
ZOO Project: The Open WPS Platform

G. Fenoy a, *, N. Bozon b, V.Raghavan c

a GeoLabs sarl, Futur Building I 1280, avenue des Platanes 34970 Lattes, FRANCE. gerald.fenoy@geolabs.fr

b 3LIZ sarl, 361 rue J-F. Breton B.P. 5095 34196 Montpelllier, FRANCE. nbozon@3liz.com
c Graduate School for Creative Cities, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-5858,

JAPAN. raghavan@media.osaka-cu.ac.jp

KEY WORDS: Web Processing Service, Open Geospatial Consortium, Geographic Information Systems, Open Source Geospatial.

ABSTRACT:

This paper aims to present the ZOO Project, which is a new open source implementation of the Open Geospatial Consortium’s
(OGC) Web Processing Service (WPS), released under the term of the MIT/X-11 license. Based on a robust server-side C language
Kernel (named ZOO Kernel), ZOO Project proposes a new approach to develop, handle and chain standardized GIS-based Web
services. A brief review of WPS and existing implementations will be first proposed in order to detail the ZOO Project development
background and goals. Then, the ZOO itself will be presented, focussing on its assets and limitations, formost to highlight the new
opportunities provided by such a platform. The ZOO Kernel and its architecture will be first examinated, before further explanations
on the proposed method for Web services creation. The ZOO JavaScript API that provides an easy way to orchestrate and chain
Web services will be then presented through technical ramblings on server-side JavaScript support into ZOO Kernel. Both Kernel
and API are illustrated and documented through different Web service code snippets. Some visual examples of client-side
interactions are also presented.

* Corresponding author.

1. INTRODUCTION

1.1 Research context

Progress of geographic information systems (GIS) and the more
systematic use of the Open Geospatial Consortium Webservices
(OWS) has led to a variety of available technologies and
methods to store and spread GIS data over the Internet.
Standardization of spatial data and metadata have become
crucial in the context of collaborative Web GIS development,
but also due to specific directives or policies regarding data use
and sharing, such as the INSPIRE directive for the European
context. The quiet recent but very fast development of new Web
GIS techniques (partly due to new opportunities offered by Web
2.0 and Cloud Computing), is leading to a growing public and
governmental awareness on the necessity of using standards for
Web-based spatial data infrastructures (SDI).

Numerous tools are available today to strore and spread spatial
data over the Internet, through the Web Map Service (WMS)
and Web Feature Service (WFS). Many open source or
proprietary GIS solutions now supports such standards and
these methods have become very popular. By contrast, only a
few solutions are available for processing such data through
WPS.

Some WPS fundamentals and a review of the existing
implementations are recalled in the first section, in order to
explain the ZOO Project development context, its differences,
assets and limitations. Second and third section then present the
ZOO Kernel and API architecture, and aim to detail the method
for setting up Web Services through simple examples.

1.2 Web Processing Service (WPS)

WPS is one of Open Geospatial Consortium's most recent
interoperability standards. It was first proposed under version
0.4 in 2005, and some improvements were added in version
1.0.0 which was released in 2007, after requests for public
comments and huge collaborative efforts by adopters and
dedicated working groups.

WPS is designed to standardize the way that GIS algorithms are
made available on the Internet. It specifies a mean for a client to
request the execution of a spatial calculation from a service. It
intends to automate geoprocessing by employing geospatial
semantics in a service-oriented architecture (SOA). WPS
supports simultaneous processes via the HTTP GET and POST
method, as well as Simple Object Access Protocol (SOAP) and
Web Services Description Language (WSDL), thus providing
freedom to the Web Service developer to choose the most
suitable method regarding his implementation needs.

There are three key requests that can be submitted to a WPS
server. GetCapabilities, which first generates a metadata file as
a XML document that describes the available processes on the
server-side. DescribeProcess, which then provides more
detailed information of a specific process such as the necessary
input data, the targeted output data format, as well as the service
title and short abstract.

Once all the necessary supplied parameters are gathered from
DescribeProcess request, the processing task can be submitted
to the server by the Execute request. The latter can answer
directly to the client by returning the created output, or store the
results as Web accessible resources, in an ExecuteResponse.

