
MODELLING OF VIRTUAL COMPRESSED STRUCTURES THROUGH PHYSICAL
SIMULATION

P.Brivio1, G.Femia1, M.Macchi1, M.Lo Prete2, M.Tarini1,3

1Dipartimento di Informatica e Comunicazione, Università degli Studi dell’Insubria,
Varese, Italy - paolo.brivio@uninsubria.it

2DiAP - Dipartimento di Architettura e Pianificazione, Politecnico Di Milano,
Milano, Italy

3Visual Computing Group, Istituto Scienza e Tecnologie dell’Informazione, C.N.R.,
Pisa, Italy

KEY WORDS: (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based modeling I.3.8 [Computer
Graphics]: Applications

ABSTRACT

This paper presents a simple specific software tool to aid architectural heuristic design of domes, coverings and other types
of complex structures. The tool aims to support the architect during the initial phases of the project, when the structure
form has yet to be defined, introducing a structural element very early into the morpho-genesis of the building shape (in
contrast to traditional design practices, where the structural properties are taken into full consideration only much later in
the design process).
Specifically, the tool takes a 3D surface as input, representing a first approximation of the intended shape of a dome or a
similar architectural structure, and starts by re-tessellating it to meet user’s need, according to a recipe selected in a small
number of possibilities, reflecting different common architectural gridshell styles (e.g. with different orientations, con-
nectivity values, with or without diagonal elements, etc). Alternatively, the application can import the gridshell structure
verbatim, directly as defined by the connectivity of an input 3D mesh. In any case, at this point the 3D model represents
the structure with a set of beams connecting junctions.
User defined custom constraints (reflecting physical ones) can be imposed over this resulting structure in an quick and
intuitive way. Points on the surface can be constrained to never leave a specific position, line or plane.
A physical simulation is then run, with the objective of obtaining a surface that, while preserving to a certain degree the
initial shape, and fulfilling the constraints, represents a valid compressed structure, i.e. one composed by sub-elements
which are only subject to compression, without residual bending forces.
It is a well established fact, in architecture, that this property allows for elegant structures which can be realized with
lighter and cheaper materials (as testified for example by the pioneering work of Spanish Architect Antoni Gaudı̀, or,
more recently, of the Deutsch architect Frei Otto).
During or after the simulation, constraints can be made weaker or lifted, and a few simulation parameters can be reedited,
in an interactive way: resulting changes in the final 3D shape of the structure are made visible on the screen. The user can
thus easily explore through a set of viable solutions all sharing with the aforesaid structural property.
The final result is exported in standard 3D digital formats for further processing.
In summary the proposed standalone application represents a quick and focussed tool to address a specific task.

1 INTRODUCTION

Curved and self-portant shapes have an important role in
architectural design since the studies on catenary systems
of the Spanish architect Antoni Gaudı̀. In order to design
buildings such as the chapel of the Colonia Guell and the
arches of the Casa Mila, he resorted to catenaries in a pre-
liminary study: the shape of the structures was determined
by building a physical model in scale, composed by a net
of strings and additional weights, hanging it with hooks to
a ceiling, and letting it deform. When inverted (flipped
on the vertical direction), the resulting structure acts in
pure compression, ideally requiring no additional support
to preserve its shape. In this paper, we refer to this char-
acteristic as compressibility, and we call such a structure a
compressible structure1.

More recently, this approach was extended by the Ger-
1Compressible structures are also commonly referred to as “funicular”

and “compression-only” (or “tension-only” when referring to the model
before vertical flipping).

man architect and structural engineer Frei Otto, when he
devised the procedure he used to build the Multihalle at
Mannheim. Firstly, he designed a scaled catenary model,
which was then reproduced in place as a static skeleton
of beams and junctions. Once completed, every beam has
been let move freely around its junctions, so that the whole
structure deformed under its own weight. During this phase,
any residual internal force has been compensated and the
final shape was then in equilibrium. Finally, the beam po-
sitions have been frozen and the whole structure has been
covered, again ensuring compressibility of the result.

Similar results can be clearly obtained through computer
physical simulations.

Earlier in the design process of a new structure, e.g. when
the concepts are being considered, architects tend to focus
more on factors (aesthetic, function, etc) other than struc-
tural ones. It is usually only later in the process that struc-
tural properties like compressibility are fully taken into
account. Any virtual model must be carefully evaluated



and validated, before realizing any real-world structure, us-
ing specialized tools like those based on FEM (Ekkehard,
2004).

