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ABSTRACT:

The photorealistic modeling of large-scale scenes, such asurban structures, requires a fusion of range sensing technology and traditional
digital photography. This paper summarizes the contributions of our group in that area. We present a system that integrates automated
3D-to-3D and 2D-to-3D registration techniques, with multiview geometry for the photorealistic modeling of urban scenes. The 3D
range scans are registered using our automated 3D-to-3D registration method that matches 3D features (linear or circular) in the range
images. A subset of the 2D photographs are then aligned with the 3D model using our automated 2D-to-3D registration algorithm
that matches linear features between the range scans and thephotographs. Finally, the 2D photographs are used to generate a second
3D model of the scene that consists of a sparse 3D point cloud,produced by applying a multiview geometry (structure-from-motion)
algorithm directly on a sequence of 2D photographs. A novel algorithm for automatically recovering the rotation, scale, and translation
that best aligns the dense and sparse models has been developed. This alignment is necessary to enable the photographs tobe optimally
texture mapped onto the dense model. Finally, we present a segmentation and modeling algorithm for urban scenes. The contribution of
this work is that it merges the benefits of multiview geometrywith automated registration of 3D range scans to produce photorealistic
models with minimal human interaction. We present results from experiments in large-scale urban scenes.

1 INTRODUCTION

The photorealistic modeling of large-scale scenes, such asur-
ban structures, can be achieved by a combination of range sens-
ing technology with traditional digital photography. Laser range
scanners can produce highly-detailed geometry whereas color dig-
ital cameras can produce highly-detailed photometric images of
objects. Our main focus is the geometric and photorealisticre-
construction of individual buildings or large urban areas using a
variety of acquisition methods and interpretation techniques, such
as ground-base laser sensing, air-borne laser sensing, andground
and air-borne image sensing. The ultimate goal is the reconstruc-
tion of detailed models of urban sites, i.e. digital cities,by the
efficient combination of all possible sources of information. The
creation of digital cities drives other areas of research aswell:
visualization of very large data sets, creation of model databases
for GIS (Geographical Information Systems) and combination of
reconstructed areas with existing digital maps. Recently,intense
commercial interest for photorealistic reconstruction ofcity mod-
els is eminent in systems such as Google Earth, or Microsoft Vir-
tual Earth.

3D models of cities can be acquired by various techniques such
as aerial imagery, ground-based laser range-scanning, existing ar-
chitectural CAD modeling, and traditional photogrammetry. Aerial-
based methods produce crude box-like models, whereas ground-
based laser range-scanning methods produce highly accurate mod-
els. The latter models though consist of irregular and heavyge-
ometry.On the other hand purely image-based approaches have
presented significant progress, and are now able to produce im-
pressive 3D models (Pollefeys et al., 2008, Seitz et al., 2006), that
are still inferior to laser-based models. Finally, web-based plat-
forms (such as Google Earth or Microsoft Virtual Earth), areable
to receive and display light-weight 3D models of urban objects,
whereas rapid-prototyping machines are able to build such mod-
els. Therefore, the generation of photorealistic 3D content of ur-
ban sites at various resolutions and from various sensors isa very

important current problem. Some of the systems that combine
3D range and 2D image sensing for 3D urban modeling include
the following: (Früh and Zakhor, 2003, Sequeira and Concalves,
2002, NRC, 2008, Zhao and Shibasaki, 2003, Stamos and Allen,
2002, Zhao et al., 2005).

The framework of our system is shown in Fig. 1. Each of the
framework elements listed below, is a distinct system module in
Fig. 1.

• A set of 3D range scans of the scene is acquired and co-
registered to produce a dense 3D point cloud in a common
reference frame.

• An independent sequence of 2D images is gathered, taken
from various viewpoints that do not necessarily coincide
with those of the range scanner. A sparse 3D point cloud is
reconstructed from these images by using a structure-from-
motion (SfM) algorithm.

• A subset of the 2D images are automatically registered with
the dense 3D point cloud acquired from the range scanner.

• Thecomplete set of 2D images is automatically aligned with
the dense 3D point cloud. This last step provides an integra-
tion of all the 2D and 3D data in the same frame of reference.
It also provides the transformation that aligns the models
gathered via range sensing and computed via structure from
motion.

• Finally, segmentation and modeling of the 3D point clouds
follows.

2 3D MODELING PIPELINE

In this section we present the status of our 3D modeling sys-
tem: 3D-to-3D Registration (Sec. 2.1). 2D-to-3D registration



2D-image to 3D-range Registration

Structure From Motion

Dense Point Cloud + Sparse Pose Sparse Point Cloud + Dense PoseUnregistered Point Clouds

3D-range to 3D-SFM Registration

Texture

Mapping

Two Registered Point Clouds Final Output

3D-range to 3D-range Registration

2D IMAGES

3D RANGE DATA (LASER SCANS)

Point Cloud

Figure 1: System framework (Stamos et al., 2008). Several registered range scans of Shepard Hall (CCNY) constitute a dense 3D point
cloud modelMrange shown in the leftmost column. The five white dots correspond to the locations of five of the 26 color images
(shown as thumbnails on top row) that are independently registered with the modelMrange via a 2D-to-3D image-to-range registration
algorithm. The rightmost image of the second row depicts the3D modelMsfm produced by SFM. The points ofMsfm as well asall the
recovered camera positions for the sequence of 2D images that producedMsfm are shown as red dots in the figure. Since SFM does not
recover scale,Mrange andMsfm are not registered when brought to the same coordinate system, as shown in the second row. The 3D
range modelMrange overlaid with the 3D modelMsfm is shown in the third row of the figure after a 3D-range to 3D-SFM registration
module aligns them together. The recovered camera positions from SFM can now be used to project the26 color images ontoMrange ,
which now properly sits in theMsfm coordinate system, to produce the richly textured 3D model (Final Output) shown in the right
column.