This XML document contains the URL location of future status
document update, and notifies the accepted and rejected
processing tasks. Thus, the client can request the next
ExecuteResponse document until the process completion is
indicated by the “ProcessSucceeded”. While the Execute
request is active, the progress of a process can be followed
continuously with the “ProcessAccepted”, “ ProcessStarted”,
“ProcessSucceeded” and “ProcessFailed” statements. In case of
“ProcessSucceeded”, the ExecuteResponse includes either the
raw generated outputs or some URL indicating the physical
location where from the output data could be accessed.

This short presentation of WPS shows that it is massively based
on XML and the three key requests along with their respective
responses, which cover the essential part of the OGC’s
specification (Michael, Ames, 2007).

1.3 Existing WPS implementations

As it was already said, WPS specification is rather new and
implemented only by a few GIS library, and so supported by a
very few GIS clients. One can note that most of the available
WPS implementations are using Java language, and this can be
proved by the following list:

- Deegree framework is a Java-based environment which
implements most of OGC standards and has implemented WPS
quite early.
- WPSint is a Java plug-in for Spring GIS software and
implements WPS 0.4.0 in a Java/JEE application framework.
- 52° North WPS is also written in Java, as a plug-in for Java
Tomcat servlet container, and interacts with other OWS
standards. It also includes a UDig software client to interact
with 52° North WPS.
- GeoTools and GeoServer also from the Java world are
actually working to implement WPS 1.0.0 (Holmes, 2009)

PyWPS is the only Python-based WPS implementation and
provides an environment to create Web Processing Services in
Python. It also proposes a native support for GRASS-GIS
python scripting. This project was started in 2006 and is now
starting the Open Source Geospatial Foundation’s (OSGeo)
incubation process.

Other proprietary implementions may have been carried out, but
not published, so the versions of WPS, the protocols and the
languages they are using are still unknown. However, one can
notice that the Environmental Systems Research Institute
(ESRI) is actually working on implementing WPS support into
future version of Arc GIS Server (Fee, 2008).

This review of existing WPS compliant products shows that a
small number of open source projects are actively building the
WPS definition and implementation in close collaboration with
the OGC, and that it is a relatively new research field regarding
the geospatial Web. WPS 2.0.0 is now announced. We can also
notice that every available WPS solution is language dependant,
meaning that Web Services must be coded in Java or in Python,
and this is a huge limitation to the use of WPS.

As an open source project too, ZOO is in line with this
technical research context, and wants to propose new
opportunities that promotes WPS and make it simpler. Despite
it is the younger project, it supports several programming
languages and provides an original Apache-based approach to
setup reliable and powerful WPS servers. The ZOO’s

architecture and functioning are described in the two next
sections.

2. ZOO KERNEL

2.1 Presentation

ZOO Kernel is the heart of the ZOO Project. It is a server-side
C Kernel which makes it possible to create, manage and chain
WPS 1.0.0 compliant Web Services, by loading dynamic
libraries and handling them on-demand. Thus, it can easily
connect to geospatial libraries and scientific models, but also
with the common cartographic engines and spatial databases.

ZOO Kernel is written in C language, but Web Services can be
programmed in C, Python, Java, Fortran, PHP and JavaScript.
This multi-language support is convenient for developers and
allows above all to use existing code to create new Web
Services. Open source GIS libraries or specific code (spatial
based or not) can so be ported server-side with very little
modifications. Some examples are given in section 2.3.

2.2 Architecture

ZOO Kernel basic architecture is detailed in this section.
Internal mechanisms based on the concept of Service Provider
and the adopted grammar for configuration are first explained.
The supported programming languages and their respective
dependencies are also listed.

ZOO Service Provider

A ZOO services provider is a couple of a Services Shared
Objects (SSO) and one metadata ZOO configuration file (.zcfg)
per provided service. The ZOO Configuration file contains all
the metadata information about the service provider and the
latter contains the source code of the related services.

The Services Provider was conceptualized this way in order to
facilitate the GetCapabilities and DescribeProcess Requests.
Indeed, ZOO Kernel only have to parse the ZCFG file using a
specific Flex and Bison parser to answer to this two kind of
requests. Using Flex and Bison, a grammar was then defined a
for the configuration file which will make the ZOO Kernel able
to check if all required inputs were provided in the request. If
yes, a well formed Exception XML Document as expected and
defined by the OGC’s WPS standard will be produced. Flex and
Bison are used by lot of software such as MapServer, but a new
grammar had to be defined. A serious near-future alternative is
to use in the the YAML format to easily define the service
metadata.

