
FROM GIS TO BIM AND BACK AGAIN – A SPATIAL QUERY LANGUAGE FOR
3D BUILDING MODELS AND 3D CITY MODELS

A. Borrmann

 Computation in Engineering, Technische Universität München, 80290 München, Germany

andre.borrmann@tum.de

Commission IV, WG IV/8

KEY WORDS: 3D Spatial Query Language, Building Information Model, 3D City Model, Topology, Direction, Octree

ABSTRACT:

The article presents the development of Spatial Query Language for 3D building and 3D city models. Inspired by the achievements
of the GIS community in developing spatial query functionality for 2D space, the author adopted these concepts and applied them on
geometric objects in 3D space. The developed query language provides metric (closerThan, fartherThan, etc.), directional (above,
below, northOf, etc.) and topological operators (touch, within, contain, etc.) for use in SQL statements. The operators have been
implemented by algorithms which are based on the hierarchical space-partitioning data structure octree. The octree allows for the
application of recursive algorithms that successively increase the discrete resolution of the spatial objects employed and thereby
enables the user to trade off between computational effort and the required accuracy. Additionally, a fuzzy handling of spatial
relationships becomes possible. The article describes the available spatial operators and the algorithms developed to implement them.

1. INTRODUCTION

In the GIS community, significant scientific research has been
invested in developing spatial query functionality for 2D
geographic models. This process started in the late 1980’s and
has resulted in the fact that today 2D spatial query functionality
is available in all major software products for the GIS market
and standardized by the OpenGIS Consoritum (OGC).

At the same time, the construction informatics community has
developed the paradigm of using a semantically rich, object
oriented building model as basis of the entire planning process
(Eastman 1999, Eastman et al. 2008). This so-called building
information model (BIM) does not only allow to create a 3D
representation for visualisation purposes, but also acts as perfect
basis for simulations and computations required throughout the
planning process, including energy, structural and lightning
analysis as well as evacuation simulations, for example.

Most of these downstream applications require only a subset of
the large data set stored in the BIM. To specify the required
subset a declarative query language is usually employed.
However, the query languages available today for building
information models only allow the application of alphanumeric
comparisons on individual attributes of the object-oriented
model. Qualitative spatial relationships between building
components cannot be used as selection criteria. For this reason
the author applied concepts and technologies from the GIS
domain on the BIM domain, thus creating a spatial query
language for building information models.

This language allows to formulate queries such as
− Get all walls within the first storey.
− Does room 107 contain any heating equipment?
− Get all fire extinguishers within the distance of 40m from

a certain door.
− Which columns touch Slab No. 13?
− Are there any gas lines below the footing?

Although originally intended for application in the BIM context,
the developed query language can also easily be applied on 3D
city models. This closes the circle and takes the technology
back to its origins.

After discussing related work in Section 2, the paper gives an
overview on the formal definitions of the different spatial types
and operators in Section 3. In Section 4, an implementation
approach based on the hierarchical space-partitioning data
structure octree is introduced. Section 5 describes how the
spatial types and operators can be embedded in relational or
object-relational SQL. Section 6 discusses possible applications
of the query language in the context of 3D building models and
3D city models.

2. RELATED WORK

The potential benefits of using the functionality of GI systems
for the analysis of dynamical processes in buildings are
discussed in (Ozel 2000). The author states that, even if
component-oriented CAD systems provide sophisticated
functionality for geometric modeling, they normally lack
comprehensive spatial analysis capabilities. For this reason,
Ozel stores floor plans of buildings in a GIS database in order to
use its 2D spatial analysis facilities. Ozel underlines the fact that
3D spatial analysis would be a much more powerful tool for
analyzing processes in buildings.

Up to now, spatial database systems that support 3D spatial
analysis are only to be found in a research context. The
investigations set out in (Gröger et al. 2004), for example,
clearly show that the spatial analysis capabilities of the
commercial database system Oracle Spatial are limited to 2D
space, even though it is possible to store simple 3D geometry.
In the 3D-GIS research community, the main interest lies in the
modelling of the ground surface, buildings and infrastructure as
well as the subsoil layers. The most important works in this area
include (Breunig et al. 1994; Breunig et al. 2001) which report
on the development of GeoToolkit, an object-oriented frame-

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/W15

5th International 3D GeoInfo Conference, November 3-4, 2010, Berlin, Germany 19

work for efficiently storing and accessing 3D geographic and
geologic data. The main disadvantage of using the framework
for analyzing building models is the need to model all spatial
entities according to the mathematical concept of simplicial
complexes. The obligatory conversion of a boundary represent-
tation, as used in CAD tools, to a simplicial complex represent-
tation is expensive and, in some special cases, absolutely
unfeasible. A more flexible, yet theoretic approach for applying
algebraic topology on building models is presented in (Paul and
Bradley 2003).

