ZOO Project: The Open WPS Platform

G. Fenoy'*, N. Bozon®, V.Raghavafi

& GeolLabs sarl, Futur Building 1 1280, avenue desaPles 34970 Lattes, FRANCE. gerald.fenoy@geotabs.f
P 3LIZ sarl, 361 rue J-F. Breton B.P. 5095 34196 Metilier, FRANCE. nbozon@3liz.com
¢ Graduate School for Creative Cities, Osaka Citjvensity, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka-5838,
JAPAN. raghavan@media.osaka-cu.ac.jp

KEY WORDS: Web Processing Service, Open Geospatial Consor@aographic Information Systems, Open Source Geiaspat

ABSTRACT:

This paper aims to present the ZOO Project, which hew open source implementation of the Open fia¢iat Consortium’s
(OGC) Web Processing Service (WPS), released uhdeetm of the MIT/X-11 license. Based on a robestexr-side C language
Kernel (named ZOO Kernel), ZOO Project proposeswa approach to develop, handle and chain standatd&dS-based Web
services. A brief review of WPS and existing inmpéntations will be first proposed in order to detta¢ ZOO Project development
background and goals. Then, the ZOO itself willppesented, focussing on its assets and limitatimms)ost to highlight the new
opportunities provided by such a platform. The ZR&nel and its architecture will be first examirthtbefore further explanations
on the proposed method for Web services creatibime ZOO JavaScript API that provides an easy wagrthestrate and chain
Web services will be then presented through teethmamblings on server-side JavaScript support Z8® Kernel. Both Kernel
and API are illustrated and documented throughendifit Web service code snippets. Some visual exammpl client-side

interactions are also presented.

1. INTRODUCTION

1.1 Research context

Progress of geographic information systems (Glg)tae more
systematic use of the Open Geospatial Consortiunsérfelzes
(OWS) has led to a variety of available technolsgand
methods to store and spread GIS data over thenbtter
Standardization of spatial data and metadata haeonbe
crucial in the context of collaborative Web GIS diepment,
but also due to specific directives or policiesareiing data use
and sharing, such as the INSPIRE directive for theofean
context. The quiet recent but very fast developroémiew Web
GIS techniques (partly due to new opportunitiesrefl by Web
2.0 and Cloud Computing), is leading to a growingligudnd
governmental awareness on the necessity of usamglatds for
Web-based spatial data infrastructures (SDI).

Numerous tools are available today to strore amdaspspatial
data over the Internet, through the Web Map Ser(\t#S)

and Web Feature Service (WFS). Many open source
proprietary GIS solutions now supports such statsland
these methods have become very popular. By contrabt,a

few solutions are available for processing sucha datough
WPS.

1.2 Web Processing Service (WPS)

WPS is one of Open Geospatial Consortium's mostntece
interoperability standards. It was first proposettier version
0.4 in 2005, and some improvements were added lisiore
1.0.0 which was released in 2007, after requestspélic
comments and huge collaborative efforts by adoptand
dedicated working groups.

WPS is designed to standardize the way that Gl&i#hgns are
made available on the Internet. It specifies a nfeaa client to
request the execution of a spatial calculation febservice. It
intends to automate geoprocessing by employing paeiad
semantics in a service-oriented architecture (SOWPS
supports simultaneous processes via the HTTP GHTP@ST
method, as well as Simple Object Access ProtoddAf®) and
Web Services Description Language (WSDL), thus iling

freedom to the Web Service developer to choosentbst
suitable method regarding his implementation needs.

O'I?here are three key requests that can be subndtedWPS
server.GetCapabilities, which first generates a metadata file as
a XML document that describes the available preess the
server-side. DescribeProcess, which then provides more
detailed information of a specific process suclthasnecessary
input data, the targeted output data format, akagahe service

Some WPS fundamentals and a review of the existingitle and short abstract.

implementations are recalled in the first section,order to

explain the ZOO Project development context, iffecinces,

assets and limitations. Second and third sectien gresent the
ZOO0O Kernel and API architecture, and aim to detal method
for setting up Web Services through simple examples

* Corresponding author.

Once all the necessary supplied parameters arergdttiirom
DescribeProcess request, the processing task can be submitted
to the server by th&xecute request. The latter can answer
directly to the client by returning the createdpaut or store the
results as Web accessible resources, inBExstuteResponse.

