in August 2000 and 
the biting midge Culicoides imicola is considered to be the 
major vector of the disease in the country (Conte et al., 2009). 
EPISTIS investigates, among other questions, the landscape 
descriptors associated with C. imicola’s successful population 
development in Sardinia. This region was chosen as a priority 
area due to (i) the high level of C. imicola abundance and (ii) 
the availability of an extensive database with longitudinal 
density data for C. imicola. In this framework, the main 
objective of the use of remote sensing is to provide land 
use/land cover maps with relevant classes of interest, from 
which landscape descriptors will be derived in a later stage. 
Initially, the focus was on the distinction between semi-natural 

vegetation and arable land, but the requirements evolved 
towards further detail within the arable land. 
 
Notwithstanding the required degree of detail in the 
classification, high resolution data (SPOT5 and ASTER) were 
preferred to very-high resolution data since wide areas should 
be mapped so as to cover a sufficient number of C. imicola 
trapping sites. Moreover, considering that a number of classes 
of interest relate to vegetation dynamics, we opted for a method 
combining single date high-resolution data with multi-temporal 
medium resolution data (MODIS).  
 
An object-based image analysis approach (OBIA) was chosen, 
because of the spatial resolution of the SPOT5 images (10m in 
the visible and NIR bands) and the high heterogeneity of the 
vegetation classes. The basic difference with pixel-based 
procedures is that OBIA does not classify single pixels, but 
rather image object primitives (regions) that are extracted in a 
prior image segmentation step. Beyond spectral information, the 
regions carry many additional features (shape, texture, and 
contextual features) (Blaschke and Strobl, 2001; Benz et al., 
2004).  The fact that the resulting classification is to serve as 
input for patch analysis is also in favour of OBIA. 
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2. STUDY AREA AND DATA 

Study area 2.1 

Sardinia is a mountainous Italian island, with plains constituting 
only one fifth of the territory. Over the XXth century, malaria 
eradication, river monitoring and irrigation allowed previously 
under-utilized lands to be transformed into intensively 
cultivated lands. The splitting of cultivated areas into smaller 
parcels, because of the subdivision of the land through 
inheritance, brought about many changes in landscape patterns. 
The present agricultural landscape of the Sardinian plains is a 
typical Mediterranean open land, often treeless and sometimes 
interrupted by gentle slopes. The main products are wheat in the 
open lands, grapes and olives in the enclosed lands and 
artichokes in the market gardens (Pungetti, 1995). Dairy sheep 
farming represents an important source of agricultural income 
in Sardinia, where about 3.5 million of dairy ewes are raised at 
pasture. Quite recently, irrigation has spread in the Sardinian 
lowlands, which resulted in the development of highly-
intensified farms. Irrigated forage crops represent an excellent 
tool for increasing stocking rate and animal performance per 
hectare (Fois et al., 1999). 
 
The area we selected to develop the classification method is 
located in north-western Sardinia near the cities of Sassari, 
Porto Torres and Alghero. The SPOT5/ASTER overlapping 
zone covers about 1200 sq km (Figure 1). The main land 
use/land cover types are Mediterranean maquis and garrigue, 
arable land, human settlements and water bodies. In this paper 
we will focus on this area only, although the classification will 
be applied to other areas as well. 
 

 
 
Figure 1: The study area selected for developing the 
classification method, shown here as a SPOT5 false colour 
composite (SPOT Image distribution/OASIS programme, 
Copyright CNES). The green polygons represent the areas 
where the classification method will be applied. 
 
2.2 

2.2.1 

2.2.2 

3.1 

3.2 

3.2.1 

Data 

Imagery: Three types of images were used in this 
study: SPOT5 XS, ASTER and MODIS. 
  
The SPOT5 XS image was acquired in April 2003. The green, 
red and NIR bands have a spatial resolution of 10m, whereas 
the MIR band has a spatial resolution of 20m. This image was 
obtained thanks to the OASIS programme. 
 

As a complement, we used an ASTER image acquired in June 
2003. The spatial resolution of the VNIR, SWIR and TIR bands 
is 15m, 30m and 90m, respectively. The rationale for 
complementing SPOT5 with ASTER is to combine the higher 
spatial resolution of SPOT5 with the higher spectral resolution 
of ASTER (14 spectral bands), which is an asset for 
discriminating the different vegetation types. These images 
were acquired in springtime, a favourable period to discriminate 
(semi-)natural vegetation from cultivated areas, which was the 
initial objective of the classification. The images cover farms 
where C. imicola catches have been recorded for several years. 
 
In addition, a time series of images from the global 250m 16 
day Vegetation Index Product (MOD13Q1, version 5, EVI and 
NDVI) was downloaded for the year 2003, covering the entire 
study area. These data are distributed by the Land Processes 
Distributed Active Archive Center (LP DAAC), located at the 
U.S. Geological Survey (USGS), Earth Resources Observation 
and Science (EROS) Center. 
 