In (Zlatanova et al. 2004; Zlatanova 2006; Coors 2003; Arens et
al. 2005) concepts and data structures for storing 3D city
models in spatial databases are presented and the suitability of
different geometry models for querying topological relation-
ships is discussed. In general, GIS research follows the
approach of choosing geometry data structures that implicitly
contain topological relationships. Accordingly many of the
proposed data structures rely on a simplicial decomposition of
the space (Egenhofer et al. 1989; Egenhofer and Herring 1992;
Shi et al. 2003). Since building information models are in most
case purely geometric representations, we do not assume any
pre-defined topological structure in our research.

3. SPATIAL TYPES AND OPERATORS

The developed 3D spatial query language relies on a formally
defined spatial algebra. Besides fully three-dimensional objects
of type Body, the algebra also provides abstractions for spatial
objects with reduced dimensionality, namely by the types Point,
Line and Surface. This is necessary because building models
often comprise dimensionally reduced entities, such as load
points, power lines, plates, slabs etc. All types of spatial objects
are subsumed by the super-type SpatialObject. The formal
definitions of the spatial types provided in (Borrmann 2006) are
based on the mathematical frameworks of point set theory and
point set topology. The latter serves to unambiguously define
the interior, the boundary and the exterior of each of the spatial
types, which is required for formally specifying topological
relations between spatial objects.

The spatial operators available for the spatial types are the most
important part of the algebra. They consist of

− metric,
− directional, and
− topological

operators.
By means of metric operators such as distance, fartherThan and
closerThan, distances between spatial objects can be employed
as selection criterion in spatial queries (Borrmann et al. 2009).
Topological operators such as touch, overlap, within, disjoint
can be used to query the relative position of two spatial objects
(Borrmann and Rank 2009b). For formally defining the
semantics of these operators, Egenhofer’s 9-Intersection Model
(Egenhofer and Franzosa 1991) has been extended to the 3D
space (Figure 1).

Directional operators such as above, below, eastOf, westOf,
northOf and southOf can be used to employ directional relations
as selection criterion in a spatial query. Unfortunately, the
models for formally defining directional relationships available
from literature are applicable only for point-point relations
(Frank 1996) or use the bounding box of the reference object as
approximation (Goyal and Egenhofer 1997). Approximating
extended 3D objects by centroids or bounding boxes may cause
results that do not comply with the intuitive expectations of the

users. For this reason and to meet the requirements of different
application scenarios, we developed two new models for
representing directional relationships between 3D objects: the
projection-based model and the halfspace-based model
(Borrmann and Rank 2009a). Both models differentiate between
two “flavours” of directional operators. Whereas the strict
directional operators only return true if the entire target object
falls into the respective directional partition, the relaxed
operators also return true if only parts of it do so.

Figure 1: For formally defining the semantics of the topological

operators, the 9-Intersection Model has been employed. The
resulting matrix captures the intersections between the
interior, exterior and the boundary of the involved spatial
objects. A star is used at those places where no specification
is necessary.

In the projection-based model, the reference object is extruded
along the coordinate axis corresponding to the directional
operator (Figure 2). The applied operator returns true if there is
an intersection between the extrusion body and the target object.
For the relaxed version it is sufficient if parts of the target object
intersect the extrusion body, for the strict version the target
object has to be completely within the extrusion body.

Figure 2: The projection-based directional model is based on the

extrusion of the reference object A along the respective
coordinate axis. In the strict version, the operator above
return true only for target object D, in the relaxed version
also for the objects B, E, and G.

The second model is based on halfspaces, which are formed by
the reference object’s bounding box (Figure 3). Each of these
halfspaces creates a directional space partition. The directional
operator returns true if the target object is contained within the
respective space partition. Again, we distinguish a strict and a
relaxed version with the same semantics as for the projection-
based model.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/W15

20 5th International 3D GeoInfo Conference, November 3-4, 2010, Berlin, Germany

Figure 3: In the model the directional space partitions are created by

halfspaces, which are formed by the reference object’s
bounding box. The strict version of the operator above
returns true only for the target objects F, the relaxed version
also for target object B.

