
SAMATS – TEXTURE EXTRACTION EXPLAINED

J. Hegarty, J.D. Carswell

Digital Media Centre, Dublin Institute of Technology, Aungier St., Dublin 2, Ireland – jcarswell@dit.ie

ISPRS Commission V, WG V/4

KEY WORDS: Photogrammetry, Automation, Modelling, Visualisation, Virtual Reality

ABSTRACT:

The creation of detailed 3D buildings models, and to a greater extent the creation of entire city models, has become an area of
considerable research over the last couple of decades. The accurate modeling of buildings has LBS (Location Based Services)
applications in entertainment, planning, tourism and e-commerce to name just a few. Many modeling systems deployed to date
require manual correspondences to be made across the image set in order to determine the models 3D structure. This paper describes
SAMATS, a Semi-Automated Modelling and Texturing System, which has the capability of producing geometrically accurate and
photorealistic building models without the need for manual correspondences from a set of geo-referenced terrestrial images. This
paper is the third in a trilogy of publications describing the entire SAMATS system, and describes the third of three components that
comprise the full functionality of the complete SAMATS implementation. It focuses on the texture extraction step in detail, while
providing an overview only of SAMATS’ other two components.

1. INTRODUCTION

This research investigates building reconstruction technology
for creating geometrically accurate, photorealistic 3D models
from terrestrial digital photography for use in LBS (Location
Based Services) applications. It is envisioned that the resulting
3D model output from this work be web-enabled and made
available to subsequent LBS research endeavors (e.g. for
archaeologists, town planners, tourism, e-Government, etc.).
Being able to produce 3D building models using terrestrial
imagery allows all users to exploit the future commercialization
potential of web-based LBS, as demonstrated in (Carswell et al.,
2002).

SAMATS uses a novel approach to creating building models
without the need for manual correspondences (for orientation
purposes) between images to be made. The ability of SAMATS
to remove the manual correspondence step found in most
modelling approaches is achieved by having all images geo-
referenced in the same reference frame. However, the
acquisition of geo-referenced terrestrial images is still a
bottleneck that does not yet have a straightforward solution.
Currently, mass market GPS receivers, like those found in
today’s cell phones, gives an absolute accuracy of about 1 to 30
meters providing there is “good” satellite visibility. However,
this accuracy limitation is not technology bound, with survey-
grade kinematic differential GPS offering centimetre accuracy.
As private industries or governments create supplemental
satellite positioning networks, specialized equipment and/or
survey techniques may no longer apply - making the acquisition
of accurate geo-referenced imagery as easy as regular imagery.
SAMATS does not solve the difficulties in acquiring accurate
geo-referenced imagery - it only investigates the usefulness of
such imagery in the overall modelling process.

(Ullman, 1976) was the first to investigate the principle of
structure from motion and (Taylor and Kriegman, 1995) built
on these ideas using lines instead of points - although both
require correspondences to be made manually across the image

set. In fact the majority of semi-automated reconstruction
systems require the user to make manual correspondences
across the image set in order to reconstruct a model, which is
generally a very time consuming task. (Debevec et al., 1996) is
one of the most robust systems using this approach which
allows the user to create models using a set of block primitives
and by setting constraints on those primitives.

A more automated modelling approach involves the modelling
of roofs using aerial imagery. Models produced in this way can
produce structurally accurate models but fail to capture building
façades accurately, although (Lee et al., 2002a, 2002b, 2002c)
have looked into the merging of façade textures with models
produced from aerial imagery. (Coorg, 1998) constructs a large
set of 3D building models by using spherical mosaics produced
from accurately calibrated ground view cameras fitted with
GPS. Although highly automated, this system was limited to
modelling simple shaped buildings by simply identifying the
rooflines and extruding walls downwards.

Figure 1. SAMATS system diagram. The highlighted step is
the focus of this paper

This paper is the third in a trilogy of publications describing the
entire SAMATS system shown in Figure 1, and focuses mainly
on the Texture Extraction component. For a detailed
description of the Edge Highlighting component and the
Intersection Rating step of the Edge Recovery component, refer
to (Hegarty and Carswell, 2005a). For a detailed description of
the Triangle Grouping and Structure Recovery components,
refer to (Hegarty and Carswell, 2005b).

