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ABSTRACT: 
 
The article presents the development of Spatial Query Language for 3D building and 3D city models. Inspired by the achievements 
of the GIS community in developing spatial query functionality for 2D space, the author adopted these concepts and applied them on 
geometric objects in 3D space. The developed query language provides metric (closerThan, fartherThan, etc.), directional (above, 
below, northOf, etc.) and topological operators (touch, within, contain, etc.) for use in SQL statements. The operators have been 
implemented by algorithms which are based on the hierarchical space-partitioning data structure octree. The octree allows for the 
application of recursive algorithms that successively increase the discrete resolution of the spatial objects employed and thereby 
enables the user to trade off between computational effort and the required accuracy. Additionally, a fuzzy handling of spatial 
relationships becomes possible. The article describes the available spatial operators and the algorithms developed to implement them.  
 
 

1. INTRODUCTION 

In the GIS community, significant scientific research has been 
invested in developing spatial query functionality for 2D 
geographic models. This process started in the late 1980’s and 
has resulted in the fact that today 2D spatial query functionality 
is available in all major software products for the GIS market 
and standardized by the OpenGIS Consoritum (OGC). 

At the same time, the construction informatics community has 
developed the paradigm of using a semantically rich, object 
oriented building model as basis of the entire planning process 
(Eastman 1999, Eastman et al. 2008). This so-called building 
information model (BIM) does not only allow to create a 3D 
representation for visualisation purposes, but also acts as perfect 
basis for simulations and computations required throughout the 
planning process, including energy, structural and lightning 
analysis as well as evacuation simulations, for example.  

Most of these downstream applications require only a subset of 
the large data set stored in the BIM. To specify the required 
subset a declarative query language is usually employed. 
However, the query languages available today for building 
information models only allow the application of alphanumeric 
comparisons on individual attributes of the object-oriented 
model. Qualitative spatial relationships between building 
components cannot be used as selection criteria. For this reason 
the author applied concepts and technologies from the GIS 
domain on the BIM domain, thus creating a spatial query 
language for building information models. 

This language allows to formulate queries such as 
− Get all walls within the first storey. 
− Does room 107 contain any heating equipment? 
− Get all fire extinguishers within the distance of 40m from 

a certain door. 
− Which columns touch Slab No. 13? 
− Are there any gas lines below the footing? 

Although originally intended for application in the BIM context, 
the developed query language can also easily be applied on 3D 
city models. This closes the circle and takes the technology 
back to its origins. 

After discussing related work in Section 2, the paper gives an 
overview on the formal definitions of the different spatial types 
and operators in Section 3. In Section 4, an implementation 
approach based on the hierarchical space-partitioning data 
structure octree is introduced. Section 5 describes how the 
spatial types and operators can be embedded in relational or 
object-relational SQL. Section 6 discusses possible applications 
of the query language in the context of 3D building models and 
3D city models. 
 
 

2. RELATED WORK 

The potential benefits of using the functionality of GI systems 
for the analysis of dynamical processes in buildings are 
discussed in (Ozel 2000). The author states that, even if 
component-oriented CAD systems provide sophisticated 
functionality for geometric modeling, they normally lack 
comprehensive spatial analysis capabilities. For this reason, 
Ozel stores floor plans of buildings in a GIS database in order to 
use its 2D spatial analysis facilities. Ozel underlines the fact that 
3D spatial analysis would be a much more powerful tool for 
analyzing processes in buildings.  

Up to now, spatial database systems that support 3D spatial 
analysis are only to be found in a research context. The 
investigations set out in (Gröger et al. 2004), for example, 
clearly show that the spatial analysis capabilities of the 
commercial database system Oracle Spatial are limited to 2D 
space, even though it is possible to store simple 3D geometry.  
In the 3D-GIS research community, the main interest lies in the 
modelling of the ground surface, buildings and infrastructure as 
well as the subsoil layers. The most important works in this area 
include (Breunig et al. 1994; Breunig et al. 2001) which report 
on the development of GeoToolkit, an object-oriented frame-
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work for efficiently storing and accessing 3D geographic and 
geologic data. The main disadvantage of using the framework 
for analyzing building models is the need to model all spatial 
entities according to the mathematical concept of simplicial 
complexes. The obligatory conversion of a boundary represent-
tation, as used in CAD tools, to a simplicial complex represent-
tation is expensive and, in some special cases, absolutely 
unfeasible. A more flexible, yet theoretic approach for applying 
algebraic topology on building models is presented in (Paul and 
Bradley 2003).  