4. IMPLEMENTATION OF SPATIAL OPERATORS

For implementing the spatial operators provided by the query
language, algorithms have been developed which are based on
an octree representation of the operands. These algorithms are
discussed in detail in (Borrmann et al. 2009), (Borrmann and
Rank 2009), and (Borrmann and Rank 2009a). Here, only an
overview will be given.

4.1 Octree and Slot-tree

The octree is a space-dividing, hierarchical tree data structure
for the discretized representation of 3D volumetric geometry
(Hunter 1978; Jackins and Tanimoto 1980; Meagher 1982).
Each node in the tree represents a cubic cell (an octant) and is
either black, white or gray, symbolizing whether the octant lies
completely inside, outside or on the boundary of the discretized
object (Figure 4). Whereas black and white octants are branch
nodes, and accordingly have no children, gray octants are
interior nodes that always have eight children. The union of all
child cells is equal to the volume of the parent cell, and the ratio
of the child cell’s edge length to that of its father is always 1:2.
The equivalent of the octree in 2D is called quadtree.

Figure 4. Cross-section through an octree. White cells represent the
exterior, black cells the interior and gray cells the boundary
of the discretized object. Whereas black and white cells are
branch nodes, gray cells always have eight children.

In the implementation concept followed here, each spatial
object is represented by an individual octree. There are several
different approaches for generating an octree out of the object’s
boundary representation, most of which are based on a recursive
algorithm that starts at the root octant and refines those cells
that lie on the boundary of the original geometry, i.e. those
which are coloured gray.

For our implementation we use the creation method developed
by Mundani (Mundani et al. 2003) that is based on the
halfspaces formed by the object’s bounding faces. In Mundani’s

approach, the colour classification is based on a simple
evaluation of the plane equation of each halfspace for the
respective octant and a subsequent combination using Boolean
expressions. Accordingly, the algorithm automatically marks
inner cells as black without the need to perform a compu-
tationally expensive filling algorithm. As described in the next
sections, the existence of black cells is an important prerequisite
for the applicability of numerous rules in the algorithms
implementing topological and directional relationships.

To cover dimensionally reduced entities with our algorithms as
well, we had to introduce the fourth colour black/white.
Black/white cells represent space regions where the exterior and
the interior of the described object exist, but not its boundary
(Figure 5).

Figure 5: Dimensionally reduced objects like the disc shown here are

discretized using the fourth colour black/white that
represents cells which contain interior and exterior points,
but no boundary points.

Slot-tree. The algorithms implementing the projection-based
directional operators do not use the octree itself, but a newly
developed data structure derived from it. This data structure,
called a slot-tree, organizes the cells of an octree (the octants)
with respect to their position orthogonal to the coordinate axis
under consideration.

Figure 6: Slots in 3- and 2-dimensional space, respectively. A slot in

z-direction contains all the cells that lie above one another.

Figure 7: A slot in 2D that owns cells from different levels of the

underlying quadtree (Slot 1212 in Figure 6)

The basic element of a slot-tree is the slot. A slot of level k is
formed by the extrusion of a level k cell along the examined
axis. It contains all cells which intersect with this extrusion. If
we take a look at the z-direction, for example, a slot contains all
the cells that lie above one another (Figure 6). It accordingly
possesses a list of octants in the order of their appearance. The
octants may stem from different levels of the octree, and
consequently may have different sizes (Figure 7). This also
means that one octant might appear in the list of different slots.
Introducing the slot data structure allows for the application of
simple tests based on the colour and absolute position of the

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/W15

5th International 3D GeoInfo Conference, November 3-4, 2010, Berlin, Germany 21

cells contained therein in order to decide whether the directional
predicate under examination is fulfilled, or not.

Figure 8: Generation of a 2D slot-tree up to level 4. A slot will only be

refined if it possesses at least one gray quadrant. A 2D slot
tree can be derived directly from the quadtree presentation
of the geometry of the objects, a 3D slot tree from an octree
representation, respectively.

