
ISPRS Archive Vol. XXXVIII, Part 4-8-2-W9, "Core Spatial Databases - Updating, Maintenance and Services – from Theory to

Practice", Haifa, Israel, 2010

3D GIS DATA MODEL USING OPEN SOURCE SOFTWARE

A. Scianna, A. Ammoscato

CNR-ICAR, Viale delle Scienze edificio 11, 90128 Palermo, Italy – andrea.scianna@cnr.it,alessio.ammoscato@unipa.it

Commission IV, ICWG IV/8

KEY WORDS: Cartography, GIS, Technology, Interoperability, Spatial, Global-Environmental-Databases

ABSTRACT:

Today many kinds of applications requires data containing actual three-dimensional data; fields like urban and town planning and

pollution studies need 3D data, both for visualization purpose, as well as carry out many spatial analysis. This research -Management

and use of distributed 3D data by open source Web-GIS software - is part of the Italian "PRIN 2007"* research project, aimed to

build urban and suburban 3D models, and to interact with them using open source software only.

Particularly free and open source software, used for the experimentation here shown, are Blender and PostGIS; the first one has been

used to build and structure three-dimensional data, the second one for data allocation. These software interact using scripts, written

in Python language.

Buildings have been modeled upon the GIANT3D model (Geographical Interoperable Advanced Numerical Topological 3-

Dimensional Model) developed in the research "PRIN 2004", regarding "Evolved structure of numerical cartography for Gis and

Web-GIS".

Python scripts, activated by Blender, allow to allocate data into a spatial database implemented through PostgreSQL and PostGis,

that could be a remote database somewhere on the net; all geometrical and topological information, implemented in the 3D model,

are so transferred in PostGIS. These information can be retrieved by Blender using other Python scripts, so Blender fully interacts

with 3D data allocated in PostGIS. These data can be also accessed by many other clients, both directly using a database client, as

using other protocols (like HTTP on the internet). Next step is to build an open source viewer, or a plugin for internet browsers, that

allows client to visualize, explore and inquiry 3D model, retrieving data from database.

* PRIN 2007: “Interoperabilità e gestione cooperativa di dati geografici dinamici multidimensionali e distribuiti con strumenti GIS liberi e Open

Source” – Principal investigator Paolo Zatelli.

1. INTRODUCTION

1.1 The state of the art of 3D modeling using open source

software

Need for three-dimensional features has been remarkably

increased during last years in many computer related fields, like

GIS, GPS navigation, games, Generally, the third dimension

helps to understand immediately where the user is located, or to

better analyze a situation or a model: it is essential in every

advanced geographical information system or everywhere

correct 3D position is important.

So 3D modeling became more and more important to structure

any kind of information related with fields mentioned above,

imposing software to get themselves better, refining their 3D

features.

Among many 3D software, free 3D modeling software have

been analyzed; main aim is to investigate their suitability to

build various three dimensional model and, above all, if and

how they interact with databases containing spatial data.

Examined software were:

• K-3d (www.k-3d.org);

• Wings3d (www.wings3d.com);

• Blender (www.blender.org).

Another useful 3D modeling software is Sketchup by Google;

this software is powerful and very easy to use, and it can be

extended using “Ruby” scripts; however this software hasn’t

been used in this research, due to the fact this is not free and

open source - it is only freely distributable in the basic version-.

K-3D is a free and easy-to-use 3D modeling and animation

software. It has tools to build and edit NURBS, patches, curves

and it can handle animations too.

It has a very user-friendly interface, easier to use in respect to

other software; during objects' creations and editing user can

add and modify further attributes besides default ones.

Moreover it has a script tool, which is very useful to define

customized functions or automate command sets or perform

batch processing (this software follows the "everything is a

plugin" philosophy).

Unfortunately it's on a development stage (version 1 is not yet

available) and above all, compared to other software, it has a

limited amount of import-export formats.

Wings3d is a 3D modeler, that allows to assign materials,

vertex colors, UV coordinates and textures.