Ancillary data: A 20m resolution DEM was used to 
orthorectify the high resolution images and to derive the stream 
network. 
 
 

3. METHODS 

 
Field survey and sample collection 

A field survey was conducted in 2007 in order to collect 
training and validation sets. The samples were collected using a 
GPS in farms where C. imicola catches are being recorded, 
around these farms in a surrounding neighbourhood 
corresponding to the flight range of C. imicola (a few hundred 
meters) and also farther away in order to encompass the 
landscape diversity that is present in the images. To ensure 
consistency, the class assigned to each sample was validated by 
two researchers present in the field thus limiting the risk of 
error. A further check was performed using the very-high 
resolution images that can be viewed in Google Earth. 
Additional samples were also collected using Google Earth 
when necessary. This was made possible thanks to the 
knowledge of the landscape acquired during the field survey. 
 
One difficulty was to collect samples for some of the subclasses 
of arable land.  Indeed, we intend to make a distinction between 
(i) agricultural land that is irrigated permanently or periodically 
and (ii) agricultural land that is never irrigated. During the field 
survey, a note was made for irrigated parcels and parcels 
equipped for irrigation (sprinklers etc.). However, a parcel that 
was not irrigated and not equipped at the time of the field 
survey can be periodically irrigated, and a parcel equipped for 
irrigation might not be irrigated anymore. We therefore used the 
MONIDRI database as a complement to the field survey (Fais 
et al., 2004). This database is available online through a web 
mapping interface and contains, among others, detailed land use 
layers with information on irrigation. 
 

Image pre-processing 

SPOT5 and ASTER: Since (i) indices had to be 
derived and (ii) we intend to apply the method to a set of 
images acquired at different dates, the images were 
atmospherically corrected. We used ATCOR2  (Richter, 2003), 
an algorithm that includes the MODTRAN radiative transfer 
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model. Beside the atmospherically corrected reflectance bands, 
a series of layers were generated, i.e. SAVI, LAI, FPAR, 
Surface Albedo and Absorbed Solar Radiation. SAVI (Soil 
Adjusted Vegetation Index) is a vegetation index designed to 
minimize the effect of the soil background; LAI (Leaf Area 
Index) is a measure of the green leaf density; FPAR (Fraction of 
Photosynthetically Absorbed Radiation) is correlated to LAI. It 
measures the amount of photosynthetically active radiation 
absorbed by a plant canopy; Surface Albedo is the fraction of 
the incoming solar radiation reflected by the land surface; 
Absorbed Solar Radiation flux measures the shortwave solar 
radiation absorbed by the surface (PCI Geomatics, 2009 ; 
Bannari et al., 1995). The high resolution images were also 
orthorectified with topographic maps and a 20m DEM, using 
Toutin’s model embedded in the Geomatica software. The 
corrected ASTER bands were then cut and resampled to fit the 
extent and resolution of the SPOT5 image. The resampling 
option selected is the nearest neighbour that does not alter the 
pixel values.subject 
 
 
3.2.2 

3.3 

3.4 

MODIS: A cubic spline interpolation was applied to 
de-noise MODIS data series. Indeed, in a recent paper by 
Scharlemann et al. (2008), a cubic spline interpolation 
technique was tested for seasonality extraction to be used as 
input for species distribution modelling. This novel algorithm of 
spline interpolation followed by regular resampling of the 
composited satellite data was developed to produce a 5-day 
interval MODIS time series that could then be subjected to 
standard temporal Fourier processing methods. This algorithm 
was found to capture the input amplitude and phase information 
correctly. The algorithm was programmed in ‘R’  and applied to 
the MODIS NDVI and EVI image time series. Fourier analysis 
is ideally suited for summarizing seasonal variables (Rogers et 
al., 1996) because seasonal activity is a driving factor for e.g. 
vegetative status, vector abundance etc. It was performed on the 
de-noised MODIS data series with the Sat-geoTools software 
package. 
  

Legend 

The land use/land cover legend was designed according to the 
class significance for the vector of bluetongue and the 
landscape descriptors to be derived, taking into account the 
results of an exploratory unsupervised classification carried out 
on a subset of SPOT5 images. It was subsequently refined 
during the 3-week field survey in Sardinia. A parallel was made 
with CORINE Land Cover to guarantee a more generic 
character of the classification scheme, although one-to-many 
and many-to-one relationships do exist. The legend is presented 
with the classification result in Figure 4. 
 

Image segmentation 

The segmentation was carried out using the multiscale bottom-
up segmentation algorithm embedded in eCognition (Definiens 
AG, 2007). The parameters used in this process are summarized 
in Table 1. We used only the SPOT5 bands since they have the 
best spatial resolution. Scale is a parameter without unit that 
determines the size of the resulting image objects (regions). 
Smoothness/compactness are weighting factors ranging from 0 
to 1. The parameter values were determined by visual 
inspection of the segmentation result, so as to avoid under-
segmentation and excessive over-segmentation of the objects 
composing the different classes. 
 