In analogy to the octree, the slot-tree organizes the slots in a
hierarchical manner. Each node in a 3D slot-tree has either 4 or
no children, depending on whether the corresponding slot
contains gray octants. A slot-tree may be directly derived from
an existing octree representation, or generated on-the-fly while
processing the algorithm of the directional operator. The
procedure is illustrated in Figure 8. Traversing the octree from
the top downwards in a breadth-first manner, we proceed to
build up the slot-tree, generating child slots and inserting them
into the slot-tree, as required. Such a refinement is necessary if
at least one cell in the current slot is gray. By coupling the
generation of octree and slot-tree with the processing of the
directional operator, it is possible to avoid unnecessary refine-
ments at places of no relevance for the operator’s results.

In the presented implementation approach, the octree / slot-tree
generation is not performed in advance but is coupled with the
recursive algorithm presented in the next sections. Thus the
octree / slot-tree is built up one level at a time and only at those
places that are relevant for verifying or disproving the predicate
under examination. This significantly speeds up the query
processing.

4.2 General Principle

All octree-based algorithms work according the same general
principle. As mentioned above, the operands of the spatial
operator being processed are encoded in separate octrees /slot-
trees. In a first step, the root octants of both octrees are passed
as input to the algorithm.

The algorithm consists in a simultaneous breadth-first traversal
of both octrees. During the traversal it creates pairs of octants
with one member from each octree. In the case of the algorithm
implementing topological operators, both octants cover the
same partition of the 3D space, whereas in the case of the metric
operators the octant pair is among the candidates for the closest
proximity.

The algorithm then applies certain operator-specific rules to the
pairs of octants. Depending on the result of this test, the
algorithm can either stop the recursion and return true or false,
or it has to continue the recursive traversal by creating pairs of
child cells, calling itself recursively and thus entering the next

level. The user defines a maximum recursion level – if it is
reached, the algorithm returns true, false, or a number
representing the knowledge it has gained so far through the
breadth-first traversal.

Though the algorithm implementing the directional operators
works on slot-trees instead of octrees, it follows the same
general principle. Here, the algorithm performs a breadth first-
traversal of the slot-trees. During this traversal, pairs of slots are
also created that represent the same partition of the 3D space,
and rules are subsequently applied to these slot-pairs.

For a detailed description of the algorithms implementing the
metric operators the reader is referred to (Borrmann et al. 2009).
The algorithms implementing the topological and directional
operators are explained in detail in the next subsections.

4.3 Implementation of topological operators

For implementing the topological operators, pairs of octants are
created on each recursion level with one octant originating from
object A and one octant from object B, both representing the
same sector of the 3D space.

Each octant pair provides a colour combination to which
specific rules can be applied. These rules may lead to filling a 9-
IM working matrix that is maintained by the algorithm to keep
track of the knowledge gained about the topological con-
stellation. There are 12 positive and 9 negative rules altogether.
A positive rule (Figure 9) can be applied when a certain colour
combination occurs, and a negative rule (Figure 10) if certain
colour combinations do not occur over an entire level. Positive
rules lead to empty set entries in the matrix, negative rules to
non-empty set entries.

Figure 9: Examples for Positive Rules. If the colour combination on
the left-hand side is detected, the 9IM-Matrix can be filled
according to the right-hand side.

The rules are derived from the semantics of the colours. A white
octant, for example, is part of the exterior of an operand, and a
black octant is part of its interior. If a white octant of the first
operand occurs at the same place as a black octant of the second
operand, it follows that the intersection between the exterior and
the interior of the operands is non-empty.

The 9-IM working matrix is successively filled by applying
these rules to all octant pairs. When processing the operator
whichTopoPredicate the working matrix is compared with all
predicate matrices of the formal definitions (Section 3). If the
working matrix complies fully with one of them, the recursion
is aborted and the algorithm returns the respective predicate. If
there is any contradiction between the filled matrix and the
matrix of a predicate, the respective predicate is precluded. If no

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/W15

22 5th International 3D GeoInfo Conference, November 3-4, 2010, Berlin, Germany

unequivocal decision is possible for any of the predicates, a
further refinement is necessary, i.e. octant pairs of the next level
are created.

Figure 10: Examples for Negative Rules. If the colour combinations of
the left-hand side do not occur across the entire domain, the
9-IM matrix can be filled according to the right hand side.

In the case of the predicate operators the 9-IM working matrix
is checked against the corresponding predicate matrix only. If
there is a contradiction the algorithm returns false, if it
completely complies, it returns true.