In (Zlatanova et al. 2004; Zlatanova 2006; Coors 2003; Arens et 
al. 2005) concepts and data structures for storing 3D city 
models in spatial databases are presented and the suitability of 
different geometry models for querying topological relation-
ships is discussed. In general, GIS research follows the 
approach of choosing geometry data structures that implicitly 
contain topological relationships. Accordingly many of the 
proposed data structures rely on a simplicial decomposition of 
the space (Egenhofer et al. 1989; Egenhofer and Herring 1992; 
Shi et al. 2003). Since building information models are in most 
case purely geometric representations, we do not assume any 
pre-defined topological structure in our research. 
 
 

3. SPATIAL TYPES AND OPERATORS 

The developed 3D spatial query language relies on a formally 
defined spatial algebra. Besides fully three-dimensional objects 
of type Body, the algebra also provides abstractions for spatial 
objects with reduced dimensionality, namely by the types Point, 
Line and Surface. This is necessary because building models 
often comprise dimensionally reduced entities, such as load 
points, power lines, plates, slabs etc. All types of spatial objects 
are subsumed by the super-type SpatialObject. The formal 
definitions of the spatial types provided in (Borrmann 2006) are 
based on the mathematical frameworks of point set theory and 
point set topology. The latter serves to unambiguously define 
the interior, the boundary and the exterior of each of the spatial 
types, which is required for formally specifying topological 
relations between spatial objects. 

The spatial operators available for the spatial types are the most 
important part of the algebra. They consist of 

− metric, 
− directional, and 
− topological  

operators. 
By means of metric operators such as distance, fartherThan and 
closerThan, distances between spatial objects can be employed 
as selection criterion in spatial queries (Borrmann et al. 2009). 
Topological operators such as touch, overlap, within, disjoint 
can be used to query the relative position of two spatial objects 
(Borrmann and Rank 2009b). For formally defining the 
semantics of these operators, Egenhofer’s 9-Intersection Model 
(Egenhofer and Franzosa 1991) has been extended to the 3D 
space (Figure 1). 

Directional operators such as above, below, eastOf, westOf, 
northOf and southOf can be used to employ directional relations 
as selection criterion in a spatial query. Unfortunately, the 
models for formally defining directional relationships available 
from literature are applicable only for point-point relations 
(Frank 1996) or use the bounding box of the reference object as 
approximation (Goyal and Egenhofer 1997). Approximating 
extended 3D objects by centroids or bounding boxes may cause 
results that do not comply with the intuitive expectations of the 

users. For this reason and to meet the requirements of different 
application scenarios, we developed two new models for 
representing directional relationships between 3D objects: the 
projection-based model and the halfspace-based model 
(Borrmann and Rank 2009a). Both models differentiate between 
two “flavours” of directional operators. Whereas the strict 
directional operators only return true if the entire target object 
falls into the respective directional partition, the relaxed 
operators also return true if only parts of it do so. 
 

 
 
Figure 1: For formally defining the semantics of the topological 

operators, the 9-Intersection Model has been employed. The 
resulting matrix captures the intersections between the 
interior, exterior and the boundary of the involved spatial 
objects. A star is used at those places where no specification 
is necessary. 

 
In the projection-based model, the reference object is extruded 
along the coordinate axis corresponding to the directional 
operator (Figure 2). The applied operator returns true if there is 
an intersection between the extrusion body and the target object. 
For the relaxed version it is sufficient if parts of the target object 
intersect the extrusion body, for the strict version the target 
object has to be completely within the extrusion body. 
 

 
Figure 2:  The projection-based directional model is based on the 

extrusion of the reference object A along the respective 
coordinate axis. In the strict version, the operator above 
return true only for target object D, in the relaxed version 
also for the objects B, E, and G. 

 
The second model is based on halfspaces, which are formed by 
the reference object’s bounding box (Figure 3). Each of these 
halfspaces creates a directional space partition. The directional 
operator returns true if the target object is contained within the 
respective space partition. Again, we distinguish a strict and a 
relaxed version with the same semantics as for the projection-
based model. 
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Figure 3:  In the model the directional space partitions are created by 

halfspaces, which are formed by the reference object’s 
bounding box. The strict version of the operator above 
returns true only for the target objects F, the relaxed version 
also for target object B. 