Multi-languages

ZOO Services can be written natively in C and Python
language. The Python interpreter was embedded into ZOO
Kernel which allows to use existing Python libraries as ZOO
Services.

PHP (embedded version), Java, Fortran and JavaScript are
optional languages and compilation options must be defined at
compilation, and specific dependencies installed (PHP
embedded, Java SDK, G77 and SpiderMonkey).

This variety of supported languages allows the WPS Web
Service end-developer to choose his preferred language and
above all to use existing code and turn it into WPS. Web

Services coded in different languages can also be chained in a
standardized way.

2.3 Using OSGeo librairies as WPS using ZOO Kernel

The ZOO Project initial idea was to build a platform able to
connect the numerous and good OSGeo libraries together and to
use them as Web Services. The Web Services creation was
logically first test with the GDAL/OGR library (Warmerdam,
1999), in order to perform basic vector and raster WPS from a
stable C library.

GDAL/OGR

As GDAL/OGR is coded in C, the corresponding Web Services
were written in the same language, in a rather simple way.
Indeed, as ZOO Kernel is able to load dynamic libraries, only a
few modifications were needed in the original code. This can be
confirmed for example by looking at the well known ogr2ogr
code and the corresponding .zcfg file on the ZOO Project Trac
(Fenoy, Bozon, Raghavan, 2010). Using the OGR code base
again, we could have also setup a WPS Service for single and
multiple geometries spatial operations (Fenoy, Bozon,
Raghavan, 20102). Same work was done using the GDAL code
base in order to implement the gdalgrid and gdaltranslate
capabilities as WPS. Those Web Services allow to convert,
reproject and process both vector and raster data online in a
standardized way.

GRASS GIS

Some other experiments are actually being carried out to
communicate with GRASS GIS, which provides advanced open
source GIS processing algorithms. (Neteler, Mitasova, 2008).
GRASS 7 now provides a WPS process description exporter,
which returns XML documents describing the GRASS
functions (Gebbert, 2009). This is very useful for our tentative
connection to GRASS, and ZOO Kernel can take advantage of
such GRASS outputs. Thus, a GRASS XML to ZOO
configuration file (.zcfg) converter was developed (Gebbert,
2010), allowing ZOO Kernel to understand the numerous
GRASS function through WPS. Then, a GRASS module starter
was also developed in Python to call the desired function and
the corresponding .zcfg in a generic way (Gebbert, 20102).
These Python scripts are actually callable as ZOO Web Services
and several successful tests have been carrried using the r.add,
r.div, r.mult and r.sub functions (Gebbert, 20103). This very
promising work must now be fully tested and integrated as ZOO
Services, and the other GRASS functions could be supported
soon.

The use of GDAL/OGR and the future support for GRASS GIS
are showing that ZOO Kernel can use existing libraries as
standardized Web Services, with minimum modifications of the
original codes. Future work and development plans are based
on integrating other open source GIS libraries, but also on
working with non-GIS libraries (but useful when
communicating with GIS), mainly for statistics and document
management.

2.4 Client-side interaction examples

Let us now explain how such WPS Web Services can be called
and exploited from a client-side webmapping application based
on OpenLayers library (Schmidt, 2006). Figure 1 shows a WMS
layer (used as input data) on which the user can select a polygon

by click and then apply a buffer process on it, by calling the
OGR-based Web Service cited above. Any other single-
geometry vector operation can be performed such as convex
hull, boundary or centroïd. The geometries are quiet simples
and light so the results can be rendered using GeoJSON.

Figure 1. Example buffer output

Once the buffer is shown on the map, the user can then select
another polygon and perform a multi-geometry operation.
Figure 2 shows the result of an intersection process between the
previous calculated buffer and the second selected polygon.

Figure 2. Example intersection output

Last client-side interaction example is based on the GDAL
ExtractProfile function which allows to get the z value of any
raster layer. Using an OpenLayers client once again, we could
set up a specific control using the GDAL Web Service with a
GTOPO30 DEM layer and a GeoJSON line string to generate
JavaScript elevation profiles on the fly.

Figure 1. Example elevation profile

These client-side examples are available on the ZOO Project
website and prove that ZOO Web Services can be requested
from a traditional Web GIS client. However, these are proof-of-
concept implementations and ZOO does not provide any WPS
oriented client-side library yet.