If, after execution of all applicable rules, the current occupancy
of the working matrix does not allow for validation or disproval
of the/any predicate and the maximum refinement level is not
reached, child pairs are created and the algorithm calls itself
recursively.

If the algorithm reaches the maximum refinement level and, in
the case of whichTopoPredicate, none of the predicates is
proved or, in the case of a predicate operator, the predicate
under examination is neither proved nor disproved, a so-called
predicate hierarchy is applied, which again ensures that the most
probable situation is detected. This is discussed in the next
subsection.

4.4 Implementation of directional operators

The halfspace-based directional operators can be implemented
by examining the bounding boxes of both the reference and the
target object. The algorithms are not explained in detail here,
instead the reader is referred to (Borrmann & Rank, 2009).

The core of the algorithm implementing the projection-based
directional operators consists of the slot-wise application of
rules that are based on the colours of the slots and the octants
they contain. First, general tests based on the slots’ colours are
performed. The colour of a slot is determined by the colours of
the octants belonging to it. If at least one of the octants is gray,
the colour of the slot is also gray. The same applies if the slot
has both white and black octants. The slot only obtains the
corresponding pure colour if there are just white or just black
octants, respectively.

The occurrence of certain slot colour combinations can lead to a
direct validation or disproval of the predicate under
examination. In this case, the recursion can be immediately
aborted and the algorithm directly returns true or false.

For example, if above_proj_strict(A,B) is evaluated and a black
B slot occurs, the algorithm returns false, because in this case B
fills the whole height of the domain, and there is accordingly at
least one B point that is not above an A point.

Detailed examinations of the position and the colour of
individual cells are only necessary if both slots are gray. In this
case, the subroutine makes use of the auxiliary functions
lowestNonWhite(), highestNonWhite(), highestBlack() and
lowestBlack() that return the position of the respective cell as
integer value, as well as hasBlack() that returns a Boolean
value. The implementation of these methods relies on a traversal
of the list of cells belonging to the slot concerned.

The rules for this exact examination depend on the direction and
the version (strict/relaxed) of the operator that is being
processed. They are not explained in detail here, but are shown
in Figure 11 for the strict version of above_proj and in Figure
12 for the relaxed version of above_proj.

Figure 11: Examples of constellations where the rules Pos, Neg1, Neg2

or Neg3 are applied during the processing of the algorithm
above_proj_strict(A,B). The slots shown side-by-side
actually occupy the same position in space.

Figure 12: Examples of constellations where the rule Pos1 and Pos2 are

applied when processing the algorithm
above_proj_relaxed(A,B). The slots shown side-by-side
actually occupy the same position in space.

If none of the tests yields a positive or a negative result, no
definitive statement can be made with regard to the current slot
pair and a further refinement is required. Accordingly, pairs of
child slots are created.

The creation of pairs of child slots is realized as follows: If both
slots are gray, i.e. not leaf nodes of the corresponding slot tree,
each of the four children of slot A is combined with a child of
slot B at the same position, resulting in four pairs of child slots.
If one of the slots is either black or white, i.e. a leaf node
without children, it is combined with each child of the other
slot, also resulting in four pairs of child slots. Consequently,
there may be pairs of slots from different levels.

The algorithm calls itself recursively until the maximum
refinement level is reached. If a decision is still not possible,
rules are applied that take the most probable situation into
account.

4.5 Fuzziness

The octree geometry representation shows a crucial peculiarity
for the implementation of spatial operators: The boundary of an
object encoded by an octree is not represented sharply, i.e. not
as a set of points for each of which a neighbourhood exists that
contains both interior and exterior points, but instead in the

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/W15

5th International 3D GeoInfo Conference, November 3-4, 2010, Berlin, Germany 23

form of (grey) octants which define a boundary layer. The
thickness of the layer shrinks with an increasing maximum
refinement level (MRL): However, for finite values of the MRL
it remains a layer.

This induces a certain fuzziness for all spatial operators. On the
one hand such fuzziness results in inaccurate results if the MRL
is not chosen high enough. On the other hand it enables the
spatial operators to react more “mildly”, thus corresponding
better to the way human handle qualitative spatial relationships.

A typical example is the relationship touch. Even if two
building elements “slightly” overlap, in certain application
scenarios the user, or some analysis program, might want to
treat them as being in touch. The same applies if there is a slight
gap between the elements. In the following paragraphs, the
impreciseness involved in the octree approach is discussed for
the directional and topological operators in more detail.