This XML document contains the URL location of fudistatus
document update, and notifies the accepted andcteeje
processing tasks. Thus, the client can request rthet
ExecuteResponse document until the process completion is
indicated by the ProcessSucceeded”. While the Execute
request is active, the progress of a process cafollmeved
continuously with the ProcessAccepted”, “ProcessStarted”,
“ProcessSucceeded” and “ProcessFailed” statements. In case of
“ProcessSucceeded”, the ExecuteResponse includes either the
raw generated outputs or some URL indicating thesichy
location where from the output data could be a@mkss

This short presentation of WPS shows that it issinaty based
on XML and the three key requests along with theapective
responses, which cover the essential part of theC'®G
specification (Michael, Ames, 2007).

1.3 Existing WPS implementations

As it was already said, WPS specification is rathew and
implemented only by a few GIS library, and so supgb by a
very few GIS clients. One can note that most of akeilable
WPS implementations are using Java language, asaah be
proved by the following list:

architecture and functioning are described in the next
sections.
2. ZOO KERNEL

2.1 Presentation

Z0OO0 Kernel is the heart of the ZOO Project. It iseaver-side
C Kernel which makes it possible to create, managkchain
WPS 1.0.0 compliant Web Services, by loading dyoami
libraries and handling them on-demand. Thus, it easily
connect to geospatial libraries and scientific ni@dbut also
with the common cartographic engines and spatialbdeses.

Z0OO0 Kernel is written in C language, but Web Sersican be
programmed in C, Python, Java, Fortran, PHP andSiaym.

This multi-language support is convenient for depels and
allows above all to use existing code to create Neb
Services. Open source GIS libraries or specificecgpatial
based or not) can so be ported server-side witly \itte

modifications. Some examples are given in secti@n 2

2.2 Architecture

ZOO Kernel basic architecture is detailed in thect®n.
Internal mechanisms based on the concef8enfice Provider

- Deegree framework is a Java-based environment which@nd the adopted grammar for configuration are &ésgtlained.

implements most of OGC standards and has impleméhtes
quite early.

- WPSint is a Java plug-in for Spring GIS software and
implements WPS 0.4.0 in a Java/JEE applicationdraonk.

- 52° North WPS is also written in Java, as a plug-in for Java

Tomcat servlet container, and interacts with otl@wWS
standards. It also includes a UDig software cligntinteract
with 52° North WPS.

- GeoTools and GeoServer also from the Java world are
actually working to implement WPS 1.0.0 (HolmesQ2p

PYWPS is the only Python-based WPS implementation an
provides an environment to create Web Processimgcss in
Python. It also proposes a native support for GR&SS-
python scripting. This project was started in 2G0&l is now
starting the Open Source Geospatial Foundation’'SG€D)
incubation process.

Other proprietary implementions may have been edwut, but
not published, so the versions of WPS, the protenld the
languages they are using are still unknown. Howeore can
notice that the Environmental Systems Research tutesti
(ESRY) is actually working on implementing WPS sugpioto
future version of Arc GIS Server (Fee, 2008).

This review of existing WPS compliant products shawat a
small number of open source projects are activaliding the

WPS definition and implementation in close collaimm with

the OGC, and that it is a relatively new researeld fregarding
the geospatial Web. WPS 2.0.0 is nhow announcedcaielso
notice that every available WPS solution is langudgpendant,
meaning that Web Services must be coded in JairaRython,

and this is a huge limitation to the use of WPS.

As an open source project too, ZOO is in line witthis
technical research context, and wants
opportunities that promotes WPS and make it simfespite
it is the younger project, it supports several paagming
languages and provides an original Apache-basetbapip to
setup reliable and powerful WPS servers.

to propose ne

The supported programming languages and their céspe
dependencies are also listed.

Z00 Service Provider

A ZOO services provider is a couple of a Servicésir&d
Objects (SSO) and one metadata ZOO configuratler(.icfg)
per provided service. The ZOO Configuration file tzoms all
the metadata information about the service proviaed the
latter contains the source code of the relatedeeEsv

i’he Services Provider was conceptualized this wagrder to

acilitate the GetCapabilities and DescribeProcesgquBgs.
Indeed, ZOO Kernel only have to parse the ZCFGuUiimg a
specific Flex and Bison parser to answer to this kival of
requests. Using Flex and Bison, a grammar was teéned a
for the configuration file which will make the ZOKernel able
to check if all required inputs were provided ire trequest. If
yes, a well formed Exception XML Document as expedcind
defined by the OGC’s WPS standard will be produééek and
Bison are used by lot of software such as MapSebugr,a new
grammar had to be defined. A serious near-futuesrative is
to use in the the YAML format to easily define thervice
metadata.