It can import and export models using following formats:

Nendo (.ndo); 3D Studio (3ds); BZFlag (.bzw); Autodesk FBX

(.fbx); Cartoon edges (.eps); Kerkythea (.xml); Lightwave (.lwo,

.lxo); Wavefront (.obj); POV-Ray (.pov); Renderware (.rwx);

StereoLithography (.stl); VRML 2.0 (.wrl); DirectX (.x).

Due to the fact that it is not enabled to make animations, and

above all because it has less function than other software, we

didn't sawn fit it to our aims.

120

ISPRS Archive Vol. XXXVIII, Part 4-8-2-W9, "Core Spatial Databases - Updating, Maintenance and Services – from Theory to

Practice", Haifa, Israel, 2010

Blender is a powerful 3D modeling software, endowed with

advanced functions and developed by the open source

community; it is available on many platforms (like Microsoft

Windows, Mac OS X, Linux, IRIX, Solaris, NetBSD, FreeBSD,

OpenBSD).

It has many features like a wide range of 3D objects (polygon

meshes, NURBS, Bezier and B-spline curves, metaballs, . . .),

fast and powerful rendering and shading tools, animation

environment and, last but not least, a set of tools for real-time

3D game creation, with full support for audio, collision

detection, dynamics’ simulation, dynamic constraints.

Its features can be remarkably extended using Python scripts,

that allow to customize entire projects introducing new

functions too.

At last, due to all this features, Blender software was chosen for

our experimentation.

1.2 Blender software

As mentioned above, Blender is the most suitable software to

work on three-dimensional geometries and primitives, both in

general as particularly for games. It can define and handle

several kinds of geometries, adding also customized properties,

allowing to import-export in many different formats; another

powerful feature is the chance to use Python scripts to do

everything you need and that is not included among standard

functions.

One of the main difficulties, using Blender to allocate

geographical data, is represented by kinds of -CAD- primitives,

that are different from which usually used in GIS. Some of

primitives (Basic Objects) used in Blender are “Mesh”, Curve”,

“Surface” and they are entirely reported below.

Figure 1. Primitives in Blender

Used meshes are:

− Plane: it contains four vertices, four sides and one

face. It's an object that usually has two dimensions

only, but it can become a 3D object moving one or

more vertices.

− Cube: it has eight vertices, twelve sides, six faces: it's

an actual 3D object.

− Software manages other primitives not interesting for

purposes of this research, as circle, UV Sphere,

Icosphere, Cylinder, Torus, Cone, Grid.

Curves and surfaces are like meshes, but they are defined using

mathematical functions, instead of points. Blender uses Bézier

curves and NURBS (Non Uniform Rational B-Splines). They

are both defined using control vertices, interpolating (Bézier) or

attracting (NURBS) curves.

Bézier curves are parametric curves defined by a polynomial,

starting from control points; curve is graphically fully contained

in its control points convex set, starting from which you may

transform the curve.

Blender widely uses Bézier curves, defined with three points,

the first to move and the latest to modify the shape of each

curve.

NURBS are defined as rational functions; a NURBS is defined

with many variables like its order, a group of control points and

a knots vector; unlike other type of curves (like Bézier) NURBS

are more suitable to exactly follow a contour or to adapt to a 3D

shape. For example, a Bézier curve will not be a circle, while a

NURBS circle will be exactly a circle.

Surfaces represent a general case of NURBS: to obtain a curve

you make a one-dimensional interpolation, while to obtain a

surface you make a two-dimensional interpolation (U,V): using

a one-dimensional interpolation you obtain a curve as a

simplified case of a surface. A two-dimensional control points

grid defines the shape of these NURBS surfaces.

As you can see above, Blender doesn't use points and lines as

primitives, probably due to the fact that these primitives are not

useful in 3D modeling; anyway they can be schematically

presented using a partially modified spline primitive, i.e. using a

spline constituted by a single point - to obtain a point - or a

couple of points – to obtain a line -: this trick has been used in

this research as written below. Thank to this expedient it’s

possible to define points and lines, that are basic primitives in

GIS applications.

2. GIS AND DATA BUILDING

2.1 3D primitives for data allocation

Among many applications requiring actual three-dimensional

data, we can cite those regarding urban and town planning,

pollution studies: spatial analysis is their main aim and is often

their core too. Another example, among many others, is

represented by the cadastres, where the information on the third

dimension (i.e. many apartments in a skyscraper upon a single

parcel) is becoming more and more important day by day.