We propose a way to embed structural consideration in the
architectural design process as early as the design of the
very concept of the structure of interest. To achieve this,
we resort to a quick and direct tool capable of visualiz-
ing a “compressible version” of a preliminary 3D struc-
ture taken as input (and to export it for later uses). Basic
editing capabilities allow the user to navigate between al-
ternative plans, all equally compressible, thus navigating
through a space of compressible structures. This way, later
stages (when structural characteristic must be enforced)
will hopefully impose smaller changes in the final output.

During this preliminary process, accuracy is traded for speed
and simplicity: at this stage the model is still conceptual,
consisting of approximate shapes defined by few elements.
Also, some approximation and heuristic are adopted in or-
der to speed up the process.

To compute catenary-based surfaces, we adopt a particle-
spring model taking inspiration from the computer graph-
ics physical simulation techniques. Such systems efficiently
simulate physical behavior with a sufficient level of accu-
racy, as testified by the numerous scopes where it has been
successfully adopted: hair, human muscle, aquatic plants,
and many other simulation (Nealen et al., 2006, Gibson
and Mirtich, 1997). We show that these systems can be
adapted to simulate closely the behavior of catenary curves
and surfaces.

This way, we take advantage of a mature technology (de-
veloped for computer-games). Off-the-shelf physical sim-
ulator specialized hardware, like AGEIA PhysX accelera-
tor, could be used for the task. With respect to the typical
computer-game scenario, our task is simplified, because
we are only interested in the final state of the simulation
rather than in its step-by-step evolution (this allows for fur-
ther optimization, see section 2).

We implemented a tool (as a stand-alone software) based
on this approach to aid the early stages if designing archi-
tectural domes and covering.

1.1 Solution approach

Technically, our goal is to produce a compressible 3D struc-
ture which is similar to a given arbitrary one. The idea is to
deform the source structure into a new one which resem-
bles it but acts in pure compression.

Our tool allows an user imports (in form of a mesh see
Sec. 5.1) the source structure, then runs a physical simula-
tion to produce a correspondent one which is compressible.

The shape of the compressible structure produce in output
is determined by:

• the shape of the source structure,

• the parameters of the simulation,

• the set of constraints imposed by the user.

Importantly, any surface produced in output by the sys-
tem is guaranteed to be compressible (in the sense defined
in Sec. 1 above). Manipulating any of the factors in the
above list through a simple GUI (Sec. 5.2), the user navi-
gates among a set of possible compressible structures. The
factors can be changed even before the simulation is fully
converged, allowing for a more interactive search among
possible solutions.

Note that, depending on several choices, it is not always the
case that the resulting compressible structure is close to the
source one. For example, the Hausdorff distance between
the two cannot be easily bounded a priori. Howevereven
surfaces which are far away to the source one can be useful
as viable design alternatives to be considered.

1.2 Structure of this paper

First, in the next section, we show the particle-and-spring
explicit solver which we will be using. In Sec. 3.3 we show
how this system can be used to find the shape of a proper
catenary curve embedded in a 2D plane. Then (Sec. 4)
we extend the same concept to surfaces embedded in 3D
space. Sec. 5 describes the interactive software tool that is
used be make this approach adoptable by the final user in
the early stage of dome-like structure design. In Sec. 6 we
show a small gallery of results which were obtained with
our tool and end with a brief discussion.

2 PARTICLE AND SPRINGS SYSTEMS

Particle-and-spring systems are an intuitive way for repre-
senting a deformable model physics (Nealen et al., 2006).
For more than two decades they have been widely exploited
in Computer Graphics. Due to their simplicity and adap-
tivity to many different contests, they have been especially
exploited for achieving realistic animations of human bod-
ies, human skin, soft organic tissues, clothes and garments,
etc.

A particle-and-spring system is composed by a net of par-
ticles connected by springs that evolve in time. Springs are
linear weightless elements, elastic along their axial direc-
tion, which connect particles. Each spring is characterized
at least by a rest length and a stiffness coefficient, which
determine an axial reaction force whenever the spring is
stressed or stretched, as stated by Hooke’s law. Both fac-
tors usually are kept constant during the simulation (how-
ever that is not our case, see later). In practice a spring
generates a force that tends to restore the spring rest length.