2. MODELLING

This section describes the process used to model the geometry
of a building from a set of geo-referenced images using only
simple edge highlighting by the user. The basic concept behind
the modeling process is as follows; if one has two images of a
scene taken from different locations, and the exact position and
orientation of the camera is known for each image (i.e. the
exterior orientation parameters Xo,Yo,Zo,Ω,Φ,Κ) then the exact
location of any point visible in both images can be determined.
This is illustrated in Figure 2.

Figure 2. Two point projections used to determine a point in
3D-space

The modelling process outlined in this section extends this idea
by using triangle intersections to find edges rather than line
intersections to find points. The modeling process can be split
into three main steps; Edge Highlighting, Edge Recovery and
Structure Recovery.

2.1 Edge Highlighting

Edge highlighting is the only manual step performed by the user
in the SAMATS modeling process. Primary lines and
secondary lines are used to highlight edges in the images.
Primary lines are used to recover the position of edges directly,
determining the core structure of the model. They are
responsible for the creation of every vertex in the final model.
A secondary line is used to connect primary lines together and
must have each of its endpoints connected to one or more
primary lines.

The reason the entire model is not defined by primary lines is
because it is difficult to recover some edges given the input
image data. Primary lines are well suited to recovering the
position of vertical edges because it is possible to create
arbitrarily large angles of intersection about the vertical edge

axis. However, for horizontal edges near camera level it is not
possible to create arbitrarily large intersection angles, making it
difficult to recover the horizontal edges accurately since slight
inaccuracies in the camera’s intrinsic or extrinsic properties
results in large errors in estimated edge location.

Secondary lines work by connecting primary lines, where the
use of a primary line would be prohibitive due to the above.
Since primary lines will generally be used to recover the vertical
edges of a building, secondary lines should then be used to
highlight the horizontal building footprints (wall bases) and
roof tops, which indicates to the system that these edges should
be connected without trying the same recovery technique used
for the primary edges.

A primary edge must be highlighted in at least three images,
although it can be advantageous to define a primary edge in
more than three images when trying to recover edges that are
poor primary edge candidates. Secondary edges need only be
defined in a single image. For a more detailed description of
the edge highlighting step refer to (Hegarty and Carswell,
2005a). See Figure 3 for a screenshot of a synthetic building
with its primary (vertical) and secondary (horizontal) edges
highlighted.

Figure 3. A scene from the edge highlighting process

2.2 Edge Recovery

After the edges have been highlighted, six fully automated steps
are performed to recover the final edges; Line Projection,
Triangle Intersection, Correspondence Recovery, Edge
Averaging, Vertex Merging, and Secondary Edge Recovery.
Each of these steps is described next.

2.2.1 Line Projection: The first step in determining the
absolute positions of the primary edges is to project the 2D
primary lines from the camera centre to form 3D triangles. In
other words, the intrinsic (IO) and extrinsic (EO) properties of
the camera are used to project the primary lines (containing 2
endpoints of the triangle) from the known camera’s position
(third point in the triangle), at the correct orientation out to
infinity. This is performed for every primary line in each image
to create a number of intersecting triangles.

2.2.2 Triangle Intersection: Once every 2D primary line has
been transformed to a 3D triangle, the next step is to determine
the intersections between the individual triangles thus created.
Every triangle stores a list of the triangles it intersects with.

2.2.3 Correspondence Recovery: Generally, each triangle
intersects many other triangles even though only a small
number of the triangle intersections have both their primary
parent lines highlighting the same edge. Most existing systems
in the literature resolve this problem by performing manual
correspondences between the lines so that lines which highlight
the same edge are grouped together. Once the lines are
converted to triangles the only valid intersections are between
members of the same group. This manual correspondence step
can be a very time consuming and tedious process. SAMATS
performs this correspondence automatically in three steps;
Intersection Rating, Triangle Grouping and Group Merging.