Multi-languages

ZOO Services can be written natively in C and Python
language. The Python interpreter was embedded ZQ®
Kernel which allows to use existing Python librarias ZOO
Services.

PHP (embedded version), Java, Fortran and JavaSargp
optional languages and compilation options mustiéined at
compilation, and specific dependencies installedHRP
embedded, Java SDK, G77 and SpiderMonkey).

This variety of supported languages allows the WWR8b
Service end-developer to choose his preferred Egguand

The ZOO’?bove all to use existing code and turn it into WR'&b

Services coded in different languages can alsohbaéed in a
standardized way.

2.3 Using OSGeo librairies as WPS using ZOO Kernel

The ZOO Project initial idea was to build a platfoeble to
connect the numerous and good OSGeo librariesttegand to
use them as Web Services. The Web Services aneaids
logically first test with the GDAL/OGR library (Warendam,
1999), in order to perform basic vector and rag&S from a
stable C library.

GDAL/OGR

As GDAL/OGR is coded in C, the corresponding Web Bess
were written in the same language, in a rather lginyay.
Indeed, as ZOO Kernel is able to load dynamic tiesa only a
few modifications were needed in the original cotigis can be
confirmed for example by looking at the well knowgr2ogr

code and the corresponding .zcfg file on the ZOGdet Trac
(Fenoy, Bozon, Raghavan, 2010). Using the OGR code ba

by click and then apply a buffer process on it,dajling the
OGR-based Web Service cited above. Any other single
geometry vector operation can be performed suclkoasex
hull, boundary or centroid. The geometries are tgsimples
and light so the results can be rendered using &aiNJ

a=D agp

wYy

NM

Y

again, we could have also setup a WPS Serviceirigtesand
multiple geometries spatial operations (Fenoy, Bozon
Raghavan, 20%). Same work was done using the GDAL code
base in order to implement thgdalgrid and gdaltrandate
capabilities as WPS. Those Web Services allow toved,
reproject and process both vector and raster daliaeoin a
standardized way.

GRASS GIS

Some other experiments are actually being carrietl to
communicate with GRASS GIS, which provides advarageh
source GIS processing algorithms. (Neteler, Mitasd®2008).
GRASS 7 now provides a WPS process description &por
which returns XML documents describing the GRASS
functions (Gebbert, 2009). This is very useful dor tentative
connection to GRASS, and ZOO Kernel can take adgantéd
such GRASS outputs. Thus, a GRASS XML to ZOO
configuration file (.zcfg) converter was develop@@ebbert,
2010), allowing ZOO Kernel to understand the nurasro
GRASS function through WPS. Then, a GRASS modulg¢estar
was also developed in Python to call the desiregttfan and
the corresponding .zcfg in a generic way (Gebb2ét (.
These Python scripts are actually callable as ZOgb Bervices
and several successful tests have been carrriad tisér.add,
r.div, r.mult and r.sub functions (Gebbert, 2030 This very
promising work must now be fully tested and intégdeas ZOO
Services, and the other GRASS functions could bea@tpd
soon.

The use of GDAL/OGR and the future support for GRARS
are showing that ZOO Kernel can use existing libsaras
standardized Web Services, with minimum modifiaatiof the
original codes. Future work and development plaeshbased
on integrating other open source GIS libraries, &lsb on
working with non-GIS libraries (but useful when
communicating with GIS), mainly for statistics addcument
management.

2.4 Client-side interaction examples

Let us now explain how such WPS Web Services cacalbed
and exploited from a client-side webmapping apfiicabased
on OpenLayers library (Schmidt, 2006). Figure lveha WMS
layer (used as input data) on which the user clactsa polygon

Figure 1. Example buffer output

Once the buffer is shown on the map, the user lsan select
another polygon and perform a multi-geometry openat
Figure 2 shows the result of an intersection pr@besween the
previous calculated buffer and the second selgutédjon.

& F,

MT

wy

uT

NM

=l

Example intersection output

Figure 2.

Last client-side interaction example is based oa GDAL

ExtractProfile function which allows to get the value of any
raster layer. Using an OpenLayers client once ageéncould

set up a specific control using the GDAL Web Serwdth a

GTOPO30 DEM layer and a GeoJSON line string to gere
JavaScript elevation profiles on the fly.

Figure 1. Example elevation profile
These client-side examples are available on the Fo@ect
website and prove that ZOO Web Services can beested
from a traditional Web GIS client. However, these proof-of-
concept implementations and ZOO does not provigeVERS
oriented client-side library yet.

