
URBAN PROCEDURAL MODELING FOR REAL-TIME RENDERING

M. Carrozzino a, b, F.Tecchia b, M.Bergamasco b

a
 IMT Institute for Advanced Studies – m.carrozzino@imtlucca.it

b
 PERCRO, Scuola Superiore Sant’Anna, Pisa, Italy - (carrozzino, tecchia, bergamasco)@sssup.it

KEY WORDS: Virtual Reality, Real-time Rendering, 3D Graphics, Procedural Modelling, Urban Modelling

ABSTRACT:

This paper presents the architecture of the City Modelling Procedural Engine (CMPE), a system for the automatic / semi-automatic

reconstruction of virtual models of cities. Although the entire data flow can automatically proceed from the beginning to the end, in

each stage the manual intervention of the user is possible to correct mistakes caused by the automatic process, to optimize the results,

or to introduce further details. The CPME is integrated in XVR, a framework for the development of VR applications. So far the

CMPE engine is still in progress, but many of the main modules have been developed and some interesting conclusions may be

outlined both on the quality and on the performance side.

1. INTRODUCTION

An increasing interest has been growing in latest years in the

field of procedural generation of urban environments, as this

technique can be advantageously exploited both for research

and commercial purposes. For instance, the visualization of

maps and cities has lately become very interesting popular, as

the recent spreading of GPS receivers at cheap prices, to be

used as a navigation aid in cars, has stimulated the interest in

the market of high-precision maps. The software used by the

large majority of navigation devices, whose complexity is or can

be compared to that of palmtop computers, usually shows a 2D

flat or a “fake 3D” perspective representation of road maps.

Indeed, a full 3D visualization of the maps, regarding not only

roads but also the surrounding environments, could be very

helpful to assist the visual association between the displayed

map and the real location. Another application which rapidly

gained a large success is Google Earth (http://earth.google.com)

, which displays satellite images, aerial images and vector maps

projected onto a simple 3D representation of the terrain they are

associated. In general, urban planning for analysis, insight, and

decision-making, will more and more make a thoroughly use of

virtual cities, in the same way as in video games, especially in

the context of driving simulations, and in the movie industry.

Whether the application requires a high visual detail or not,

modelling a whole city is a long and tiring job from a manual

approach point of view. A much more time-effective technique

for city modelling may consist in semi-automatic generation of

3D models; this is the technique presented in this paper, where

the first and coarser model levels of detail are generated

automatically, starting from a set of parameters which may

consist in maps or even textual descriptions. Afterwards, a

manual intervention of modellers should be foreseen to have a

better control on the final results, especially in terms of visual

pleasantness and realism.

2. RELEVANT WORK

A great deal of research on the topic of virtual cities is currently

ongoing in several universities and departments. One of the

most important points of reference on the web is the Virtual

Terrain Project (http://www.vterrain.org) which, since 1998, has

been hosting a huge amount of articles, images and software

tools to “foster the creation of tools for easily constructing any

part of the real world in interactive, 3D digital form”. The tools

and their source code are freely shared to help accelerating the

adoption and development of the involved technologies.

Currently the project is still far from proposing a unified

approach; rather it is a collection of algorithms, taxonomies and

applications which, although well categorized, are not yet fully

integrated. However, VTP is one of the most interesting and

challenging project in the sector.

A remarkable work in the field of the procedural generation of

cities is City Engine, the evolution of the work proposed by

Parish and Mueller (2001). The engine uses a procedural

approach based on L-systems to model cities. From various

image maps given as input, such as land-water boundaries and

population density, the City Engine generates a system of

highways and streets, divides the land into lots, and creates the

appropriate geometry for the buildings on the respective

allotments. A texturing system based on texture elements and

procedural methods allows adding visual definition to the

buildings.

Another noticeable work regards Large Urban Environments

(Browne, 2004), a comprehensive approach which takes in

account both modelling and rendering issues.