 
 

4. IMPLEMENTATION OF SPATIAL OPERATORS 

For implementing the spatial operators provided by the query 
language, algorithms have been developed which are based on 
an octree representation of the operands. These algorithms are 
discussed in detail in (Borrmann et al. 2009), (Borrmann and 
Rank 2009), and (Borrmann and Rank 2009a). Here, only an 
overview will be given. 
 
4.1 Octree and Slot-tree 

The octree is a space-dividing, hierarchical tree data structure 
for the discretized representation of 3D volumetric geometry 
(Hunter 1978; Jackins and Tanimoto 1980; Meagher 1982). 
Each node in the tree represents a cubic cell (an octant) and is 
either black, white or gray, symbolizing whether the octant lies 
completely inside, outside or on the boundary of the discretized 
object (Figure 4). Whereas black and white octants are branch 
nodes, and accordingly have no children, gray octants are 
interior nodes that always have eight children. The union of all 
child cells is equal to the volume of the parent cell, and the ratio 
of the child cell’s edge length to that of its father is always 1:2. 
The equivalent of the octree in 2D is called quadtree. 
 

 
 

Figure 4.  Cross-section through an octree. White cells represent the 
exterior, black cells the interior and gray cells the boundary 
of the discretized object. Whereas black and white cells are 
branch nodes, gray cells always have eight children. 

 
In the implementation concept followed here, each spatial 
object is represented by an individual octree. There are several 
different approaches for generating an octree out of the object’s 
boundary representation, most of which are based on a recursive 
algorithm that starts at the root octant and refines those cells 
that lie on the boundary of the original geometry, i.e. those 
which are coloured gray.  

For our implementation we use the creation method developed 
by Mundani (Mundani et al. 2003) that is based on the 
halfspaces formed by the object’s bounding faces. In Mundani’s 

approach, the colour classification is based on a simple 
evaluation of the plane equation of each halfspace for the 
respective octant and a subsequent combination using Boolean 
expressions. Accordingly, the algorithm automatically marks 
inner cells as black without the need to perform a compu-
tationally expensive filling algorithm. As described in the next 
sections, the existence of black cells is an important prerequisite 
for the applicability of numerous rules in the algorithms 
implementing topological and directional relationships.  

To cover dimensionally reduced entities with our algorithms as 
well, we had to introduce the fourth colour black/white. 
Black/white cells represent space regions where the exterior and 
the interior of the described object exist, but not its boundary 
(Figure 5).  
 

 
Figure 5:  Dimensionally reduced objects like the disc shown here are 

discretized using the fourth colour black/white that 
represents cells which contain interior and exterior points, 
but no boundary points. 

 
Slot-tree. The algorithms implementing the projection-based 
directional operators do not use the octree itself, but a newly 
developed data structure derived from it. This data structure, 
called a slot-tree, organizes the cells of an octree (the octants) 
with respect to their position orthogonal to the coordinate axis 
under consideration.  

 
Figure 6:  Slots in 3- and 2-dimensional space, respectively. A slot in 

z-direction contains all the cells that lie above one another. 
 

 
 
Figure 7:  A slot in 2D that owns cells from different levels of the 

underlying quadtree (Slot 1212 in Figure 6) 
 
The basic element of a slot-tree is the slot. A slot of level k is 
formed by the extrusion of a level k cell along the examined 
axis. It contains all cells which intersect with this extrusion. If 
we take a look at the z-direction, for example, a slot contains all 
the cells that lie above one another (Figure 6). It accordingly 
possesses a list of octants in the order of their appearance. The 
octants may stem from different levels of the octree, and 
consequently may have different sizes (Figure 7). This also 
means that one octant might appear in the list of different slots. 
Introducing the slot data structure allows for the application of 
simple tests based on the colour and absolute position of the 
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cells contained therein in order to decide whether the directional 
predicate under examination is fulfilled, or not. 
 

 
Figure 8:  Generation of a 2D slot-tree up to level 4. A slot will only be 

refined if it possesses at least one gray quadrant. A 2D slot 
tree can be derived directly from the quadtree presentation 
of the geometry of the objects, a 3D slot tree from an octree 
representation, respectively. 