3. ZOO API

ZOO API is a concise server-side JavaScript library designed to
simplify the WPS processes creation and chaining. It is based
on the ZOO Kernel JavaScript support and the Mozilla
foundation JavaScript engine, Spider Monkey (Mozilla, 2010).
The API allows to orchestrate WPS services using specific
method and offers the ability to add logic and controls in the
WPS chaining. It also uses a Proj4js (Adair, 2007) adaptation
for server-side reprojection, allowing to easily convert processes
outputs into common vector formats (GML, KML, GeoJSON,
etc) when needed.

3.1 Server-side Javascript for WPS

Several projects are based on server-side JavaScript using the
Mozilla SpiderMonkey or Rhino JavaScript engines. It was
relevant to do the same in the case of ZOO Kernel for two main
reasons. First, it can be compiled with optional JavaScript
support, thus allowing to develop Web Services with another
language. Then, the ZOO API provides ready-to-use JavaScript
functions for handling WPS HTTP requests, querying available
WPS Web Services, defining input/output flows in WPS
chaining and converting WPS outputs into several vectorial
formats.

3.2 Classes

ZOO API is first composed of several general classes dedicated
to WPS requests construction such as ZOO.String,
ZOO.Request and ZOO.Bounds (D’Hont, 2010). A
ZOO.Projection class is also available and linked to the Proj4js
source code for handling any projection defined by the Spatial
Reference cartographic projections directory. ZOO.Feature and
ZOO.Geometry classes, along with their respective subclasses,
allow to handle the different types of vector data. Finally, a
generic ZOO.Process class was developed to setup
input/output, call and chain available WPS processes.

4. CONCLUSION

ZOO Project technical context, architecture and development
goals were presented in this paper. The ZOO Kernel logic and
its multi-languages capabilities were detailed, and illustrated
through different achieved and on-going Web Services
examples. The ZOO API and the assets of server-side
JavaScript for WPS were also presented. Future research will
deal with ZOO Kernel internal enhancements , as well as
working on other integrations of Open Source libraries.

References from Journals:
Cepicky, Becchi, 2007. OSGeo Journal, may 2007. Geospatial
Processing via Internet on Remote Servers – PyWPS

Michael, Ames, 2007. OSGeo Journal, may 2007. Evaluation of
the OGC Web Processing Service for Use in a Client-Side GIS

References from Books:
Neteler, Mitasova, 2008, Springer
Open Source GIS: A GRASS GIS Approach
.
References from websites:
Holmes,2009. OpenGeo Blog
http://opengeo.org/products/coredevelopment/geoserver/wps

Cepicky, 2009. PyWPS offical Website
http://pywps.wald.intevation.org/

Fee, 2008. James Fee Blog
http://www.spatiallyadjusted.com/2008/07/30/the-esri-2008-uc-
qa

Fenoy, Bozon, Raghavan, 2010. ZOO Project website
http://zoo-project.org/trac/browser/trunk/zoo-
services/ogr/ogr2ogr/service.c

Fenoy, Bozon, Raghavan, 20102. ZOO Project website
http://zoo-project.org/trac/browser/trunk/zoo-
services/ogr/ogr2ogr/service.c

Gebbert, 2009. GRASS GIS wiki WPS section
http://grass.osgeo.org/wiki/WPS

Gebbert, 2010. GRASS XML to ZOO .zcfg
http://code.google.com/p/vtk-grass-
bridge/source/browse/trunk/WPS/ZOO_Project/GrassXMLtoZ
CFG.py

Gebbert, 20102. ZOO GRASS GIS support
http://code.google.com/p/vtk-grass-
bridge/source/browse/trunk/WPS/ZOO_Project/ZOOGrassMod
uleStarter.py

Gebbert, 20103. ZOO GRASS support tests
http://code.google.com/p/vtk-grass-
bridge/source/browse/#svn/trunk/WPS/Testing/Python/GrassAd
dons

Mozilla Foundation, 2010. SpiderMonkey JavaScript engine
http://www.mozilla.org/js/spidermonkey/

Adair, 2007. Proj4js official website
http://proj4js.org/

D’Hont, 2010. ZOO API on ZOO Project Trac system.

http://www.zoo-project.org/trac/browser/trunk/zoo-api/js/ZOO-
api.js

Acknowledgments:

Authors would like to thank F.Warmerdam for creating and
maintaining GDAL/OGR. Thanks also To Soeren Gebbert and
Markus Neteler for their active support in the GRASS GIS
integration into ZOO Project.