The steps for the creation of a virtual city can be resumed in the

definition of the following entities:

• Urban Zone: information about geographical and, optionally,

social-statistic features of the terrain, usually defined in a GIS

system

• Road Network: commonly, but not always, present in GIS

systems

• Block definition: very rarely this information is present in the

GIS, usually it is deduced from other data

• Lots: blocks are divided into lots with methods ranging from

heuristics to pattern instantiation

• Buildings: several methods exist: fully procedural (shape

grammars), semi-procedural (declarative modelling) or

manual (geometric modelling).

As for the first two entities, input data may be easily available if

related to the United States (in the Tiger/line format,

http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html),

whilst it is sometimes more difficult to be found for other

countries, where there is still not such an integrated effort.

However, elevation maps under the Digital Elevation Models

(DEM) format of several regions overall the world are today

commonly available. The most common sources for road data

are centerlines, which are described by vector data formats.

Nevertheless, most of the existing data bases are proprietary and

not freely available. Therefore it seems convenient to establish a

procedure to create such data by commonly available data, for

instance extracting information from an existing set of raster

maps, or aerial photographs, which are considerably easier to

find, either directly in a digital format or after a scanning

process from physical maps. Building the vector set from a

raster source involves processing the road network raster image,

either by hand or with the assistance of an automated computer

application.

When passing to 3D, basically two main approaches are

available to model roads starting from 2D vectorial data: the

road geometry is draped on top of the terrain (faster, but Z-

fighting may occur) or it can be embedded into the terrain (no

visual issues, but computationally expensive). With either

approaches, an algorithm is needed to convert road centerlines

(raw vector data) to a full 2D/3D representation and to date

there are not established algorithms for doing this.

As far as the blocks and buildings modelling is concerned, the

first issue to address is spatial location. A possible approach is

the automatic extraction of footprints features from the raster

images, as in the case of the road network. Buildings modelling

can be carried out using classical techniques. Although manual

modelling leads to the most pleasant and realistic results, it is

often desirable to perform a parameterization of the buildings

properties so as to quickly create 3D models with a reasonable

degree of realism. The problem is commonly addressed

providing a very rough detail (box-like) for large datasets,

increasing the level of detail for some noticeable buildings.

Conversely, in the aforementioned work of Parish and Mueller

(2001) buildings are generated by means of specialized L-

Systems which provide three possible styles: commercial,

residential or skyscrapers. Roofs are built from templates.

Facades and windows, along with other details, are modelled

with procedurally composed textures. This means that

photographs of real buildings are taken and subsequently

decomposed in elements (windows, balconies, gates etc.) and

re-composed adapting them to the surfaces of the generated

geometry. This leads to good visual results, even if certain

repetitiveness is easily perceivable. The VTP addresses the

problem limiting the possible footprint shapes to rectangular,

circular or polygonal. In the case of an arbitrary (but forcedly

convex) polygonal shape, the roof can only be flat.

The concept of split grammars, a specialized type of grammar

operating on shapes, is introduced in (Winka, 2003). Its

suitability for the automatic modelling of buildings stems from

the fact that restrictions have been carefully chosen so as to

strike a balance between the expressiveness of the grammar (i.e.

the number of different designs it permits) and its suitability for

automatic rule selection. The objects manipulated by the

grammar are parameterized basic shapes.

All the examined solutions address often very efficiently, but

separately, the single problems involved in the generation of a

virtual city. Nevertheless, only commercial solutions are

available for an integrated approach which takes in account all

of the involved issues. Even in this case, they are often devoted

either only to the modelling aspects (favouring visual quality) or

the real-time aspects (favouring performances).

3. THE RENDERING FRAMEWORK

The XVR framework (Carrozzino, 2005), jointly developed by

PERCRO and VRMedia s.r.l., is a fully integrated environment

devoted to the development of VR applications, based on a VR-

oriented scripting language specifically dedicated to 3D

graphics, 3D sound and, in general, many other typical VR

components.

XVR is actually divided in two main modules: the ActiveX

Control module, which hosts the interface for web browsers,

and the XVR Virtual Machine (VM) module, which contains

the technology core, such as the 3D graphics, audio and physics

engines, the multimedia engine and all the software modules

managing the other built-in XVR features. It is also possible to

load additional modules which offer advanced functionalities

not directly available. The XVR scripting language allows

specifying the behaviour of the application, providing the basic

language functionalities and the VR-related methods, available

as functions or classes. The script is then compiled in a

bytecode which is processed and executed by the XVR-VM.