 
In analogy to the octree, the slot-tree organizes the slots in a 
hierarchical manner. Each node in a 3D slot-tree has either 4 or 
no children, depending on whether the corresponding slot 
contains gray octants. A slot-tree may be directly derived from 
an existing octree representation, or generated on-the-fly while 
processing the algorithm of the directional operator. The 
procedure is illustrated in Figure 8. Traversing the octree from 
the top downwards in a breadth-first manner, we proceed to 
build up the slot-tree, generating child slots and inserting them 
into the slot-tree, as required. Such a refinement is necessary if 
at least one cell in the current slot is gray. By coupling the 
generation of octree and slot-tree with the processing of the 
directional operator, it is possible to avoid unnecessary refine-
ments at places of no relevance for the operator’s results.  

In the presented implementation approach, the octree / slot-tree 
generation is not performed in advance but is coupled with the 
recursive algorithm presented in the next sections. Thus the 
octree / slot-tree is built up one level at a time and only at those 
places that are relevant for verifying or disproving the predicate 
under examination. This significantly speeds up the query 
processing. 
 
4.2 General Principle 

All octree-based algorithms work according the same general 
principle. As mentioned above, the operands of the spatial 
operator being processed are encoded in separate octrees /slot-
trees. In a first step, the root octants of both octrees are passed 
as input to the algorithm.  

The algorithm consists in a simultaneous breadth-first traversal 
of both octrees. During the traversal it creates pairs of octants 
with one member from each octree. In the case of the algorithm 
implementing topological operators, both octants cover the 
same partition of the 3D space, whereas in the case of the metric 
operators the octant pair is among the candidates for the closest 
proximity.  

The algorithm then applies certain operator-specific rules to the 
pairs of octants. Depending on the result of this test, the 
algorithm can either stop the recursion and return true or false, 
or it has to continue the recursive traversal by creating pairs of 
child cells, calling itself recursively and thus entering the next 

level. The user defines a maximum recursion level – if it is 
reached, the algorithm returns true, false, or a number 
representing the knowledge it has gained so far through the 
breadth-first traversal.  

Though the algorithm implementing the directional operators 
works on slot-trees instead of octrees, it follows the same 
general principle. Here, the algorithm performs a breadth first-
traversal of the slot-trees. During this traversal, pairs of slots are 
also created that represent the same partition of the 3D space, 
and rules are subsequently applied to these slot-pairs.  

For a detailed description of the algorithms implementing the 
metric operators the reader is referred to (Borrmann et al. 2009). 
The algorithms implementing the topological and directional 
operators are explained in detail in the next subsections. 
 
4.3 Implementation of topological operators 

For implementing the topological operators, pairs of octants are 
created on each recursion level with one octant originating from 
object A and one octant from object B, both representing the 
same sector of the 3D space.  

Each octant pair provides a colour combination to which 
specific rules can be applied. These rules may lead to filling a 9-
IM working matrix that is maintained by the algorithm to keep 
track of the knowledge gained about the topological con-
stellation. There are 12 positive and 9 negative rules altogether. 
A positive rule (Figure 9) can be applied when a certain colour 
combination occurs, and a negative rule (Figure 10) if certain 
colour combinations do not occur over an entire level. Positive 
rules lead to empty set entries in the matrix, negative rules to 
non-empty set entries. 
 

 
 

Figure 9:  Examples for Positive Rules. If the colour combination on 
the left-hand side is detected, the 9IM-Matrix can be filled 
according to the right-hand side. 

 
The rules are derived from the semantics of the colours. A white 
octant, for example, is part of the exterior of an operand, and a 
black octant is part of its interior. If a white octant of the first 
operand occurs at the same place as a black octant of the second 
operand, it follows that the intersection between the exterior and 
the interior of the operands is non-empty.  

The 9-IM working matrix is successively filled by applying 
these rules to all octant pairs. When processing the operator 
whichTopoPredicate the working matrix is compared with all 
predicate matrices of the formal definitions (Section 3). If the 
working matrix complies fully with one of them, the recursion 
is aborted and the algorithm returns the respective predicate. If 
there is any contradiction between the filled matrix and the 
matrix of a predicate, the respective predicate is precluded. If no 
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unequivocal decision is possible for any of the predicates, a 
further refinement is necessary, i.e. octant pairs of the next level 
are created.  
 

 
 

Figure 10:  Examples for Negative Rules. If the colour combinations of 
the left-hand side do not occur across the entire domain, the 
9-IM matrix can be filled according to the right hand side. 