As reported in [Yanbing et al., 2006], main 3D geographical

models - useful for city modeling and visualization - use

following primitives:

− 3DFS: node, arc, face, edge;

− n Tuple model: 0-3 cell;

− SSM: node, planar face;

− UDM: node, triangle;

− OO3D: node, segment, triangle.

Other kind of models, i.e. terrain models like 3D-TIN, GRID,

TEN, Octree (the three-dimensional analogous of quadtree), use

further primitives like rectangle, tetrahedron, cube.

Against these remarks, currently spatial databases contain two-

dimensional data only; in some more advanced cases, three-

dimensional objects are modeled using two-dimensional

primitives, using 3D coordinates in order to describe them (i.e.

two-dimensional polygons can identify a parallelepiped

bounding it). These solutions can lead to various

malfunctioning, e.g.:

− objects assumed as 3D are not real 3D objects, and

they are not considered as;

− 3D objects cannot be validated, and the geometrical

functions can also make mistakes;

− sometimes data structure allocates data regarding a 3D

object in several records, each containing a bi-

dimensional object; this implies that database software

cannot manage very well data, especially handling

121

ISPRS Archive Vol. XXXVIII, Part 4-8-2-W9, "Core Spatial Databases - Updating, Maintenance and Services – from Theory to

Practice", Haifa, Israel, 2010

large data sets; a 1:1 relationship is to be preferred,

and this is possible only using a real three-

dimensional primitive.

As written in (C. Arens et al. - 2005), 3D spatial objects can be

modeled using various 3D primitives; among them:

− CAD and 3D computer graphics' objects: solids can be

modeled by wireframe (points, line and curves), by

surfaces (using surfaces with no thickness) or by

solids (using Constructive Solid Geometry or

Boundary Representation);

− Tetrahedron (Stoter and Van Oosterom, 2002): it

consists of four triangles that form a closed object in

3D coordinate space; this is the simplest 3D primitive;

using this primitive there is not a 1:1 relationship

between the object and the object’s representation in

the database;

− Polyhedron (Stoter and Van Oosterom, 2002): it is

like a polygon, but in 3D. It is constituted by several

flat faces that enclose a volume, carrying out the 1:1

relationship between object and its database

allocation.

2.2 GIANT3D model

During last years a three-dimensional model to structure data

has been developed by our research group. Its name is

GIANT3D (Geographical Interoperable Advanced Numerical

Topological 3D), that summarizes that it's a geographical and

topological model too.

In this model features of objects and relationships between

objects have been defined through a geometric-topological

model, according to the theory known as Boundary

Representation (Foley, 1995). Generally, the geometric model

and the topology are separately defined; in this model they are

defined at the same time.

Real objects are represented by primitives of 0, 1, 2, 3

dimensions (node, edge, face, toposolid), each primitive is

composed of higher order than primitives of the lower

neighbour. A solid is bounded by at least 4 surfaces connected

to each other, surfaces must be flat and, because it can

distinguish inside from outside, must be directed using the

"normal" value. Normal of a face is represented by three

coordinates of a point: line passing through this point and

centre of face is the normal direction. Each surface is bounded

by an ordered set (outer ring) of segments (edge); empty spaces

inside are delimited by one or more inner rings. Each segment

should be straight, going from node to node. Only nodes are

defined by their three-dimensional coordinates (x, y, z).

2.3 Blender and geodatabase interaction using python

scripts

Generally, databases allow you to manage wide amount of data,

efficiently managing it and regulating different accesses, with

different users at the same time, each with its permissions.

These concepts prove true also in the case of a spatial database,

where spatial data are allocated instead of alphanumeric data

only. But usually 3D modeling software use file system to

allocate data, even if they are very large.

To investigate on relationship between 3D software and

database, firstly a broaden bibliographic research was made,

especially looking for previous similar researches in specialized

web sites, regarding databases and 3D modeling. From this

research only two projects arise: one called “Blenderpeople”

and a beta project - carried out by Nathan Letwory, Blender's

developer - regarding 3D data allocation using MySQL

database. Blenderpeople is a project, running on Blender 2.42a

only, concerning contemporaneous animation of several three-

dimensional elements: a typical example is constituted by a

battle fought by two armies, where several elements (like

soldiers and horses) move on the scenario seemingly

independently.