Particles are punctiform concentrations of mass, which can
in principle differ from particle to particle. The amount
of mass is another constant in typical (again, not ours)
particle-and-spring system. Each particle has a positions, a
velocity and an acceleration, which evolve in time, which



vary as time elapses, driven by forces applied to it. There
are three kind of forces: spring reactions, constraints and
external forces. A constraint contrasts particle movement
in some direction. It is used for example to prevent pene-
tration with other objects (Terzopoulos and Waters, 1990),
or to maintain constant volume inside the model (Lee et al.,
1995), and so on. External forces are independent from the
system, like gravity.

2.1 Resolution methods

To resolve a particle-and-spring system means to find a
state where all forces acting on each mass is zeroed (or is
voided by constraints), or, equivalently, when the potential
energy is in a (possibly local) minimum.

Particle and spring systems can be solved with explicit or
implicit solvers.

Implicit solvers tackle a system of partial differential equa-
tions (PDE) that describes the particles motion in function
of time is integrated. PDE can be solved by means of
Runge-Kutta methods, used to integrate the equations of
motion.

In explicit solver, an iterative simulation determines the
system state at the next time step staring from the current
one. At every step, particles are updated in function of the
step length. Sometimes, especially when subject to strong
forces or long time steps, masses particles tend to oscillate.
A damping coefficient can then be added to springs, help-
ing the system be more stable. Larger time-steps make the
system converge faster, especially when the current state
far from the limit Explicit system can be made more sta-
ble adopting a Leapfrog integrator. As we are dealing
with a second-order system, we calculate positions and
displacements alternately, at alternate time points, so that
they “leapfrog” over each other. This method is still only
second-order accurate, but it is very stable. The simulation
runs until it converges to a stable configuration.

2.2 Adopted particle and spring system

In our particle-and-spring model for compressible struc-
tures, the only external force is due to the uniform gravita-
tional field, even though of opposite direction (as structures
are compressed, not tended). Constraints will be added
(see Sec. 5.2) to particles and represents physical structures
(like pillars, etc) which force that particle to never leave the
starting position, line or plane during the evolution of the
system.

We adopt an explicit Leapfrog integrator. This a standard
choice for many physical system like those used in com-
puter game industry, and many solvers are available, in-
cluding those running on specialized hardware or GPUs.
However, in our case we are only interested in the final
zero-energy state, rather than the evolution of the system
from the initial position to convergence. For this reason,
we can model out inertia from the system, meaning that the
the evolution is computed without using velocities: forces

directly displace position, rather than producing accelera-
tions which affect velocities (equivalently, the system can
be said to have a “dumping coefficient” of 100%, which
nullifies velocities after they have been applied to displace
particle positions). This further simplifies the system avoid-
ing useless oscillations around the solution and makes the
system converge with fewer iterations.

3 LINEAR CATENARIES

As stated, we are interested in catenary-based surfaces be-
cause, once flipped, they have the compressibility property.
Here, we consider simple catenaries curves (embedded in
2D plane) before treating catenary surfaces (embedded in
3D space) as their natural extension, see Sec 4.

The word catenary is derived from the Latin word catena
meaning chain, a term introduced by Leibniz. A catenary
is a 1D curve defined as the theoretical shape of a hanging
flexible chain or cable when supported at its ends and acted
upon by a uniform gravitational force (i.e. its own weight)
and in equilibrium. Each segment of the chain pulls on
the weight of the other segments resulting in a “U” shape
that is similar in appearance to a parabola, though it is a
different curve.

A catenary can be computed explicitly with a closed for-
mula:

y = a cosh
(x

a

)
=

a

2
(
e

x
a + e−

x
a

)
which gives the height y of each point x up to a scaling
factor a. The latter can be interpreted as the ratio between
the horizontal component of the tension on the chain (a
constant) and the weight of the chain per unit of length.
Using the opposite of values of y, one could for example
model a compressible arch.

3.1 Catenaries curves and particle-spring systems

Even though the closed formula (3) can be used for the 1D
case, we will be forced to move to a numerical solution
instead when we will extend from 1D catenary curves to
2D catenary surfaces: for illustration purposes, we show
here how the 1D case could be addressed by means of a
1D particle and spring system (used to compute the shape
of the curve).

The curve can be approximated by a piecewise linear curve,
i.e. one composed by linear segments, each connected to
the next by a punctiform junction (see figure 1).