Topological Operators. If, in the case of a predicate operator,
the predicate under examination is neither proved nor disproved
when reaching the MRL or, in the case of the whichTopo-
Predicate operator, none of the predicates is fully proved, the
predicate hierarchy shown in Figure 13 is applied, i.e. the
algorithm returns the highest non-disproved predicate of the
hierarchy. The order of the hierarchy is chosen in such a way
that, if the actual topological constellation complies with
predicate a, all predicates above predicate a are disproved
during successive refinement. On the other hand, the predicates
below a are not necessarily disproved. In the sense of a
“positivistic” approach it is assumed that the highest non-
disproved predicate has been proven.

Figure 13: The hierarchy of the topological predicates for different type
combinations. The algorithm returns the highest non-
disproved predicate. The order of the hierarchy results from
the observation that all predicates above a certain predicate x
are disproved during the ongoing refinement if the actual
topological constellation complies with predicate x. This
hierarchy permits a fuzzy handling of topological rela-
tionships.

If both operands have the same dimensionality, contain and
within are equivalent, i.e. for the validation of a “lower”
predicate, both contain and within must be disproved. The
equivalence of the predicates results from the fact that when
disproving equal, either contain or within is disproved at the
same time.

Applying the predicate hierarchy may result in the detection of
an incorrect topological predicate if the MRL is too low.
However, the hierarchy is chosen in such a way that these
errors/misjudgements are acceptable, since they comply with
the intuitive human understanding of qualitative spatial relation-
ships.

Using the “positivistic” approach, the requirements of logical
consistency, mutual exclusiveness and complete coverage are

met by the system of topological operators, since in any case
precisely one topological predicate is detected for any
topological constellation no matter if the user applies the
predicate operators or the whichTopoPredicate operator.

Directional Operators. The interpretation of non-resolved slot
pairs on the final level depends on whether the strict or the
relaxed version of the directional predicates is being processed.

The different treatment of unresolved cases is chosen in such a
way that it reflects the more probable situation: When applying
the strict operator, one slot pair that violates the definition
suffices to stop the algorithm and make the operator return
false. It can therefore be assumed that the objects in question
fulfil the definition if the MRL is reached and no such slot pair
has been found. By contrast, when applying the relaxed
operator, one slot pair that fulfils the definition suffices to stop
the algorithm and cause the operator to return false. Thus, in
this case it is assumed that the objects in question violate the
definition if the MRL is reached and no such slot pair has been
found.

According to this interpretation, the strict operators may
incorrectly return true when the definition is actually violated
(Figure 14, left) while, on the other hand, the relaxed operators
may return false although the definition is actually satisfied
(Figure 14, right).

Figure 14: In the given examples, the critical parts (depicted in black)

will not be detected by the slot-based algorithms if the
maximum refinement level is not greater than 4. Left: The
operator above_proj_strict will incorrectly return true. Right:
The operator above_proj_relaxed will incorrectly return
false.

5. EMBEDDING SPATIAL OPERATORS IN A QUERY

LANGUAGE

We have based the spatial query support on SQL, since it is one
of the most widespread and powerful declarative query
languages. Many SQL dialects allow for an extension of the
available operators by means of user-defined functions, which
may subsequently be used within the WHERE part of an SQL
statement. For embedding the spatial operators we experimented
with both versions of the SQL standard, the purely relational
version SQL-92 and the object-relational version SQL:1999.

SQL:1999. SQL:1999 provides the user the possibility to define
abstract data types (ADTs), thus extending the database type
system in an object-oriented way. These ADTs may not only
possess attributes and references to other ADTS but also
member functions (methods) that define the behaviour of the
corresponding object instances. Accordingly, the spatial data
types defined in Section 3 can be defined as ADTs providing
the spatial operators as member functions.

By realizing this, spatial query functionality can be made
available to end-users and third-party programmers in an easily

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/W15

24 5th International 3D GeoInfo Conference, November 3-4, 2010, Berlin, Germany

manageable manner. A specimen query that retrieves all
columns that touch the slab whose ID is Oid23089 then reads:

 SELECT *
 FROM IFCColumn col, IFCSlab slab3
 WHERE col.shape().touch(slab3.shape())
 AND slab3.id = ’Oid23089’

For a prototype implementation the authors used the commer-
cially available ORDBMS Oracle 10g. For more detailed
information on the integration of spatial operators in SQL using
object-relational techniques, the reader is referred to (Borrmann
and Rank 2009; Borrmann et al. 2009, Borrmann and Rank
2010).
The most important advantage of using an object-relational
approach is the strong type safety provided by the declaration of
user-defined types. The declaration of the touch member
function, for example, forces the passed parameter to be of type
SpatialObject or one of its sub-types. Thus, type errors may
already be detected by the query engine during the
interpretation of the SQL statement and more specific error
reports can be generated.