 
In the case of the predicate operators the 9-IM working matrix 
is checked against the corresponding predicate matrix only. If 
there is a contradiction the algorithm returns false, if it 
completely complies, it returns true.  

If, after execution of all applicable rules, the current occupancy 
of the working matrix does not allow for validation or disproval 
of the/any predicate and the maximum refinement level is not 
reached, child pairs are created and the algorithm calls itself 
recursively.  

If the algorithm reaches the maximum refinement level and, in 
the case of whichTopoPredicate, none of the predicates is 
proved or, in the case of a predicate operator, the predicate 
under examination is neither proved nor disproved, a so-called 
predicate hierarchy is applied, which again ensures that the most 
probable situation is detected. This is discussed in the next 
subsection. 
 
4.4 Implementation of directional operators 

The halfspace-based directional operators can be implemented 
by examining the bounding boxes of both the reference and the 
target object. The algorithms are not explained in detail here, 
instead the reader is referred to (Borrmann & Rank, 2009).  

The core of the algorithm implementing the projection-based 
directional operators consists of the slot-wise application of 
rules that are based on the colours of the slots and the octants 
they contain. First, general tests based on the slots’ colours are 
performed. The colour of a slot is determined by the colours of 
the octants belonging to it. If at least one of the octants is gray, 
the colour of the slot is also gray. The same applies if the slot 
has both white and black octants. The slot only obtains the 
corresponding pure colour if there are just white or just black 
octants, respectively.  

The occurrence of certain slot colour combinations can lead to a 
direct validation or disproval of the predicate under 
examination. In this case, the recursion can be immediately 
aborted and the algorithm directly returns true or false.  

For example, if above_proj_strict(A,B) is evaluated and a black 
B slot occurs, the algorithm returns false, because in this case B 
fills the whole height of the domain, and there is accordingly at 
least one B point that is not above an A point.  

Detailed examinations of the position and the colour of 
individual cells are only necessary if both slots are gray. In this 
case, the subroutine makes use of the auxiliary functions 
lowestNonWhite(), highestNonWhite(), highestBlack() and 
lowestBlack() that return the position of the respective cell as 
integer value, as well as hasBlack() that returns a Boolean 
value. The implementation of these methods relies on a traversal 
of the list of cells belonging to the slot concerned.  

The rules for this exact examination depend on the direction and 
the version (strict/relaxed) of the operator that is being 
processed. They are not explained in detail here, but are shown 
in Figure 11 for the strict version of above_proj and in Figure 
12 for the relaxed version of above_proj.  
 

 
Figure 11:  Examples of constellations where the rules Pos, Neg1, Neg2 

or Neg3 are applied during the processing of the algorithm 
above_proj_strict(A,B). The slots shown side-by-side 
actually occupy the same position in space. 

 

 
Figure 12:  Examples of constellations where the rule Pos1 and Pos2 are 

applied when processing the algorithm 
above_proj_relaxed(A,B). The slots shown side-by-side 
actually occupy the same position in space. 

 
If none of the tests yields a positive or a negative result, no 
definitive statement can be made with regard to the current slot 
pair and a further refinement is required. Accordingly, pairs of 
child slots are created.  

The creation of pairs of child slots is realized as follows: If both 
slots are gray, i.e. not leaf nodes of the corresponding slot tree, 
each of the four children of slot A is combined with a child of 
slot B at the same position, resulting in four pairs of child slots. 
If one of the slots is either black or white, i.e. a leaf node 
without children, it is combined with each child of the other 
slot, also resulting in four pairs of child slots. Consequently, 
there may be pairs of slots from different levels.  

The algorithm calls itself recursively until the maximum 
refinement level is reached. If a decision is still not possible, 
rules are applied that take the most probable situation into 
account. 
 
4.5 Fuzziness 

The octree geometry representation shows a crucial peculiarity 
for the implementation of spatial operators: The boundary of an 
object encoded by an octree is not represented sharply, i.e. not 
as a set of points for each of which a neighbourhood exists that 
contains both interior and exterior points, but instead in the 
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form of (grey) octants which define a boundary layer. The 
thickness of the layer shrinks with an increasing maximum 
refinement level (MRL): However, for finite values of the MRL 
it remains a layer.  