(Sec. 2.2),and 3D modeling (Sec. 2.3). More details can be found
on some of our papers: (Stamos et al., 2008, Liu and Stamos,
2007, Chao and Stamos, 2007, Liu et al., 2006, Yu et al., 2008).

2.1 3D-to-3D Range Registration

Our 3D registration techniques are based on automated match-
ing of features (lines, planes, and circles) that are extracted from
range images. We have applied our automated methods for regis-
tration of scans of landmark buildings. In particular we have ac-
quired and registered: interior scans of Grand Central Terminal in
NYC, Great Hall at City College of New York (CCNY), as well
as exterior scans of St. Pierre Cathedral in Beauvais (France),
Shepard Hall at CCNY, Thomas Hunter building at Hunter Col-
lege, and Cooper Union building (NYC). As a result, all range
scans of each building are registered with respect to one selected
pivot scan. The set of registered 3D points from theK scans is
calledMrange (Fig. 1).

2.2 2D-to-3D Image-to-Range Registration

We present our automated 2D-to-3D image-to-range registration
method used for the automated calibration and registrationof a
single 2D imageIn with the 3D range modelMrange . The com-
putation of the rotational transformation betweenIn andMrange

is achieved by matching at least two vanishing points computed
from In with major scene directions computed from clustering
the linear features extracted fromMrange . The method is based
on the assumption that the 3D scene contains a cluster of vertical
and horizontal lines. This is a valid assumption in urban scene
settings.

With this method, a few 2D images can be independently regis-
tered with the modelMrange . The algorithm will fail to produce
satisfactory results in parts of the scene where there is a lack of
2D and 3D features for matching. Also, since each 2D image
is independently registered with the 3D model, valuable infor-
mation that can be extracted from relationships between the2D
images (SfM) is not utilized. In order to solve the aforementioned
problems, an SfM module final alignment module (Stamos et al.,
2008, Liu et al., 2006) has been added into the system. These two
modules increase the robustness of the reconstructed model, and
improve the accuracy of the final texture mapping results. There-
fore, the 2D-to-3D image-to-range registration algorithmis used
in order to register a few 2D images (five shown in Fig. 1) that
produce results of high quality. The final registration of the 2D
image sequence with the range modelMrange is performed after
SfM is utilized.

Our recent contributions (Stamos et al., 2008, Liu and Stamos,
2007, Liu, 2007) with respect to 2D-to-3D registration can be
summarized as follows:

• We have developed a working system that is able to inde-
pendently register 2D images to 3D models at interactive
rates. This system requires minimal user interaction. Note
that after a few 2D images are registered to the 3D model
the multiview geometry approach (SfM) is utilized for reg-
istering all images with the 3D range model.

• The whole space of possible matches between 3D and 2D
linear features is explored efficiently. That improves the
possibility of convergence of our algorithm.

• Our method utilizes 3D and 2D linear features for matching
without significant grouping. This increases the generality
of our algorithm since we make fewer assumptions about the
3D scene. Scenes with various layers of planar facades, or
without clear major facades can thus be handled.

2.3 Modeling

We have developed novel algorithms (Yu et al., 2008, Chao and
Stamos, 2007, Chen, 2007) for extracting planar, smooth non-
planar, and non-smooth connected segments, and then merging
all these extracted segments from a set of overlapping rangeim-
ages. Our input is a collection of registered range images. Our
output is a number of segments that describe urban entities (e.g.
facades, windows, ceilings, architectural details). In this work
we detect different segments, but we do not yet identify (or rec-
ognize) them. A flowchart of our current technique can be seen
in Fig. 2.

In addition to segmenting each individual scan, our methodsalso
merge registered segmented images. The merging results in co-
herent segments that correspond to urban objects (e.g. facades,
windows, ceilings) of a complete large scale urban scene. Based
on this, we generate a different mesh for each object. In a model-
ing framework, higher order processes can thus manipulate,alter,
or replace individual segments. In an object recognition frame-
work, these segments can be invaluable for detecting and recog-
nizing different elements of urban scenes. Results of our segmen-
tation and modeling algorithms can be seen at Fig. 3.

Figure 2: Our segmentation and modeling framework (Chen and
Stamos, 2005, Chao and Stamos, 2007, Chen, 2007).

3 FUTURE WORK

The generated 3D models are complex triangular meshes. Mesh
simplification is thus important. Unfortunately, simplification ap-
proaches suffer from the fact that their input is a complicated
mesh. A mesh is a low-level heavy collection of triangles that
does not take into account the high-level abstraction of urban
structures. A high-level model should identify facades, doors,
windows, and other urban entities. An important avenue of ex-
ploration is an automated high-level representation of thefinal
3D urban model.
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Figure 3: (a) Segmentation and modeling result: 15 range images of Grand Central Terminal dataset. Different colors correspond to
different segments that have been automatically extractedand modeled via the Ball Pivoting algorithm (Bernardini andRushmeier,
2002). Cylindrical ceiling, planar facades, as well as other more complex areas (windows, etc.) have been correctly segmented. (b)
Segmentation and modeling result of Cooper Union dataset: 10 range images (one facade is shown). Planar facades, and complex
window and arch elements have been correctly segmented. Note, that in both (a) and (b) each segment is represented as a dense
triangular mesh.