The integrated 3D engine, built on top of OpenGL, allows to

manage the visual output not only on a standard graphical

window (either web or local hosted), but also on more advanced

devices such as Stereo Projection Systems and Head Mounted

Displays. The engine uses state of the art algorithms of culling,

simplification, normal mapping and image caching to achieve

good real-time performances even with high-complexity

models.

Many applications built with XVR make use of 3D urban

models. These may include vehicle simulators, crowd behaviour

simulators and, lately, also an innovative methodology (ISEE)

dealing with the access to information related to Cultural

Heritage (Pecchioli, 2008).

Figure 1 – The ISEE application

In this work, interactive 3D models reproducing the main

features of corresponding real environments are used in order to

map relevant spatial zones to “pieces” of information. The

innovative aspect lies in the use of 3D Gaussians both to map

the information-related zones and the current view of the user;

this yields to automatically obtain a measure of the “spatial

relevance" of information, defined based on its location in the

world and on the position/orientation of the user in the 3D

space. This application represents a typical case where the

visual fidelity is not the main issue: rather, the possibility of

rapidly generating even roughly defined 3D models, with a

sufficient geographical correspondence with the real places, is a

key-aspect in order to quickly prototype the databases to be

accessed with this methodology.

4. THE ENGINE

The City Modelling Procedural Engine (CMPE) is a tool for the

semi-automatic generation of 3D urban environments, designed

to support as many inputs as they are available, like vector

maps, raster maps, DTMs, aerial photographs, text descriptions,

trying to provide the most coherent output with the provided

input. Although the entire data flow can automatically proceed

since the beginning to the end, in each stage the manual

intervention of the user is possible to correct mistakes caused by

the automatic process, to optimize the results, or to introduce

further details.

The CMPE main objective is to allow the creation of huge 3D

urban datasets, suitable for real-time rendering, which can be:

• quickly obtained with limited user interventions, so

as to speed up the creation process (either finalized to

a prototype or to the final model);

• stored in a limited amount of memory, so as to allow

the transmission over the network of related data even

in low bandwidth conditions.

An additional software library (PVRlib) implements the features

related to the procedural generation of simple architectural

entities (starting from basic geometries like cylinders, boxes and

spheres, to more complex shapes like arches, columns, capitals)

which can be used to easily add minor refinements to the final

model or, embedded in the XVR scripting language, to model

more complex architectural entities (like churches, temples,

monuments) not directly characterizable by means of simple

parameters (fig.2).

Figure 2 - Examples of PVRlib objects

As a general overview, the CMPE work flow (fig. 3) can be

sketched as follows:

• automatic extraction from raster maps of relevant features

related to the road network or to the block footprints (this

stage may not be performed if data are already in vectorial

format);

• generation of data structures for the general management;

• generation of the 2D road network (includes, if possible,

railways and rivers);

• generation of the 3D road network;

• identification of the parameters for the subsequent stages

(blocks and buildings);

• generation of the 3D blocks and of the 3D buildings;

• storage of the global 3D model in the AAM format, either to

directly feed the XVR real-time rendering engine, or to be

manually refined within 3D modellers such as 3D Studio

Max;

• manual modelling of the details (either with the 3D

modelling software or directly within XVR, through the

PVRLib) and export to AAM;

• XVR Rendering.

Figure 3 - A hi-level scheme of CMPE workflow

4.1 Automatic extraction of road networks and building

footprints

In the current implementation, the CPME input data consists in:

• a 2D raster map of the city to be modelled;

• a DTM of the same region (optional);

with planned support to vector maps. If the DTM is included,

both maps must be geo-referenced in order to be correctly co-

located.