Intersection Rating: Every triangle needs to rate each of the
triangles it intersects. These ratings can then be used to
determine which of the intersecting triangles represent the same
primary edge as itself. The automated rating process chosen
uses the fact that there must be at least three primary lines, and
hence triangles, for each primary edge. Each intersecting
triangle is not rated on the coverage of the intersection line it
makes, but rather on the similarity of its intersection line with
others.

At the end of the intersection rating step, the list of intersecting
triangles for each triangle will have a rating. Also, since the
rating system is based on comparing intersection lines, a
reference to the triangle responsible for the rating is also stored.
For example, triangles ti, tj and tk all intersect each other. If tj
is the best rated intersecting triangle of ti, and it was a
comparison between the intersection lines lij, lik, and ljk which
were responsible for this rating, then a reference to tk will be
stored along with this rating for tj in ti’s intersecting triangles
list. For a more detailed description of the intersection rating
step refer to (Hegarty and Carswell, 2005b).

Triangle Grouping: After the intersection rating step, for every
triangle ti, every triangle tj in ti’s intersecting triangles set Ti
will have a rating assigned to it. Also, the tk responsible for
each tj’s rating will be stored along with the rating. This
information can then be used to group triangles together where
each group represents a primary edge.

Essentially, the grouping process is performed in two steps.
Firstly, the GSS (Group Scope Set) of each triangle is
determined. The GSS for each triangle is the list of mutually
high ranking intersecting triangles. Not every triangle will have
the same size GSS. The size of these sets will vary depending
on the number of triangles used to represent each primary edge
as well as the relationship between their line intersections.

The second step in the grouping process is to use the GSSs to
group the triangles into groups. The triangles are ordered based
on the size of their GSS’s in ascending order. Triangles with
small GSSs form the initial groups. Small GSSs are more
tightly coupled which is a desirable property when trying to
match triangles together. After the core set of groups are
created all remaining triangles are assigned a group, the vast
majority being assigned to one of the existing groups with only
a small minority forming their own groups.

It may not be possible to assign every triangle to a group for a
number of reasons. The user may not have used a minimum of
three primary lines to highlight a particular primary edge or
there may be too great an error to group some primary lines
together either due to an error in the camera’s intrinsic and/or
extrinsic properties or an error in line placement by the user. In
such cases the triangles are marked as invalid. For a more
detailed explanation of the Triangle Grouping step refer to
(Hegarty and Carswell, 2005b).

Group Merging: The final step in the grouping process is
group merging. If a primary edge is represented by 6 or more
primary lines, 2 distinct groups may have formed. If the groups
were left the way they were, there would be 2 primary edges
representing the same building edge instead of just one. The
merging step simply compares each group to each other and
merges groups which are sufficiently similar.

2.2.4 Edge Averaging: Once all triangles have been
assigned a group the primary edges must be determined for each
group. This is simply the weighted average of all the
intersection lines between all group members.

2.2.5 Vertex Merging: During the edge averaging step, each
primary edge will be created totally independently from all
other primary edges. In most cases this is acceptable since the
majority of primary edges are not connected to any other
primary edge. Sometimes however primary edges are
connected. This is indicated in the edge highlighting step by
having two or more primary lines share the same endpoint.

All primary edges that are connected need to have their
connected endpoints coincident. This is achieved by creating a
mapping between every primary line and every primary edge,
and also between every primary line endpoint and every primary
edge vertex. Once the mappings have been made, we can see if
any of the primary lines share the same endpoints, which maps
to primary edges sharing the same vertex. Once the vertices are
identified they are set to the average of their positions.

2.2.6 Secondary Edge Recovery: Secondary edges are
determined using the same mapping information obtained
during the vertex merging step. Firstly, the secondary lines’
endpoints are determined. Then the corresponding vertices are
determined for these endpoints and a new group is created for
each secondary line using these vertices as the secondary edge’s
endpoints. After all secondary edges have been highlighted the
basic outline of the model should be complete.