SQL-92. As for the desired purpose of a declarative spatial
query language for BIMs, traditional database functionalities
such as concurrency control, rights management and persistency
are not of primary interest, the utilization of an in-memory
database (IMDB) seems to be most appropriate. These systems,
which are normally completely embedded in the final
application, usually provide SQL query and data manipulation
functionality while avoiding the high overhead of hard-disk
access. Unfortunately, there are no in-memory databases
available today that provide the full range of the SQL:1999
standard, especially with respect to the possibility of defining
ADT’s.

We therefore decided in a second approach to base the spatial
query functionality on purely relational databases. Here, a
semantically weaker way of defining the spatial operators has to
be chosen. All spatial operators are defined as global functions
whose parameters are strings representing the operand’s IDs.
The specimen query then reads:

 SELECT col.id
 FROM IFCColumn col, IFCSlab slab3
 WHERE touch(col.id, slab3.id)
 AND slab3.id = ’Oid23089’

6. SOFTWARE PROTOTYPE: APPLICATION ON
3D BUILDING MODELS AND 3D CITY MODELS

To prove the feasibility of the developed concepts a software
prototype that offers spatial query functionality for 3D building
models (Figure 15) and 3D city models (Figure 16) has been
implemented. Since it is capable to process VRML models, it is
basically able to read-in any 3D model including building
models provide in the IFC file format or city models provided
as CityGML file. In both cases, a transformation into VRML is
possible using standard software tools.

Possible applications of the spatial query functionality for 3D
city models include planning processes where existing abvove-
and below-ground infrastructure has to be taken into account.

Figure 15: Screenshot of the prototype software applied on a 3D
building model. It shows the dialog for composing spatial
SQL queries and the 3D viewer highlighting the result set.
Here, all columns touching the blue-coloured slab have been
found.

Figure 16: Screenshot of the prototype software applied on a 3D city

model. Here the spatial query functionality was used to find
all buildings which are located directly above a planned
subway tunnel.

7. CONCLUSION

The presented spatial query language allows for spatial analysis
and partitioning of 3D building and 3D city models. The
language provides metric, directional and topological operators
which can be used as selection criteria in spatial queries. The
operators are processed using octree-based algorithms, which
successively increase the discrete resolution of the spatial
objects employed and thereby enable the user to trade off
between computational effort and the required accuracy.
Additionally, a fuzzy handling of spatial relationships becomes
possible which complies well with the human recognition of
qualitative spatial relationships.

The language has been implemented on top of object-relational
SQL:1999 and of purely relational SQL-92. The first option
allows for an extension of the type system according to the
object-oriented paradigm, thus providing extensive type safety.
However, for the second option there are more database systems
available, including in-memory databases which perfectly meet
the requirements of spatial analysis of 3D building models.

Our future work will concentrate on the development of
alternative approaches for implementing the spatial operators.
First attempts using algorithms that directly work on the
boundary representation of the operands have shown promising
results.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/W15

5th International 3D GeoInfo Conference, November 3-4, 2010, Berlin, Germany 25

REFERENCES

Arens, C., Stoter, J., van Oosterom, P., 2005. Modelling 3D
spatial objects in a geo-DBMS using a 3D primitive. Computers
& Geosciences, 31(2), pp. 165–177.

Breunig, M., Bode, T., Cremers, A., 1994. Implementation of
elementary geometric database operations for a 3D-GIS. In:
Proc. of the 6th Int. Symp. on Spatial Data Handling.

Breunig, M., Cremers, A., Müller, W., Siebeck, J., 2001. New
methods for topological clustering and spatial access in object-
oriented 3D databases. In: Proc. of the 9th ACM Int. Symp. on
Advances in Geographic Information Systems.

Borrmann, A., 2006. Extended formal specifications of 3D
spatial data types. Technical Report. Technische Universität
München, Germany.