The first step consists in a simplification of the raster image

(which may come from digital archives or even from scanning,

therefore it may contain inscriptions, labels or other “noisy”

elements, see fig. 4a) to clean the map and make it easier the

features extraction. The stages to be performed:

• reduction of the colours to a constant number (which may

be user-specified);

• elimination of the “isolated” pixels (noisy pixels produced

by image compression or anti-aliasing), assigning to them

the mean of the adjacent pixels colours;

• identification of the most frequent colours (let N be the

number of these colours) and further reduction of the

image colours to N;

• elimination of the labels, if present, as in the case of

isolated pixels;

This stage leads to the production of a raster map that, even if

not perfectly clean, is much handier for the subsequent stages.

This allows a great number of sources which are commonly

available and free (like, for instance, scanned maps) to be used

as input data. However, user intervention is possible for small

manual corrections.

The second stage consists in the vectorization of the map. The

result of this stage is a graph composed of nodes (corresponding

to crossroads, curves etc.) and links (which are segments

connecting two nodes). Particular attention must be put on

squares, which cannot be treated as simple crossroads if

wanting, in the next stages, to add details or other architectural

elements like fountains etc.

Nodes and links are therefore categorized as follows:

Nodes Links

Blind Alleys Streets

Crossroads Railroads

Curve Nodes Watercourses

Square Vertices

Table 1. Nodes and links categorization

Figure 4: (a) – A sector of a possible input raster map

(b) – The map skeleton overimposed on the cleaned map

To vectorize the map, the identification of the above mentioned

relevant features, i.e. nodes and links, is performed by means of

a process of skeletonization (fig. 4b), a form of thinning aiming

to extract a region-based shape feature representing the general

form of an object (Blum, 1967). The skeleton represents both

local object symmetries and the topological structure of the

object. Therefore it is a good starting point for the extraction of

vector features from a 2D raster map (Gold, 2001).

The map is then processed in order to identify the relevant

points which will be subsequently treated as nodes. The first

step is to recognize crossroads, then the blind alleys and finally

the curves. In order to get a restricted number of nodes (so as to

limit the geometrical complexity of the final 3D model of the

road network) the curve bending shall exceed a pre-defined

user-specified bending angle. If this happens, the point where

bending exceeds the limit is marked as a curve node. In Figure

5a crossroads are highlighted in red, blind alleys in blue and

curve nodes in green. In this stage, nodes coordinates are still

stored in the picture reference system. If the picture is geo-

referenced, the real coordinates will be computed afterwards;

otherwise a generic reference system is used.

The obtained graph is then optimized by removing redundant

nodes and links, likely to be the result of approximation errors

in the previous stage (links connecting blind alleys are removed,

crossroads connected by very short links are collapsed, etc.)

The next feature to identify is roads width. Different cases may

occur:

• blind alley or curve branch: it is enough to measure the

width in a certain number of points (usually the extremes

and the medium points) along the road orthogonal direction;

• roads ending in crossroads: the extreme points, in this case,

cannot be used, as the orthogonal direction should point to

another road, therefore the measured width is commonly

non significant (it could result even in the intersecting road

length). In this case, a series of semicircles is traced starting

from the crossroad until the borders of the road are reached.

A particular case is represented by squares (fig. 5b).

Automatically recognizing squares is not straightforward, as

they can be sometimes mistaken by crossroads. An attempt is

made by comparing a link width with its length. If their ratio is

nearly 1, the link is likely to make part of a square. In this case,

a further search is performed to find the nodes related to the

adjacent links. The convex envelope of these nodes constitutes

an acceptable approximation of the square shape. A better

approximation is given by considering the convex envelope of

an enriched set of nodes, including additional nodes created on

the width boundaries of the roads at their connection with the

square (fake nodes).

With a similar technique, and with the search of the minimal

closed loops in the graph, the boundaries of blocks are

identified (fig. 5c). As appears from the picture, block footprints

currently do not take in account internal shapes, like courtyards;

they are not automatically retrieved in this stage, even if they

can subsequently be manually added.