2.2.7 Structure Recovery: Even though the outline of the
model has been determined there is still no surface data
(textures) associated with the model. The model is only defined
in terms of vertices and lines and not in terms of surfaces and
the triangles that make up each surface. Recovering this
structural information is broken into three steps. The first step
is to determine what/where the models surfaces are. This is
achieved be treating the model as a graph, with the vertices as
the graph nodes and the edges as the graph edges. Surfaces are
determined by finding the shortest cycles in the graph where all
the vertices are co-planar. All surface normals must then be
aligned so that they all point away from the model. This is
performed by aligning the normals of neighboring surfaces
recursively until all normals are aligned. The final step is to
triangulate each of the surfaces. The algorithm used to
triangulate each surface can be found in (O’Rourke, 1998).
Refer to (Hegarty and Carswell, 2005b) for further details on
the structure recovery step. Figure 4 shows a silhouette of a
model at the end of the geometry (outline) modeling process.

Figure 4. Outline silhouette of the model

3. TEXTURE EXTRACTION

Coming into this section, we have produced so far an accurate
outline of the building, or to be exact, we have a geometrically
accurate model of the building. However, there is still data
contained in the image set that has not yet been used to increase
the models realism, i.e. the building’s façades. The aim of the
texture extraction process is to extract façade data from the
original images and apply them to the model to complete the
geometrically accurate and photorealistic 3D building model.
The texture extraction process can be broken into four steps;
Initialization, TDT (Texture Determination per Triangle), TP
(Texture Packing), and Exporting.

3.1 Initialisation

The initialization step performs all the miscellaneous setup
required for the TDT and TP steps. Initialization is performed
in three steps; Triangle Setup, Image Setup, and Contributing
Image Determination.

3.1.1 Triangle Setup: Every triangle in the model is
represented as a triangle object and added to the triangle list,
with each triangle being processed independently of the others.
The first step is to determine the world_view_projection matrix
required to render each triangle. Each triangle is rendered with
its longest side aligned with the bottom of the render target.
This results in the triangle being enclosed in the smallest
possible bounding box. A Mipmap buffer border is also set for
each triangle. This is filled in later on to ensure that the texture
does not darken at higher Mipmap levels. Figure 5 shows how
a triangle would appear when rendered using this
world_view_projection matrix.

3.1.2 Image Setup: Similarly, each image is represented as
an object, with each being processed independently from the
rest. The world_view_projection matrix for each image must be
determined as well as the world_view_projection_texture
matrix. The world_view_projection matrix is used to determine
the location of any point relative to the imaging camera. The
world_view_projection_texture matrix does a similar task but
converts the coordinates from clip-space to texture coordinate
clip-space.

Figure 5. Triangle rendered with its world_view_projection
matrix

3.1.3 Contributing Image Determination: The final step of
initialization is to determine the number of potential images
contributing to each triangle’s texture. For any particular
image, only about half of the triangles that make up the model
are visible, assuming the model is closed. About half of the
triangles should be facing the camera (front-facing), while the
rest will be facing away from the camera (back-facing). This
implies that about half of the triangles can be culled away from
having an image as a candidate texture source. This test can be
performed simply by calculating the dot product between the
camera’s view vector and each triangle’s normal vector. Each
triangle stores the list of images it faces.

3.2 Texture Determination per Triangle

This step determines each triangles texture contribution. This is
broken into three steps; Single Image Texture Capture, Texture
Blending, and Mipmap Buffer Filling.

3.2.1 Single Image Texture Capture: The first step in
determining a triangle’s final texture contribution is to store
each images contribution in a separate surface. Each
contribution is determined in a number of steps. First an
occlusion map is created using the images
world_view_projection matrix. The use of near and far depth
planes as well as rendering only the back facing triangles of the
model was used to improve the effectiveness of the occlusion
mapping technique, see (Valient, 2003). The occlusion map
and the image texture map are then projected onto the model.
The image texture contribution is stored in the RGB channels
for each pixel while the contribution for each pixel is stored in
the alpha channel. The contribution depends on three factors;
the distance of the pixel from the image camera, the relative
orientation between the triangle normal and the camera’s
direction vector, and whether or not the pixel is occluded from
the camera by using the occlusion map.