Segmentation 
level 

Bands Scale 
Parameter 

Smoothness/ 
Compactness 

Number of 
objects 

Fine segmentation SPOT Green, 
Red, NIR, 
SWIR 

10 0.1/0.5 180135 

Coarse 
segmentation 

SPOT Green, 
Red, NIR, 
SWIR 

50 0.1/0.5 8509 

  
Table 1: Parameters used to create two segmentation levels 
 
3.5 

3.6 

Image classification – step 1 

A multi-sensor, mixed rule-based and nearest neighbour 
approach was implemented, with the integration of ancillary 
data. Object-based classification was performed using 
eCognition, which allowed building a rule set that can be 
applied to similar data with adjustments. The general approach 
consists in thresholding spectral (including customized features 
such as NDVI), textural and contextual features to classify the 
land use/land cover classes that are the more easily isolated, and 
to use the nearest neighbour classifier for the remaining classes. 
The nearest neighbour feature space was optimized using the 
feature space optimization tool and contains features derived 
from SPOT5 and ASTER. Two levels were classified (fine and 
coarse) thus allowing the use of the hierarchical properties of 
image objects. These properties have proven useful in other 
contexts, e.g. mapping bush densities (Laliberté et al., 2004). 
 
On the fine segmentation level (Figure 2), the ‘water bodies’ 
were the most easily isolated by thresholding the mean SPOT 
Albedo. Classification of the ‘riparian vegetation’ required the 
use of the SPOT NDVI and of a stream network layer 
(drainage) that was generated from the DEM using the 
hydrologic modelling functions available in ArcGIS. Small 
bright objects were isolated using the SPOT brightness and used 
on the coarse level for the classification of ‘artificial surfaces’. 
The other classes were discriminated thanks to the nearest 
neighbour classifier. It was not possible to further split the 
classes ‘permanent crops and complex cultivation patterns’ and 
‘other agricultural land and natural grassland’ according to their 
irrigation status, due to spectral similarity at this resolution. 
This split was performed in a second classification step with the 
adjunction of MODIS data. 
 
The classification on the coarse segmentation level (Figure 3) 
aims at avoiding the confusion between ‘artificial surfaces and 
open spaces with little or no vegetation’ and the bare soils 
belonging to the agricultural land. Larger objects are more 
meaningful in terms of textural analysis and different types of 
texture measures were calculated, i.e. GLCM homogeneity 
(Haralick et al., 1973) and two texture features based on the 
sub-objects.  
 

Image classification – step 2 

We introduced MODIS data in the classification scheme in 
order to subdivide the provisional classes ‘permanent crops and 
complex cultivation patterns’ and ‘other agricultural land and 
natural grassland’ resulting from the first classification step. We 
used four amplitude images (A0, A1, A2 and A3) and three 
phase images (f1, f2 and f3) output from the Fourier transform 
of both the 2003 NDVI and EVI time series.  
(i) Amplitude. The principal component values are greater for 

classes with constant photosynthetic activity (or higher on 
average), the first harmonic values for classes with 
monocyclic photosynthetic activity, the second harmonic 
values for classes with bicyclic photosynthetic activity and 
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the third harmonic values for classes with tricyclic 
photosynthetic activity. 

(ii) Phase. The phase values indicate the timing of the first peak 
of photosynthetic activity. 

 
A first attempt was made to build a rule set based on our 
relative class knowledge. In this approach, only the amplitude 
images were used. Using the phase images would imply that we 
have relative knowledge regarding the timing of vegetation 
peaks for the different classes, which is not the case. A number 
of assumptions were formulated, e.g.: 
• Irrigated pastures tend to be greener on average than non-

irrigated pastures and natural grassland 
• Non-irrigated pastures and natural grassland tend to be 

more monocyclic than irrigated pastures 
Increasing linear membership functions on the interval [mean-
σ ; mean+σ/2] were designed to distinguish classes with higher 
amplitude values and decreasing linear membership functions 
on the interval [mean-σ/2 ;  mean+σ] were designed to 
distinguish classes with lower amplitude values. With this 
scheme, the best classification was obtained using data derived 
from the NDVI time series. Statistical processing of EVI data 
showed high standard deviation values for A1/A0 and A2/A1, 
which could indicate that the EVI time series contains more 
noise, thus explaining the poorer results obtained. However, 
even the best classification based on NDVI time series did not 
reach sufficient accuracy and this potentially promising 
approach using relative class knowledge was abandoned. 
 