Figure 5: (a) – Nodes highlighting,

(b) – Squares features extraction,

(c) – Blocks features extraction

At the end of the whole process, the complete graph is

composed of:

• a set of nodes, characterized by a coordinate pair (x,y) and a

type;

• a set of links, characterized by the related nodes, a type and

a width;

• a set of squares (collections of connected nodes defining an

area lying on the road network);

• a set of blocks, (collections of connected nodes defining an

area lying outside the road network);

This City Graph (CG) has an almost 1:1 correspondence with a

vector map, which is therefore easily built. The vector map can

be displayed as an overlay on the raster map, so as to allow the

user to manually modify the nodes position and/or to add new

nodes, in order to refine (Figure 6) the obtained results and to

correct the possible mistakes so far made. It is worthy of note

that user interventions are always optional, hence the algorithm

is able to generate an equivalent vector map directly from the

raster map.

Figure 6:– Manual refinement of the City Graph

The user in this stage can also add labels or additional types to

the City Graph elements for the subsequent automatic

generation of 3D data. For instance a certain portion of the map

can be labelled as downtown or suburbs, so as to provide

information about buildings style and size. In the same way,

blocks can be marked as parks, either because user-identified or

because of map colours. Finally, the user can label blocks as

monuments; in this case the automatic generation of the block

might access additional geometrical data either manually or

procedurally modelled.

If data are geo-referenced and a DTM is also present, the graph

nodes are updated with the addition of the z coordinate. This

allow defining also the morphology of the terrain and, if

present, the height of buildings. Otherwise the city is considered

to by lying on a plane and buildings heights will be pseudo-

randomly generated on the basis of qualitative attributes. The

next stage consists in the generation of a polygonal mesh

representing the road network.

4.2 Generation of the 3D road network

The simplest method to address this issue consists in converting

links in quads, using the information related to the links

extremes in terms of coordinates and widths. However this

would lead to overlapping polygons, resulting in annoying z-

fighting effects. Therefore a more refined tessellation (fig. 7

a,b,c) must be done on crossroads (3 or more roads meeting).

The opposite problem may occur in curve branches (2 roads

meeting) where the simple method could leave uncovered areas,

depending on the bending angle. In this case the tessellation

should create new triangles to cover these areas (fig. 57 d).

Figure 7: (a,b,c) – Crossroad tessellation,

(b) – Curve tessellation

Subsequently textures, with different traffic signs, centre lines

and track signs, are applied to roads, depending on their type,

width and importance (fig. 8).

Figure 8 – Road texturing

4.3 Generation of the 3D buildings

The next step is to generate blocks and buildings starting from

data contained in the vectorial map. A block is identified by a

line of block, which represents its perimeter. The engine can

generate blocks in two modalities: Perimetral and Mix.

The Perimetral mode simply generates a courtyard inside the

perimeter. The thickness of buildings is taken so as to avoid

edifices overlapping. The Mix mode is more complicated; the

block is completely subdivided in buildings based on the angles

formed by the perimeter lines. The size and the height of

buildings, if not specified in the City Graph, are pseudo-

randomly calculated in order to differentiate buildings inside the

same blocks (Fig. 9).

Figure 9 – Different building shapes from the same block

The shape and the appearance of the building can be as well

defined and modified, for instance treating the ground floor

differently from the other ones or allowing to stack floors of

different size (like in skyscrapers, for instance). Several types of

roofs have been implemented which can be manually set or

automatically chosen from labels and block type (Fig. 10).

In addition to the code-based procedural generation, an

authoring/editing tool has been developed to assist the user if a

manual intervention is needed to fine tune the model. The tool

has advanced procedural capabilities oriented to the buildings

modelling, therefore by setting few parameters it is possible to

create complex models. Dedicated features are available to

model pavements and arcades. The appearance of buildings can

be enhanced by applying textures of portals, doors, balconies

and windows (Fig. 10). The procedure follows the one

described in (Parish, 2001). Work is in progress to generate

some of these features as geometry rather than textures (for

instance balconies, ridgecaps etc.). It is also possible to have

more than one representation to be stored as different LODs.

Parks are treated as a separate case; the minimal LOD is given

by a green polygon, but additional entities will be easily added

(procedurally generated trees or billboards, from external

libraries). The set of entities will be completed by additional

vertical traffic signs and stoplights, lamps, benches and other

urban furniture. Also in this case rules can be defined to

automatically add these features; otherwise they can be

manually specified.