Within this approximation, we want to model a catenary
curve as the solution of particle and spring system. We as-
sign a spring to each segment and a particle to each junc-
tion. Each mass is assigned an equal weight and initialized
in equidistant positions along a line. Each spring is as-
signed the same stiffness coefficient and rest length. The
resulting mass and spring system is run until convergence
(see Fig. 1).

This intuitive approach, followed for example by (Axel and
John, 2005), suffer from a few caveats, which we discuss
in the following section.



Figure 1: A catenary curve approximated by a particle and
spring system. The shape is defined by the equilibrium
position reached by the system.

3.2 Approximations and sources of error

Simulating catenaries through particle-spring systems in-
troduces approximations and sources of error. Before ex-
tending to the case of surfaces, we analyze these errors and
the ways to counter them, as the same will hold for the
surface case.

The first error is of course linked to the use of finite el-
ements to simulate a continuous string. The number of
elements represent different trade-off between simulation
complexity and accuracy. Reasonably fast systems com-
posed by relatively few elements will be acceptable, since
the tool is intended for preliminary concept exploration.
It should also be noted that, at least in some cases, di-
viding the structure into finite linear elements could even
be a faithful representation of the intended physical object
rather than a modelling artifact.

Another problem is that we are assigning a weight to par-
ticles only, tush are assuming the springs to be weightless.
In reality, it is the beams, not the junctions between them,
who have the most mass. Even if the weight will be applied
in the simulation over a discrete set of points (rather than in
a continuum), we can still make sure that the total weight
and its distribution reflect those of the real world object.
We achieve this by assigning to each particle a mass which
is the halved sum of the springs attached to that particle.

The most serious source of error, however, is inherent in
our choice to use deformable elements (spring) to simu-
late rigid elements (the beams). The difference is sub-
stantial: using uniform masses in particles, the physical
system disposes the curve to shape a parabola rather than
a catenary curve. The difference between the two curves
(ideal catenary and actual parabola) increases the less stiff
springs are. So the discrepancy can be minimized using
stiffer springs, i.e. ones producing return forces which are
very large (compared the only other force involved: gravi-
tational force). That is the approach used for example in
(Axel and John, 2005), where the difference is actually
measured by comparing the finite element system with the
closed formula (3). However, large stiffness coefficients,
on one hand, poses problem with stability resolution sys-
tems, while on the other, they can only reduce, rather than
fix, the inherent problem. We propose a different solution
to address these shortcomings.

3.3 Mass redistribution

Our solution is simple and it is based on the observation
that the discrepancy between extensible springs and the
rigid beams they represent boils down, in the final state
of the system, to the uneven distribution of mass along the
curve.

When the spring is subject to forces at its extremes it un-
avoidably elongates and the two masses are moved apart,
regardless of stiffness coefficient (if they did not elongate,
whey would produce no force). The problem however is
not that the in final state linear elements are longer than
the source state: these elements are just correclty modeling
physical (incompressible) elements that are as long as the
simulated spring in the final state of the simulation. Rather,
elongation of springs results in an artifact smaller concen-
tration of mass in that part of curve, because the mass is
only represented at particles. This can be easily countered
by dynamically rebalancing the masses assigned to each
particle after each iteration of the particle-and-spring sys-
tem.

Specifically, a parameter wL of our system describes the
weight per linear length of the string (kg/m). During sys-
tem evolution, the current length l of each spring deter-
mines its mass wL · l for that iteration. The distribution of
beam masses among particles described above (Sec. ) is
repeated before each iteration using the beam mass of that
iteration.

This approach forces us to use a explicit system, but luckily
we can now afford smaller stiffness constants (because, up
do discretization errors, we always get a catenary shape
regardless of stiffness) so that is a viable solution.

Note that overall mass of the structure is not a constat of
the described system: as soon the simulation dictates that
beams elongate, they weight also increases (but conver-
gence can be easily assured). We will discuss later some
implications, in Sec. 4.1.

4 CATENARIES EXTENDED TO SURFACES

There is no univocal way to extend the concept of catenary
curves to catenary surfaces. Even more importantly for
our purposes, there is no known closed formula to describe
a catenary surface. However, the approximation we pro-
posed in Sec. 3.1 of catenaries as minimum energy state
of a particle-and-spring system can be easily extended to
surfaces, because such systems can be embedded in three
(or any number of) dimensions. The final result will still
produce a compressible surface once flipped upside down.