3. ZOO API

ZOO APl is a concise server-side JavaScript libcegigned to
simplify the WPS processes creation and chainings based
on the ZOO Kernel JavaScript support and the Mazill
foundation JavaScript engine, Spider Monkey (Mazi2010).
The API allows to orchestrate WPS services usinecifip
method and offers the ability to add logic and ocolstin the
WPS chaining. It also uses a Projdjs (Adair, 208Faptation
for server-side reprojection, allowing to easilyieert processes
outputs into common vector formats (GML, KML, @&3&ON,
etc) when needed.

3.1 Server-side Javascript for WPS

Several projects are based on server-side Java$siipg the
Mozilla SpiderMonkey or Rhino JavaScript engines.wks
relevant to do the same in the case of ZOO Kewreiio main
reasons. First, it can be compiled with optionavaseript
support, thus allowing to develop Web Services vettother
language. Then, the ZOO API provides ready-to-as@Script
functions for handling WPS HTTP requests, queryngilable
WPS Web Services, defining input/output flows in 8VP
chaining and converting WPS outputs into severaitorel
formats.

3.2 Classes

Z0OO0 API is first composed of several general claskdicated
to WPS requests construction such a&00.Sring,
ZOO.Request and ZOO.Bounds (D'Hont, 2010). A

4. CONCLUSION

Z0OO Project technical context, architecture andetigpment
goals were presented in this paper. The ZOO Kdaogit and

its multi-languages capabilities were detailed, dhdstrated
through different achieved and on-going Web Sesvice
examples. The ZOO APl and the assets of server-side
JavaScript for WPS were also presented. Futurearesenill

deal with ZOO Kernel internal enhancements , asl sl
working on other integrations of Open Source lilesr

References from Journals
Cepicky, Becchi, 2007. OSGeo Journal, may 2007. (exiad
Processing via Internet on Remote Servers — PyWPS

Michael, Ames, 2007. OSGeo Journal, may 2007. E@n of
the OGC Web Processing Service for Use in a Cliet¢-&ilS

References from Books
Neteler, Mitasova, 2008, Springer
Open Source GIS: A GRASS GIS Approach

References from websites
Holmes,2009. OpenGeo Blog
http://opengeo.org/products/coredevelopment/geeskvps

Cepicky, 2009. PyWPS offical Website
http://pywps.wald.intevation.org/

Fee, 2008. James Fee Blog
http://www.spatiallyadjusted.com/2008/07/30/the-2808-uc-
ga

Fenoy, Bozon, Raghavan, 2010. ZOO Project website
http://zoo-project.org/trac/browser/trunk/zoo-
services/ogr/ogr2ogr/service.c

Fenoy, Bozon, Raghavan, 231200 Project website
http://zoo-project.org/trac/browser/trunk/zoo-
services/ogr/ogr2ogr/service.c

Gebbert, 2009. GRASS GIS wiki WPS section
http://grass.osgeo.org/wiki/WPS

Gebbert, 2010. GRASS XML to ZOO .zcfg
http://code.google.com/p/vtk-grass-
bridge/source/browse/trunk/WPS/ZO0O _Project/Grass¥ML
CFG.py

Gebbert, 2019 ZOO GRASS GIS support
http://code.google.com/p/vtk-grass-
bridge/source/browse/trunk/WPS/ZO0O_Project/Z00Gviass
uleStarter.py

Gebbert, 2019Z00 GRASS support tests
http://code.google.com/p/vtk-grass-

ZOO0.Projection class is also available and linked to the Proj4jsbridge/source/browse/#svn/trunk/WPS/Testing/PytGoagsAd

source code for handling any projection definedhsy Spatial
Reference cartographic projections direct@®O.Feature and

dons

Z0OO0.Geometry classes, along with their respective subclassedylozilla Foundation, 2010. SpiderMonkey JavaScripgiiee

allow to handle the different types of vector daEmally, a
generic ZOO.Process class was developed
input/output, call and chain available WPS procgsse

to setup
Adair, 2007. Proj4js official website

http://mww.mozilla.org/js/spidermonkey/

http://proj4js.org/

D’Hont, 2010. ZOO API on ZOO Project Trac system.

http://www.zoo-project.org/trac/browser/trunk/zopigs/Z00-
api.js

Acknowledgments

Authors would like to thank F.Warmerdam for cregtiand
maintaining GDAL/OGR. Thanks also To Soeren Gebhed
Markus Neteler for their active support in the GRAGE
integration into ZOO Project.