Borrmann, A., 2007. Computerunterstützung verteilt-koope-
rativer Bauplanung durch Integration interaktiver Simulationen
und räumlicher Datenbanken. Doctoral dissertation, Lehrstuhl
für Bauinformatik, Technische Universität München, Germany.

Borrmann, A., Rank, E., 2009a. Specification and imple-
mentation of directional operators in a 3D spatial query
language for building information models. Advanced
Engineering Informatics, 23(1), pp. 32–44.

Borrmann, A., Rank, E., 2009b. Topological analysis of 3D
building models using a spatial query language. Advanced
Engineering Informatics, 23(4), pp. 370–385.

Borrmann, A. Rank, E., 2010. Query Support for BIMs Using
Semantic and Spatial Conditions. In: Underwood. J. and
Isikdag. U. (Eds): Handbook of Research on Building Infor-
mation Modeling and Construction Informatics: Concepts and
Technologies, IGI Global

Borrmann, A., Schraufstetter, S., Rank, E., 2009. Implementing
metric operators of a spatial query language for 3D building
models: Octree and B-Rep approaches. Journal of Computing in
Civil Engineering, 23(1), 34–46.

Coors, V., 2003. 3D-GIS in networking environments. Com-
puters, Environment and Urban Systems, 27(4), 345–357.

Eastman, C., 1999. Building Product Models: Computer Envi-
ronments Supporting Design and Construction CRC Press

Eastman, C., Teicholz, P., Sacks, R., Liston, K., 2008. BIM
Handbook: A guide to building information modeling for
owners, managers, designers, engineers, and contractors. John
Wiley & Sons

Egenhofer, M., Frank, A., Jackson, J. P., 1989. A topological
data model for spatial databases. In: Proc. of the 1st Int. Symp.
on the Design and Implementation of Large Spatial Databases.

Egenhofer, M., Herring, J., 1990. A mathematical framework
for the definition of topological relationships. In Proc. of the 4th
Int. Symp. on Spatial Data Handling.

Egenhofer, M., Franzosa R., 1991. Point-Set Topological
Spatial Relations. Int. Journal of Geographical Information
Systems, 5(2), pp. 161–174.

Frank, A., 1996. Qualitative Spatial Reasoning: Cardinal
Directions as an Example. Int. Journal of Geographical
Information Systems, 10(3) pp. 269-290.

Goyal, R.K., Egenhofer, M.J., 1997. The direction-relation
matrix: A representation of direction relations for extended
spatial objects. UCGIS Annual Assembly and Summer Retreat,
Bar Harbor, ME

Gröger, G., Reuter, M., Plümer, L., 2004. Representation of a 3-
D city model in spatial object-relational databases. In Proc. of
the 20th ISPRS congress.

Hunter, G., 1978. Efficient computation and data structures for
graphics. Doctoral dissertation, Princeton University.

Jackins, C. L., Tanimoto, S. L. 1980. Oct-trees and their use in
representing three-dimensional objects. Computational
Graphics and Image Processing, 14(3), 249–270.

Meagher, D., 1982. Geometric modeling using octree encoding.
IEEE Computer Graphics and Image Processing, 19(2), 129–
147.

Mundani, R.-P., Bungartz, H.-J., Rank, E., Romberg, R., Niggl,
A., 2003. Efficient algorithms for octree-based geometric
modelling. In: Proc. of the 9th Int. Conf. on Civil and Structural
Engineering Computing.

Ozel, F., 2000. Spatial databases and the analysis of dynamic
processes in buildings. In: Proc. of the 5th Conf. on Computer
Aided Architectural Design Research in Asia.

Paul, N., Bradley, P. E., 2003. Topological houses. In: Proc. of
the 16th Int. Conf. of Computer Science and Mathematics in
Architecture and Civil Engineering (IKM 2003).

Shi, W., Yang, B., Li, Q., 2003. An object-oriented data model
for complex objects in three-dimensional geographical
information systems. Int. J. of Geographical Information
Science, 17(5), 411–430.

Zlatanova, S. (2006). 3D geometries in spatial DBMS. In: Proc.
of the Int. Workshop on 3D Geoinformation 2006.

Zlatanova, S., Rahman, A., Shi, W. (2004). Topological models
and frameworks for 3D spatial objects. Journal of Computers &
Geosciences, 30(4), 419–428.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/W15

26 5th International 3D GeoInfo Conference, November 3-4, 2010, Berlin, Germany