Our catenary surfaces are found as convergence (minimum
energy) states of particle-and-springs system build plac-
ing a spring over each edge of a two-manyfold polygonal
mesh. Regular quad meshes or regular triangle meshes can
be used. Again, each in the system represents a beam in
the final structure, and each particle a joint between two
beams. In this case also, final beams lengths are not known



a priori, as the system computes them evolving the initial
state. However, the length of a beam in the source con-
figuration determines directly the rest length of the corre-
sponding string, therefore the ultimate length will tend to
be similar to it.

4.1 Redistribution of masses in catenary surfaces

One difference with respect to the one dimensional case is
that now we can now impose not only a weight per length
unit to each linear beam, but also a weight per area unit to
each sub-piece of the surface (representing the covering).
The system is parameterized with the parameter wA, the
weight per unit of surface of the covering (kg/m2). This
approximately accounts for the weight of the physical sur-
face elements covering the beam lattice, but also, when
appropriate, for other unaccounted elements like effect of
precipitations etc. The system is enriched with surface
polygonal elements having springs as their sides. During
system evolution, the area a for each element is computed
determining its mass wA · a. That quantity is subdivided
among particles in parts proportional to the solid angles of
the corresponding corner (effectively, this assign to each
particle the mass corresponding to the covering area of the
Voronoi cell around that particle).

Changing the values of wA and wL the system will pro-
duce different shapes, allowing an user to explore several
possibilities (all equally compressible).

Unlike what happens real world, the mass of the struc-
ture does change over time as our physical simulation pro-
gresses. What is important, however, is that the final mini-
mum energy (zero forces) position will consist of a correct
catenary curve of some length and some weight, even if the
both quantities are different from the one specified in the
initial state; what is kept constant is, rather, the mass con-
centration per unit of length (for beams) and of area (for
coverings).

Since the initial state only serves as a way for the user
to control the final result, it is acceptable that the system
returns a structure which does not strictly maintains the
lengths of its element nor, consequently, its overall mass.
The important thing is that the produced structures are com-
pressible. As long as the difference is small, the input
shape can be effectively used as a way to drive the system.

4.2 Update of rest lengths

However, it is sometime desirable to enforce a stricter sim-
ilarity between the input shape and the output compressible
shape. The rationale is that this makes for a more control-
lable way for the user to select which compressible shape
to get.

To achieve a better preservation of beam lengths from the
input shape to the final result, we adopt an heuristic: first,
the system is made to converge just as described above,
that is, using initial distances between particles as rest length
of the corresponding spring. Let li be this rest length for

the spring number i, i.e. its length in the input shape, and
let l′i be the length of the spring at the convergence state.

After convergence we then reassign to each spring a new
rest length l′′i by resolving:

l′i : li = l′′i : l′i (1)

This defines a new system which is in turn simulated until
convergence.

In words, (1) means assuming that, in the new system, each
given spring will be eventually elongated by the same per-
centage of its rest length as in the old system. Under this
assumption, we assign a rest length so that the elongated
final length of the spring will be the desired one. Since the
assumption does not hold in general, the final lengths in the
new system will not necessarily match the initial lengths
defined in the input state (even if they usually get nearer).

This process can be iterated (wait for the system to con-
verge, then update rest lengths, and repeat) but this is not
guaranteed to converge. Instead, in our system the user can
manually trigger the process any number of times, obtain-
ing a new surface every time. In other words, this phase
is provided as an additional tool for the user to navigate
among compressible 3D shapes. Triggering this process
means, intuitively, asking the system for a surface which is
more similar to the one provided in input (if such a surface
exists with is also compressible).

5 AN INTERACTIVE TOOL FOR PHYSICAL BASED
MODELLING

The system discussed in Sec. 4 is made available to end
user by means of a interactive stand-alone application, which
loads, computes, displays, and saves catenary surfaces.

5.1 Import and export

In order to be embedded in the typical pipeline of archi-
tectural design, shapes can be imported into the system by
loading a 3D two-manifold mesh into the system, which
will be used as a starting state for the physical system.

If the connectivity of the mesh correspond to a desiderata
of the architect designer in term of tessellation of beam and
junctions (their number, approximate length, connectivity
etc), then these factors are inherited from the input model
(a spring is created for to each mesh edge, and a particle
for each mesh vertex, as natural). Conversely, the input
mesh can be used as a mean to define a general shape of
the dome into the system. In this case, the surface is reg-
ularly resampled with a user-defined step (using the U-V
parametrization of the input mesh) and a custom connectiv-
ity is added selecting it among a set of possibilities (quads,
spitted quads, and so on, see Fig. 2). Additionally, a flat
surface of a given size can be used as a starting position.