Figure 10 – Textured buildings

All these geometrical entities can be directly generated inside

XVR or exported in the AAM format, in order either to be used

inside XVR or to be imported into 3D modeller programs where

the model can be improved and enriched by:

• correcting possible mistakes;

• refining geometries and textures;

• adding new elements;

• perform shaders-based photo-realistic rendering and

exporting static lighting features on textures

A detailed CMPE block diagram is presented in fig. 11.

Figure 11 – CMPE block diagram

Figure 12 (a) – Simplest LOD for a City Graph of Pisa

Figure 12 (b,c) – More detailed LOD for the same City Graph

Figure 12 (d) – Sample of a textured high-detail LOD

5. RESULTS

Being CMPE still under development, results are only partially

significant. However, some tests were made to investigate the

possible uses of the engine. Being natively XVR a web-oriented

technology, one of the foreseen uses of CMPE is related to

internet-based applications. Therefore, measuring CMPE

performances in terms of time required for geometry generation,

is interesting to understand if it is suitable for on-demand

rendering urban models in networked environments. A

comparison should occur between a scenario where a 3D urban

model of a given complexity is ready to be downloaded and

another one where the 3D model is generated on the fly on the

base of a raster map downloaded from network.

In the case of on-the-fly modeling, the total needed time is:

tOTF = tJPG + tCG + t3DM

where tJPG is the downloading time of the raster map from

network, tCG is the time needed for the generation of the City

Graph, t3DM is the time needed for the procedural generation of

the 3D model.

In the case of network downloading, the corresponding time is:

tDL = tDL + tFL

where tDL is the downloading time of the 3D road network

model from network, and tFL is the loading time of the 3D

model file in memory.

In the following, network times are calculated considering the

best network performances possible (i.e. full bandwidth). The

tests were performed on an Intel Pentium 2M notebook,

equipped with an ATI 9600 and 512 MB RAM. The models

where generated based on maps of increasing size, resulting in

increasingly complex geometry:

Map Resolution (pixel) 512 1024 2048 4096

of links 92 379 1152 3168

of nodes 156 632 1876 5159

of triangles 9479 84939 280380 770790

Table 2 – City Graph complexity vs. map size

Fig. 13a shows that the time needed to have the model ready for

rendering is slightly shorter in the case of on-the-fly modeling

with respect to Ethernet network downloading, while it is

considerably better if compared with DSL 4Mb network

downloading. Network incidence is almost negligible in the

case of on-the-fly modeling, thus DSL and Ethernet offers

roughly the same performances.

The efficiency of on-the-fly modeling is more evident (fig. 13b)

when the generation of the City Graph (which is by far the most

time-consuming operation) is performed on the server side. In

this case it is not possible to generate virtual cities from any

map (unless the client does not send a request to the server by

sending the desired raster map, but in this case uploading time

should be taken in account) and the detail is not so easily

parameterizable.

Figure 13: (a) – Performances for CG generation

(b) – Performances for CG download

However, using pre-computed City Graphs reduces the needed

time for visualization to:

tOTF = tCGT + t3DM

where tCGT is the needed time to download the City Graph,

rather than to generate it. In this case tOTF is considerably

smaller than tDL also in broadband network circumstances. A

network application could therefore provide a wide choice of

City Graphs whose data may be transmitted and locally

evaluated in order to generate the 3D geometry. It could also be

considered to implement network services which build City

Graphs on demand having as input data a raster map received

by the client side.

6. CONCLUSIONS

We have presented the City Modeling Procedural Engine, a tool

for the rapid automatic generation of very complex virtual urban

environments, suitable for real time rendering and requiring

minimal user interventions. With respect to existing procedural

engines, we introduced the possibility of manual refinements in

every stage of the work flow, in order to ensure a better control

on the final results, usually a weakness of procedural modeling

algorithms.