Python is a high-level programming language - here used as a

scripting language -, that supports multiple programming

paradigms (primarily object oriented, imperative, and

functional) and features a fully dynamic type system and

automatic memory management, similar to Perl, Ruby, Scheme,

and Tcl.

Some Python scripts are allocated within the

“blenderpeople.blend” file: they allow you to allocate on the

database all information regarding both the scenario as fighting

elements. This project has a fundamental lack: MySQL doesn't

natively support geometrical or geographical characteristics of

objects.

Taking into account this lack, a new spatial data allocation

project has been developed, using PostGIS (a geo-DBMS

extension based on PostgreSQL) as database server and Blender

as 3D modeling software.

Figure 2. Relation between data and software in our project

In advance, “Psycopg” software has been installed; Psycopg is a

PostgreSQL database adapter for the Python programming

language, that allows Python scripts to interact with

PostgreSQL databases.

Various python scripts have been made, with following aims:

− export Blender entities in PostGIS database;

− read geometrical entities from PostGIS database;

− draw previously read entities (point, lines, polygons)

in Blender;

Due to the fact that Blender does not directly handle points and

lines, points are drawn like a Bezier curve with start point only,

while polylines are drawn like a Bezier curve having null

curvature between vertices.

Geometrical entities are stored in database using functions to

convert coordinates from WKT (Well Known Text) human

readable to WKB (Well Known Binary) and viceversa.

Subsequent scripts handle 3-dimensional data using 2-

dimensional primitives, especially due to the limitations of

DBMS. To handle 3-dimensional data using 3-dimensional

primitives represents a further development of this research

work.

A script that allows to connect to PostGIS database and upload

data from three-dimensional Blender objects has been made and

partially reported in appendix A, as well as that one that read

geographical information from a table (three-dimensional points

or lines) on PostGIS database and, after verifying kind of data,

draws points or a polyline, both using fictitious Bézier curves.

3. TOPOLOGICAL MODELS

3.1 Topological model using PostGIS and triangles
Moving from above considerations, a very simple topological

model has been defined using Blender and PostGIS, partially

according to GIANT3D model. Data are allocated using a “three

122

ISPRS Archive Vol. XXXVIII, Part 4-8-2-W9, "Core Spatial Databases - Updating, Maintenance and Services – from Theory to

Practice", Haifa, Israel, 2010

table only” schema, useful for modeling flat surfaces,

representing roads or buildings.

Schema of this model is represented below:

Figure 3. Simple schema using triangles

Figure 4. Two contiguous buildings

Figure 5. The highest building with the shared wall

An important feature of this way of structuring data is the use

triangular faces, so there is no need for edges, due to the fact

that a face defined with only three points is unequivocally

identified.

In the following illustrations a simple case study is represented,

with two buildings with a common part; each building is

structured using triangles.

Buildings are modeled using Blender; after a triangular

conversion has been made for every face, a Python script

uploads all information into database. Firstly “anode” table and

“aface” table are populated, therefore “afacenode” table is

written; this order because there are two foreign key constraints

on relationship table “afacenode”, pointing to “aface” and

“anode” tables.

Part of script that allows to connect to database and to write

information according to this triangular schema is reported in

appendix A.

Figure 6. Inner structure of highest building

3.2 Topological model using PostGIS and quads

Model explained above is very simple, since it hasn't edges as

primitive. To obtain a more complete model, suitable to better

represent real world, like buildings, walls, roads, sidewalks, . . .

edge primitive has been added. This model has a more complex

structure, so it can handle relations between objects and faces,

faces and edges and between edges and vertices; these are

many-to-many relations and each can be represented by a table,

with foreign key constraints pointing to object, face, edge and

node tables.

Python scripts that allow interaction between Blender files and

database's tables have some routines that prevent data

duplication and ensure a strong data structure; this kind of

controls is currently based on a geometrical comparison.