3.2.2 Texture Blending: Once every image contribution has
been stored in a surface, these surfaces need to be blended
together. The blending is performed per pixel using the alpha
channel to determine the weighting for each surface. Each pixel
is processed in turn. Firstly, the sum of the alpha values across
all the contributing surfaces is determined. Each surface’s
contribution is equal to the pixel color multiplied by its alpha
value all over the sum of the alphas, see Table 1 for an example.

Channel FUNCTION
 S1 S2 S3 AlphaTotal S1

Contrib.
S2

Contrib.
S3

Contrib.
Final

Colour
Alpha 0.3 0.8 0.7 1.8
Red 0.5 0.6 0.5 0.0833 0.2667 0.1944 0.5444

Green 0.6 0.7 0.6 0.1000 0.3111 0.2333 0.6444
Blue 0.6 0.6 0.5 0.1000 0.2667 0.1944 0.5611

Table 1. Example of a pixel being blended from 3 surfaces

(S1,S2,S3)

3.2.3 Mipmap Buffer Filling: The final step in determining
each triangle’s texture contribution is to fill the surface so that
every pixel is assigned a colour. If the parts of the surface
outside the triangle were left black, the texture would darken at
higher Mipmap levels. For this reason a series of fill operations
are performed on the surface. Firstly, the surface is broken into
7 regions, see Figure 6. Pixels in the bottom-left, bottom-right,
and top regions sample the triangles respective corner pixels.
These corner pixels are determined by using the triangle’s
world_view_projection_texture matrix, which transforms the
vertices to texture coordinate clip-space. A spiral search is then
performed to find the first pixel that has a non-zero alpha value,
which is generally the desired pixel.

On some graphics hardware, triangles can be rasterized
differently from the DirectX specification, resulting in a
neighbouring pixel being sampled by mistake. This is usually
not a problem since neighbouring pixels generally have a
similar colour value. Pixels in the bottom region sample the
first non-zero alpha pixel above their location. Pixels in the left
and right regions trace the path from their location along the
inverse slope of the respective triangle sides. Taken together,
they complete a Mipmap buffer filled triangle texture.

Figure 6. Triangle texture surface with the Mipmap buffer fill

regions shown

3.3 Texture Packing

The final phase in the texture extraction process is texture
packing. Firstly the packing order of the individual texture
samples is determined. This algorithm takes in the list of
triangle objects as input, each with AABBs (Axis-Aligned
Bounding Boxes), and determines the position of each AABB to
form the most tightly packed square. The normalized position,
the required scaling factor, and the UV coordinates for each
vertex are also determined. Note that all triangles retain their
relative size, thus creating an authalic texture map. Although
the packed texture is generally larger than the individual
triangle textures, due to the fact that it must contain every
triangle’s texture information, there is generally fewer texels
available to store each triangle texture. For this reason a
Mipmap hierarchy is created for each triangle texture. The
Mipmap level used to create the packed texture will have
between PTi and 4PTi texels, where PTi is the number of texels
in the packed texture which represents the ith triangle. Since the
packed texture will be authalic, this only needs to be performed
to the 1st triangle since all other triangles will use the same
Mipmap level. Since there are at least the same number of
texels in the triangle texture as there is room for in the packed
texture, but no more that 4 times the number, bilinear sampling
will result in a 100 percent utilization of all available texture
information.

3.4 Exporting

The final step simply creates a vertex and index buffer
consisting of the vertices in the triangle object list. The model
is then exported in Microsoft’s extension file format with the
packed texture associated with the model. Figure 7 shows a
final textured house from SAMATS.

Figure 7. Final textured model

4. CONCLUSIONS

This research shows that given sufficient information, user input
to the modeling process can be reduced significantly. Currently
user input is required for the edge highlighting step but since no
correspondence is required this step could potentially be
automated using edge detection and a set of heuristics to guide
the choice between using primary lines or secondary lines.