We believe that this mixed strategy can produce interesting

results: procedural techniques are used to deal with the

quantitative aspects intrinsic in complex virtual environments

and, optionally, then manual user actions are possible to refine

the generated models from a qualitative point of view. This

allows for mistakes or undesired features, resulted from the

procedural generation, to be fixed at earlier stages of the

process. Besides, as not all the desired components of a

complex VE can be described in terms of procedures, manual

refinements may be not only advisable but, indeed, needed to

produce the expected results.

Many improvements may be performed on the City Modeling

Procedural Engine:

• a single, unified interface collecting all of the engine

modules in order to provide an integrated framework able

to manage the whole workflow;

• a deeper support to vector road networks;

• a more extensive support to procedurally generated

vegetation and urban furniture;

• addressing the problem of modeling the whole transport

network (including railroads and subways), along with

watercourses, and related elements;

• the integration with the Crowd Rendering Module, jointly

developed by PERCRO and UCL, in order to bring life to

the generated virtual cities. A cross-research could be

performed investigating issues related to the behaviour of

the city elements, meaning not only human crowds but

also vehicles etc. ;

• the algorithms which rule the automatic generation of the

road network, blocks and buildings may be improved to

achieve better performances. In particular the map

skeletonization results in being the bottleneck of the

whole process, therefore alternative approaches may be

tried to reduce the processing times;

• due to time constraints and to poor availability of maps

and textures, the styles of the generated elements are

currently chosen among a few. In order to enrich the

range of models, the realization of additional modules for

various styles (downtown, suburbs, commercial areas,

industrial areas), possibly differentiated depending on

countries, is advisable;

• a more intensive use of state-of-the-art techniques for

photo-realistic rendering is foreseen, exploiting XVR

support to shaders, in order to improve the visual quality

of the models without excessively increasing their

geometrical complexity. Shaders should also be used to

create ex-novo procedural or composite textures, to be

used as materials for building or vegetation as in (Zalesny,

2001), having as input data small samples or simple

procedural rules.

Another interesting issue to keep into account is the interface to

CityGML (http://www.citygml.org) an information model for

the representation of 3D urban objects defining not only with

their geometrical, topological and appearance properties, but

also semantical properties. Since this promises to become an

interesting open standard for storing and sharing city models,

future work on CMPE will consider the opportunity of realizing

models complying with this format.

7. REFERENCES

Blum, H (1967) A transformation for extracting new descriptors

of shape, in: W. Whaten Dunn (ed.), Models for the Perception

of Speech and Visual Form. MIT Press, Cambridge, Mass.,

pp.153-171

Browne S.P., Willmott J., Wright L.I., Day A.M., Arnold D.B.

(2001) Modelling and Rendering Large Urban Environments, in

Proceedings of EGUK 2001, UCL, London

Carrozzino M., Tecchia F., Bacinelli S., Cappelletti C.,

Bergamasco M. (2005) Lowering the development time of

multimodal interactive application: the real-life experience of

the XVR project, in Proceedings of ACM SIGCHI International

Conference on Advances in Computer Entertainment

Technology, ACE 2005, June 2005

Gold, C., Thibault, D (2001) Map Generalization by Skeleton

Retraction, in Proceedings of 20th International Cartographic

Conference (ICC 2001), pp. 2072-2081, 2001

Parish Y. I. H., Müller P. (2001), Procedural Modeling of

Cities, In Proceedings of ACM SIGGRAPH 2001, ACM Press /

ACM SIGGRAPH, New York, Annual Conference Series,

ACM, pages 301-308

Wonka P., Wimmer M., Sillion F. (2003) , Instant Architecture,

William Ribarsky, ACM Transaction on Graphics, 22(3):669-

677, July 2003.

Zalesny A, der Maur D.A., Van Gool L. (2001), Composite

Textures: emulating building materials and vegetation for 3D

models, , Proceedings of the 2001 conference on Virtual reality

Pecchioli L. Carrozzino M., Mohamed F. (2008) ISEE:

Accessing Relevant Information By Navigating 3d Interactive

Virtual Environments”, in Proceedings of the 14th International

Conference on Virtual Systems and Multimedia, IEEE VSMM

2008, pages 326-331, Limassol, Cyprus