For example, to verify if a face exists a very simple criterion has

been used: a script verifies if a face already exists searching the

same area and centre (automatically calculated by Blender). If

face already exists, script takes and uses its unambiguous

identifier (uuid) to populate relation tables of database; similar

procedure verifies existence of edges and nodes, with

geometrical comparison, and it uses data already allocated to

populate relationship's tables. So if an edge is shared by two or

123

ISPRS Archive Vol. XXXVIII, Part 4-8-2-W9, "Core Spatial Databases - Updating, Maintenance and Services – from Theory to

Practice", Haifa, Israel, 2010

more faces, script allocates it one time in one record only, but

many records in face-edge table can point to it.

Schema of this model is represented below:

Figure 7. Schema using quads

Figure 8. A common part

In figure above there is a more complex situation of a simple

common part: face highlighted in yellow is shared by two

parallelepipeds, that can represent two buildings, or two

building units of a building. The common part represents both a

full wall in the red building and a part of wall in the green one;

to be correctly processed, these objects have to be drawn

following a correct way of design and subsequent editing.

These procedures makes topologically correct data, without any

data duplication and redundancy: as a consequence data can be

correctly reconstructed, i.e. by a 3d modeling software, knowing

this way of generating them.

Currently only fundamental Blender objects, like planes and

cubes, have been used to structure model defining our specific

objects; defining a new three-dimensional primitive, useful to

straight define real objects, is seen as a further deepening of this

matter.

4. CONCLUSIONS

Excellent results have been achieved using open source

software to model and store geographical data. Use of Blender

to build three-dimensional objects allow to fully take advantage

of this powerful software. On the other hand, PostGIS database

has many features and it’s large-built enough to correctly

allocate and manage large amount of data like geographical

ones.

Python scripts behave as connector between these software,

allowing a good bidirectional interaction. As future

developments we can list:

− improving Python scripts, enhancing calculation speed

by code optimization;

− introducing customized objects into Blender (like

buildings or roads), to improve drawing speed and

obtain a more realistic model too;

− introducing a customized “really 3d” primitive into

PostGIS software, to allocate data in more realistic

three-dimensional primitives; at present use of two-

dimensional primitives in a three-dimensional way is

less realistic and it holds back data processing.

References from Journals:

Arens, C., J. Stoter and P. van Oosterom, 2005. Modelling 3-D

spatial objects in a geo-DBMS using a 3D primitive. Computer

& Geosciences, Volume 31,2, pp. 165-177.

Khuan, C.T. and A. Abdul-Rahman, 2006. 0D feature in 3D

planar polygon testing for 3D spatial analysis. Geoinformation

Science Journal, Vol. 6, No. 1, pp 884-92.

Khuan, C.T., A. Abdul-Rahman and S. Zlatanova, 2008. New

3D data type and topological operations for geo-DBMS. Urban

and regional data management: UDMS annual 2007, Taylor &

Francis, pp. 211-222.

References from Books:

Foley, J., van Dam, A., Feiner, S. & Hughes, J., 1995:

Computer Graphics: Principles and Practice. Addison Wesley,

2nd Ed.

Khuan, C.T., A. Abdul-Rahman and S. Zlatanova, 2008. 3D

Solids and Their Management In DBMS. Advances in 3D

Geoinformation Systems, Springer Berlin Heidelberg, pp. 279-

311.

Yanbing, W., W. Lixin, S. Wenzhong and L. Xiaomeng, 2006.

3D Integral Modeling for City Surface & Subsurface.

Innovations in 3D Geo Information Systems, Springer Berlin

Heidelberg, pp. 95-105.

Zlatanova, S., 2006. 3D geometries in spatial DBMS.

Innovations in 3D Geo Information Systems, Springer Berlin

Heidelberg, pp. 1-14.

124

ISPRS Archive Vol. XXXVIII, Part 4-8-2-W9, "Core Spatial Databases - Updating, Maintenance and Services – from Theory to

Practice", Haifa, Israel, 2010

References from Other Literature:

Arens C., 2003. Maintaining reality; modelling 3D spatial

objects in a geo-DBMS using 3D primitive, Master's Thesis, TU

Delft.

Pu, S., 2005. Managing freeform curves and surfaces in a

spatial DBMS, Msc Thesis, TU Delft.