This induces a certain fuzziness for all spatial operators. On the 
one hand such fuzziness results in inaccurate results if the MRL 
is not chosen high enough. On the other hand it enables the 
spatial operators to react more “mildly”, thus corresponding 
better to the way human handle qualitative spatial relationships.  

A typical example is the relationship touch. Even if two 
building elements “slightly” overlap, in certain application 
scenarios the user, or some analysis program, might want to 
treat them as being in touch. The same applies if there is a slight 
gap between the elements. In the following paragraphs, the 
impreciseness involved in the octree approach is discussed for 
the directional and topological operators in more detail.  
 
Topological Operators. If, in the case of a predicate operator, 
the predicate under examination is neither proved nor disproved 
when reaching the MRL or, in the case of the whichTopo-
Predicate operator, none of the predicates is fully proved, the 
predicate hierarchy shown in Figure 13 is applied, i.e. the 
algorithm returns the highest non-disproved predicate of the 
hierarchy. The order of the hierarchy is chosen in such a way 
that, if the actual topological constellation complies with 
predicate a, all predicates above predicate a are disproved 
during successive refinement. On the other hand, the predicates 
below a are not necessarily disproved. In the sense of a 
“positivistic” approach it is assumed that the highest non-
disproved predicate has been proven.  
 

 

Figure 13:  The hierarchy of the topological predicates for different type 
combinations. The algorithm returns the highest non-
disproved predicate. The order of the hierarchy results from 
the observation that all predicates above a certain predicate x 
are disproved during the ongoing refinement if the actual 
topological constellation complies with predicate x. This 
hierarchy permits a fuzzy handling of topological rela-
tionships. 

 
If both operands have the same dimensionality, contain and 
within are equivalent, i.e. for the validation of a “lower” 
predicate, both contain and within must be disproved. The 
equivalence of the predicates results from the fact that when 
disproving equal, either contain or within is disproved at the 
same time.  

Applying the predicate hierarchy may result in the detection of 
an incorrect topological predicate if the MRL is too low. 
However, the hierarchy is chosen in such a way that these 
errors/misjudgements are acceptable, since they comply with 
the intuitive human understanding of qualitative spatial relation-
ships.  

Using the “positivistic” approach, the requirements of logical 
consistency, mutual exclusiveness and complete coverage are 

met by the system of topological operators, since in any case 
precisely one topological predicate is detected for any 
topological constellation no matter if the user applies the 
predicate operators or the whichTopoPredicate operator. 
 
Directional Operators. The interpretation of non-resolved slot 
pairs on the final level depends on whether the strict or the 
relaxed version of the directional predicates is being processed.  

The different treatment of unresolved cases is chosen in such a 
way that it reflects the more probable situation: When applying 
the strict operator, one slot pair that violates the definition 
suffices to stop the algorithm and make the operator return 
false. It can therefore be assumed that the objects in question 
fulfil the definition if the MRL is reached and no such slot pair 
has been found. By contrast, when applying the relaxed 
operator, one slot pair that fulfils the definition suffices to stop 
the algorithm and cause the operator to return false. Thus, in 
this case it is assumed that the objects in question violate the 
definition if the MRL is reached and no such slot pair has been 
found.  

According to this interpretation, the strict operators may 
incorrectly return true when the definition is actually violated 
(Figure 14, left) while, on the other hand, the relaxed operators 
may return false although the definition is actually satisfied 
(Figure 14, right).  
 

 
 
Figure 14:  In the given examples, the critical parts (depicted in black) 

will not be detected by the slot-based algorithms if the 
maximum refinement level is not greater than 4. Left: The 
operator above_proj_strict will incorrectly return true. Right: 
The operator above_proj_relaxed will incorrectly return 
false. 

 
 
5. EMBEDDING SPATIAL OPERATORS IN A QUERY 

LANGUAGE 

We have based the spatial query support on SQL, since it is one 
of the most widespread and powerful declarative query 
languages. Many SQL dialects allow for an extension of the 
available operators by means of user-defined functions, which 
may subsequently be used within the WHERE part of an SQL 
statement. For embedding the spatial operators we experimented 
with both versions of the SQL standard, the purely relational 
version SQL-92 and the object-relational version SQL:1999.  

SQL:1999. SQL:1999 provides the user the possibility to define 
abstract data types (ADTs), thus extending the database type 
system in an object-oriented way. These ADTs may not only 
possess attributes and references to other ADTS but also 
member functions (methods) that define the behaviour of the 
corresponding object instances. Accordingly, the spatial data 
types defined in Section 3 can be defined as ADTs providing 
the spatial operators as member functions.  