Likewise, two-manyfold polygonal meshes (standard for-
mats) are also used as a mean to export the resulting com-
pressible surface so that it can be embedded in the design
pipeline and further processed.



5.2 Graphical user Interface

The Graphical User Interface (GUI) of the system allows
the user to set the various system parameters described in
this paper, like the values for wL and wA (see Sec. 3.3 and
4.1), the default stiffness constant and so on, by means of
buttons, sliders, menus and so on.

It also allows the user to impose or remove position con-
strains associated to particles. A particle can be constrained
to lie its specific position, on a vertical plane, or on a ver-
tical line. The GUI provides tools to quickly assign con-
strains manually to particles or group of particles, as well
as a small set of ready-made recipes to automatically deter-
mine constraints for every particle in one go (for example,
constraining every corner particle in position, and every
border particle to an appropriate vertical plane). Current
constraints are shown to the user though simple 3D wid-
gets.

The tool also embeds some basic tool to edit the original
shape (either imported or resampled), like lowering or ris-
ing specific junctions in the source position; more complex
edits are left to the CAD application producing the mesh
before importation into the system (a more flexible solu-
tion would be to provide the functionalities of our tool as a
plug-in for such CAD system).

Finally, the user is provided at all times with a rotatable
3D view to show the current shape of the dome as result-
ing from the simulation. The model is visualized as as a
lattice of beams or as the covering of the structure. Shad-
ows and a plant view are used as visual aids to make the
rendered shape clearer to the viewer. Optionally, the stress
computed for each beam can be measured to be reported or
used to color-code the elements (e.g. see Fig 3 and 4).

Figure 2: Examples of default conductivities which can be
imposed upon resampling an input mesh.

6 RESULTS AND DISCUSSION

6.1 Result examples

We show here a few examples of compressible structures
designed with our tool. To display the surfaces we use the
same rendering which is used in our application.

6.2 Conclusion

We proposed a system to help architects embed structural
considerations earlier during the process of design of domes
and similar architectures. This is not intended to exempt
from the need of careful validation of structural constraints
later in the computer aided design process (as our system
does not and cannot take in account parameters like accu-
rate materials properties, weather factors, finite elements),

Figure 3: A completely compressible (self-portant) tennis
dome realized with few pillars/portant-walls. Other exam-
ples on the next page.

but lets architect quickly explore a wide variety of gener-
ally sound solution. In this, the system is the computer
analogue of physical scaled down systems that can be set
up with similar purposes.

The many degrees of freedom that the system provides (in-
cluding initial shape, parameters of the simulation, con-
straints) let the user interactively navigate among a space
of viable solution.

As a physical system to compute compressible surfaces,
we propose a simple variation of particle and spring sys-
tem. It guarantees that (within discrimination limit) the ob-
tained surface have the desired characteristic of compress-
ibility (and so they represent the shape of compression-
only, or self-portant, structures). Technique to parallelize
particle-and-spring systems, like GPU based ones, could
be easily adopted in our adapted system.

The resulting stand alone tool is being tested and used for
its intended purposes.

REFERENCES

Axel, K. and John, O., 2005. Particle-spring systems for
structural form finding. Journal of the International Asso-
ciation for Shell and Spatial Structures 46(2), pp. 77–84.

Ekkehard, R., 2004. Shape finding of concrete shell roofs.
Journal of the International Association for Shell and Spa-
tial Structures 45(1), pp. 29–39.

Gibson, S. F. F. and Mirtich, B., 1997. A survey of de-
formable modeling in computer graphics. Technical report,
Mitsubishi Electric Research Laboratories.

Lee, Y., Terzopoulos, D. and Walters, K., 1995. Realis-
tic modeling for facial animation. In: SIGGRAPH ’95:
Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, ACM, New York, NY,
USA, pp. 55–62.

Nealen, A., Mueller, M., Keiser, R., Boxerman, E. and
Carlson, M., 2006. Physically based deformable models
in computer graphics. Computer Graphics Forum 25(4),
pp. 809–836.

Terzopoulos, D. and Waters, K., 1990. Physically-based
facial modelling, analysis, and animation. The Journal of
Visualization and Computer Animation 1(2), pp. 73–80.



Figure 4: Example of various compressible (self-protant) structures designed with our tool.