SAMATS has shown the ability to model rectangular and
triangular roofed structures very well; however SAMATS does
have trouble modeling certain structures. SAMATS has no
special ability to handle curved surfaces, which makes it
impossible to model such features completely accurately.
Cylindrical column must be replaced by rectangular columns for
instance. Another difficulty that can arise is SAMATS’
inability to handle partially highlighted (occluded) building
edges. This makes it difficult, and in some cases impossible, to
model buildings in tightly confined spaces.

Currently, SAMATS has only been used on synthetic images in
the lab, where the exact extrinsic (EO) and intrinsic (IO)
properties of the camera are known. Achieving such precision
in the real world would prove difficult without specialized
survey-grade equipment. New techniques will be required to
facilitate the gathering of the geo-referenced images required by
SAMATS in order for the modelling system to be utilized
effectively in the real world – especially if our continuing goal
for cellphone based, geometrically accurate, and photorealistic
3D modelling is to be realised.

ACKNOWLEDGEMENTS

Research presented in this paper was funded by a Strategic
Research Cluster grant (07/SRC/I1168) by Science Foundation
Ireland under the National Development Plan. The authors
gratefully acknowledge this support.

REFERENCES

Carswell, J.D., Eustace, A., Gardiner, K., Kilfeather, E., 2000.
An Environment for Mobile Context-Based Hypermedia
Retrieval, In: 13th International Conference on Database and
Expert Systems Applications (DEXA2002); IEEE CS Press; Aix
en Provence, France; September 2002

Coorg, S.R., 1998. Pose Imagery and Automated Three-
Dimensional Modeling of Urban Environments. In: MIT Ph.D.
Thesis, 1998.

Debevec, P.E., Taylor, C.J., Malik, J., 1996. Modeling and
Rendering Architecture from Photographs: A hybrid geometry-
and image-based approach. In: SIGGRAPH ’96 Conference
Proceedings, pp. 11-20, 1996.

Hegarty, J., Carswell, J.D., 2005a. SAMATS – Edge
Highlighting and Intersection Rating Explained. Conceptual
Modeling for Geographic Information Systems
(CoMoGIS2005), ER 2005 Workshop, Springer-Verlag LNCS,
Austria

Hegarty, J., Carswell, J.D., 2005b. SAMATS – Triangle
Grouping and Structure Recovery for 3D Building Modelling
and Visualization: 5th International Workshop on Web and
Wireless GIS (W2GIS2005), Springer-Verlag LNCS, Lausanne,
Switzerland, December, 2005

Lee, S.C., Jung, S.K., Nevatia, R., 2002a. Integrating Ground
and Aerial Views for Urban Site Modeling. In: IEEE CS
Proceedings of 16th International Conference on Pattern
Recognition, (ICPR’02)

Lee, S.C., Jung, S.K., Nevatia. R., 2002b, Automatic
Integration of Façade Textures into 3D Building Models with a
Projective Geometry Based Line Clustering. Computer
Graphics Forum, 21(3):511-519, 2002.

Lee, S.C., Jung, S.K., Nevatia, R., 2002c, Automatic Pose
Estimation of Complex 3D Building Models. In: Proceeding of
the 6th IEEE Workshop on Applications of Computer Vision,
2002.

O’Rourke, J., 1998, Computational Geometry in C (Second
Ed.). Cambridge University Press, 1998.

Taylor, C.J., Kriegman, D.J., 1995, Structure and Motion from
Line Segments in Multiple Images, PAMI, 17(11):1021-1032,
November 1995.

Ullman, S., 1976, The Interpretation of Structure from Motion,
In: Proceedings of the Royal Society of London, 1976.

Valient, M., 2003, Accelerated Real-Time Rendering,
Comenius University Master Thesis, Bratislava, 2003.

Zlatanova, S., van den Heuvel, F.A., Knowledge-based
Automatic 3D Line Extraction from close range images.
http://www.gdmc.nl/zlatanova/thesis/
html/refer/ps/SZ_FH_Corfu.pdf