A second attempt was made using seasonality parameters 
extracted with the TIMESAT software. Jönsson and Ekhlund 
(2004) developed this software to extract seasonality 
information from noisy time series. TIMESAT first smoothes 
noisy time series using an adaptive Savitzky-Golay filtering 
method. The resulting smooth curves are then used for 
extracting seasonal parameters related to the growing seasons. 
The parameters extracted are (a) beginning of season, (b) end of 
season, (c) left 90% level, (d) right 90% level, (e) peak, (f) 
amplitude, (g) length of season, (h) small integral over growing 
season, (i) large integral over growing season fall. A 
classification scheme was built on the same tree-like method 
and implemented in the object-based classification. Since this 
attempt did not yield satisfying results, we do not further detail 
it. 
 
A third attempt was made based on an approach combining 
membership functions generated using training samples and the 
nearest neighbour classifier. In this approach both amplitude 
and phase images of the NDVI time series were used. The 
feature used to generate the membership functions (A1) was 
selected by comparing feature histograms and their overlaps. 
The features used for the standard nearest neighbour 
classification are the Mean of A0, A1, A2, A3, f1, f2 and f3. 
They were selected using the feature space optimization tool. 
The two provisional classes that were to be split were 
subdivided into four subclasses:  ‘irrigated arable land and 
pastures’, ‘non-irrigated arable land’, ‘pastures and natural 
grassland’, ‘irrigated permanent crops and complex cultivation 
patterns’ and ‘non-irrigated permanent crops and complex 
cultivation patterns’. Arable land in this acceptation excludes 
the permanent crops and complex cultivation patterns. 
 
 

4. RESULTS AND DISCUSSION 

A subset of the classification is presented in Figure 4. 
 
For the first classification step, an independent accuracy 
assessment using 127 validation points showed that KIA was at 
86%. The best classification result was obtained for the ‘water 
bodies’, followed by the ‘other agricultural land’, the ‘artificial 
surfaces and open spaces with little or no vegetation’ and the 
‘coniferous forests’. For these four classes, KIA was over 90%. 
The main misclassifications occurred between the ‘high maquis 
and broad-leaved forest’ and the ‘low maquis and garrigue’, but 
these are not the most critical classes in the framework of our 
project. The class ‘permanent crops and complex cultivation 
patterns’ had the lowest KIA (60%), probably because 
vineyards are spectrally similar to pastures at that resolution 
where the vine rows are not detected. In a complex 
Mediterranean landscape like the one we find in the study area, 
the use of ASTER bands (and notably the SWIR bands) in the 
nearest neighbour feature space contributed to the improvement 
of the classification results for the vegetation classes. However, 
the limit of the classification using only high resolution single 
date images is reached when it comes to (i) isolate classes 
linked to the irrigation status of the plots and (ii) differentiate 
some vegetation types that are spectrally similar at that 
resolution. 
 
For the second classification step, an independent accuracy 
assessment using 147 validation points showed that KIA was at 
63%. The best classification result was obtained for the 
‘irrigated permanent crops and complex cultivation patterns’ 
(81%). The ‘irrigated arable land and pastures’ has the lowest 
KIA (52%) and is mostly misclassified as ‘irrigated permanent 
crops and complex cultivation patterns’. On the whole, a visual 
assessment of the result based on field knowledge shows that 
the main landscape patterns are reflected in the classification. 
The influence of the coarser resolution and geo-location error of 
the MODIS data on misclassifications should still be further 
investigated, but it is assumed that land use/land cover 
transition zones and smaller isolated plots are the most affected.  
 
 

5. CONCLUSION 

 
In this complex Mediterranean landscape, OBIA proved a 
valuable tool for producing the land use/land cover maps that 
are needed for further analysis in EPISTIS. It allowed us to 
combine images with different resolutions, to integrate ancillary 
data and to use complementary classification approaches. The 
strategy consisting in classifying the most separable classes in a 
first stage with thresholded features and the remaining classes 
in a second stage with the nearest neighbour classifier was 
effective. The use of textural and contextual features in addition 
to spectral features also contributed to the improvement of the 
results. The integration of data derived from MODIS vegetation 
time series was beneficial for the classes where information on 
vegetation dynamics is essential. Further work will investigate 
the integration of uncertainties in the subsequent landscape 
analysis. 
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Figure 2: Step 1 - Classification tree of the fine segmentation level. For the thresholded features, values greater than a threshold are 
split to the right, values smaller are split to the left. Classes in white boxes are provisional results, in blue boxes final (S stands for 
SPOT). 
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Figure 3: Step 1 – Classification tree of the coarse segmentation level. For the thresholded features, values greater than a threshold 
are split to the right, values smaller are split to the left. Classes in white boxes are provisional results, in blue boxes final (S stands 
for SPOT). 
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Figure 4: Subset of the classification result. In the legend, the first 6 classes result from the first classification step, the 4 last classes 
from the second classification step. 
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