By realizing this, spatial query functionality can be made 
available to end-users and third-party programmers in an easily 
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manageable manner. A specimen query that retrieves all 
columns that touch the slab whose ID is Oid23089 then reads:  
 
 SELECT  *   
 FROM    IFCColumn col, IFCSlab slab3   
 WHERE   col.shape().touch(slab3.shape())  
         AND slab3.id = ’Oid23089’   
 
For a prototype implementation the authors used the commer-
cially available ORDBMS Oracle 10g. For more detailed 
information on the integration of spatial operators in SQL using 
object-relational techniques, the reader is referred to (Borrmann 
and Rank 2009; Borrmann et al. 2009, Borrmann and Rank 
2010).  
The most important advantage of using an object-relational 
approach is the strong type safety provided by the declaration of 
user-defined types. The declaration of the touch member 
function, for example, forces the passed parameter to be of type 
SpatialObject or one of its sub-types. Thus, type errors may 
already be detected by the query engine during the 
interpretation of the SQL statement and more specific error 
reports can be generated. 
 
SQL-92. As for the desired purpose of a declarative spatial 
query language for BIMs, traditional database functionalities 
such as concurrency control, rights management and persistency 
are not of primary interest, the utilization of an in-memory 
database (IMDB) seems to be most appropriate. These systems, 
which are normally completely embedded in the final 
application, usually provide SQL query and data manipulation 
functionality while avoiding the high overhead of hard-disk 
access. Unfortunately, there are no in-memory databases 
available today that provide the full range of the SQL:1999 
standard, especially with respect to the possibility of defining 
ADT’s.  
 
We therefore decided in a second approach to base the spatial 
query functionality on purely relational databases. Here, a 
semantically weaker way of defining the spatial operators has to 
be chosen. All spatial operators are defined as global functions 
whose parameters are strings representing the operand’s IDs. 
The specimen query then reads:  
 
 SELECT col.id   
 FROM IFCColumn col, IFCSlab slab3   
 WHERE touch(col.id, slab3.id)  
       AND slab3.id = ’Oid23089’ 
 
 

6. SOFTWARE PROTOTYPE: APPLICATION ON  
3D BUILDING MODELS AND 3D CITY MODELS 

To prove the feasibility of the developed concepts a software 
prototype that offers spatial query functionality for 3D building 
models (Figure 15) and 3D city models (Figure 16) has been 
implemented. Since it is capable to process VRML models, it is 
basically able to read-in any 3D model including building 
models provide in the IFC file format or city models provided 
as CityGML file. In both cases, a transformation into VRML is 
possible using standard software tools.  

Possible applications of the spatial query functionality for 3D 
city models include planning processes where existing abvove- 
and below-ground infrastructure has to be taken into account. 
 

 

Figure 15: Screenshot of the prototype software applied on a 3D 
building model. It shows the dialog for composing spatial 
SQL queries and the 3D viewer highlighting the result set. 
Here, all columns touching the blue-coloured slab have been 
found. 

 

 
 
Figure 16: Screenshot of the prototype software applied on a 3D city 

model. Here the spatial query functionality was used to find 
all buildings which are located directly above a planned 
subway tunnel. 

 
7. CONCLUSION 

The presented spatial query language allows for spatial analysis 
and partitioning of 3D building and 3D city models. The 
language provides metric, directional and topological operators 
which can be used as selection criteria in spatial queries. The 
operators are processed using octree-based algorithms, which 
successively increase the discrete resolution of the spatial 
objects employed and thereby enable the user to trade off 
between computational effort and the required accuracy. 
Additionally, a fuzzy handling of spatial relationships becomes 
possible which complies well with the human recognition of 
qualitative spatial relationships.  

The language has been implemented on top of object-relational 
SQL:1999 and of purely relational SQL-92. The first option 
allows for an extension of the type system according to the 
object-oriented paradigm, thus providing extensive type safety. 
However, for the second option there are more database systems 
available, including in-memory databases which perfectly meet 
the requirements of spatial analysis of 3D building models. 

Our future work will concentrate on the development of 
alternative approaches for implementing the spatial operators. 
First attempts using algorithms that directly work on the 
boundary representation of the operands have shown promising 
results. 
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