References from websites:

Many authors, 2009. PostgreSQL manual.

http://www.postgresql.org/docs.

Many authors, 2009. PostGIS manual.

http://postgis.refractions.net/documentation/.

Many authors, 2009. Blender manual. http://www.blender.it.

Many authors, 2009. Blender documentation.

http://www.blender.org/documentation.

Many authors, 2009. Python documentation.

http://docs.python.org.

Many authors, 2009. Python and Blender documentation.

http://en.wikibooks.org/wiki/Blender_3D:_Blending_Into_Pyth

on.

Many authors, 2009. Blender documentation.

http://en.wikibooks.org/wiki/Blender_3D_Reference_Guide.

APPENDIX A

Parts of script that reads geographical information from a

table (three-dimensional points or lines) on PostGIS

database and draws points or a polyline.

.

#start connecting to database#

o = psycopg1.connect("dbname=nuovo user=postgres

password=postgres")

c = o.cursor()

#end connecting to database#

sce = Blender.Scene.GetCurrent()

c.execute("SELECT ASEWKT(the_geom) FROM puntizz") # selection

from a table

rows = c.fetchall()

.

vect3d_list=[]

####### vector class definition ############

class vect_3d(object):

def __init__(self,rigaxf,rigayf,rigazf):

self.rigaxf=rigaxf

self.rigayf=rigayf

self.rigazf=rigazf

.

############## Draw points ##############

def dispunto():

######### Create a new mesh

i=0

 while i<len(vect3d_list):

 print "i:",i

 poly=NMesh.GetRaw()

 v = NMesh.Vert

(vect3d_list[i].rigaxf,vect3d_list[i].rigayf,vect3d_list[i].rigazf)

 poly.verts.append(v)

 i+=1

######### create a new object using new mesh

 polyObj = NMesh.PutRaw(poly)

 Blender.Redraw()

dispunto()

########### end drawing points #############

.

Parts of script that connects to database and writes

information using triangular face model.

.

for face in faces:

 ####### face writing procedure #######

 print "Face " + str(facenum)

 id = uuid.uuid1()

 c.execute("INSERT INTO aface(id) VALUES ('"+ str(id) +"')")

 o.commit()

 for vertex in face:

 confronto= str(int(round(vertex.co[0],3))) + " " +

str(int(round(vertex.co[1],3))) + " " + str(int(round(vertex.co[2],3)))

 print "--------- New vertex -----------"

 #search existing data in database #

 c.execute("SELECT ASEWKT(the_geom) FROM anode") #

selection

 rows = c.fetchall()

 numoggetti= len(rows)

 count = 0

 for j in range(len(rows)):

 print"j: ", j

 print "riga: ", rows[j][0]

 print "confronto: ", confronto

 count = string.find (str(rows[j][0]), str(confronto))

 pippo = str(rows[j][0])

 if confronto in pippo:

######### start writing procedure for existing data #########

 c.execute("SELECT (id) FROM anode") # selection from a table

 rows = c.fetchall()

 idnode_exist = rows[j][0]

 c.execute("INSERT INTO afacenode(face_ref,node_ref) VALUES

('"+ str(id) +"','"+ str(idnode_exist) +"')")

 o.commit()

######### end writing procedure for existing data #####

 print "\n"

 count = 0

 break

 else:

 count += 1

 j+=1

 if count >= 0:

start writing procedure #####

 idv = uuid.uuid1()

####### write vertices ########

 c.execute("INSERT INTO anode(id,the_geom) VALUES ('"+

str(idv) +"',GeomFromEWKT('SRID=3004;POINT("+

str(round(vertex.co[0],3)) +" "+ str(round(vertex.co[1],3)) +" "+

str(round(vertex.co[2],3)) +")'))")

 o.commit()

####### write "afacenode" table ########

 c.execute("INSERT INTO afacenode(face_ref,node_ref) VALUES

('"+ str(id) +"','"+ str(idv) +"')")

 o.commit()

end writing procedure ####

 vertnum += 1

 facenum +=1

.

Full versions of scripts are available at

http://www.dirap.unipa.it/python_scripts.

125

