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ABSTRACT: 
 
An innovative approach is proposed for the extraction of the complex urban three dimensional feature efficiently and accurately. In 
this method, firstly, both the LiDAR data and the aerial images are respectively pre-processed and matched using an affine 
transformation technique. Then, an improved mean-shift algorithm is employed to classify the LiDAR data fused with reflected 
intensity and spectrum attribute into groups by kinds of feature, such as buildings, vegetation, water etc. The spectral information are 
extracted from aerial-image to extend the attribute of the LiDAR data. The classification accuracy is evaluated by a confusion matrix. 
Finally, the 3D model of interested region is quickly constructed based on the classified points and the aerial-image in software 
SketchUp. During the experiment, the key issue is how to control the results of classification through parameters setting. 
 
 

1 INTRODUCTION 

LiDAR (Light Detection and Ranging) is an active remote 
sensing system, which utilizes laser beam for detection and 
measurement to provide three dimensional information of earth 
surface and object. As its superiority, there are wide fields for 
LiDAR application, such as 3D city models, urban planning, 
design of telecommunication networks, vegetation monitoring 
and disaster management. By contrast with traditional 
photogrammetry, the 3D urban data capturing using LiDAR is 
of higher speed, higher vertical accuracy and lower cost(Mei, 
Bing et al. 2009). 
 
Since nineties of last century, automated or semi-automated 3D 
reconstruction of urban buildings(Debevec, Taylor et al. 1996; 
Noronha and Nevatia 2001) from photographs has been widely 
interested and deeply studied. However, due to the complexity 
of the technology and the rise of LiDAR, reconstruction with 
the new data source LiDAR, has been continuously tried and 
achieved good results(Haala and Brenner 1997; Maas and 
Vosselman 1999; Rottensteiner and Briese 2002). Meanwhile, 
LiDAR was experimented in the fields of ecology and 
topography. Various characteristics of forests were measured 
using LiDAR, such as stand volume, Canopy structure, 
biophysical properties etc. (Nilsson 1996; Lefsky, Cohen et al. 
1999) The SHOALS(Scanning Hydrographic Operational 
Airborne LiDAR Survey) system uses LiDAR to remotely 
measure bathymetry and topography in the coastal zone(Irish 
and Lillycrop 1999). Since then, feature extraction by 
integration of multispectral/hyperspectral images, LiDAR or 
SAR became emerging research focus(Tao and Yasuoka 2002; 
Rottensteiner, Trinder et al. 2005; Dalponte, Bruzzone et al. 
2008; Wulder, White et al. 2009).  
 
In the 3D urban feature extraction field, the vegetation can not 
be preserved while the buildings are extracted and 
reconstructed. However, vegetation is one of the key issues in  
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urban environment planning and monitoring all the time 
(DeCandido 2004). The reasons of non-preserved vegetation 
are as following: On the one hand, the non-grounded points in 
LiDAR data mainly consist of building roofs and trees, while 
the recognition methods can only identify the roof-shaped 
regular point groups(Rutzinger, Hofle et al. 2006; Sohn and 
Dowman 2007). On the other hand, the pixels on the images 
represent buildings or trees usually have close position and 
spectral signature to a certain extent, while The image 
segmentation methods are generally prone to have some 
misclassification error in that case(Herold, Scepan et al. 2002). 
In this paper, a mean-shift algorithm that always used in image 
segmentation(Comaniciu and Meer 2002) is employed to 
classify the LiDAR data fused with reflected intensity and 
spectrum attribute into groups by feature. Therefore, both the 
building feature and the vegetation feature can be respectively 
extracted at the same time. 
 
 

2 STUDY AREA AND MATERIAL 
 
The data used in this paper included a true color image and a 
set of LiDAR point clouds. The data was produced by the 
Woolpert Company for the Ohio Imagery Data Project. (The 
data can be downloaded from: 
http://metadataexplorer.gis.state.oh.us/metadataexplorer/explor
er.jsp.) It was captured by a Leica ALS digital LiDAR system 
during March to May 2006. The LiDAR data set includes 
62708 points and stores vegetation, bare soil, buildings, and 
roads. The area of the research region is about 2.3 square 
kilometres. The aerial image is 900 pixels by 700 pixels and 
every pixel equals 0.3 m. The LIDAR point data and the aerial 
image are shown in figure 1. 
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a. Aerial image data b. Point clouds 

Figure 1. Experimental data in the study area. 
 
 

3 METHODOLOGY AND PRINCIPLE 
 
The 3D feature extraction is divided into three stages: 
pre-process, classification and feature extraction, and the flow 
chart is given to explain the used methodology in figure 2.  
The advantage of height smooth can eliminate the gross error 
of raw lidar data by setting the height threshold, and that can 
help to reduce the probability of misclassification. Then, to 
achieve data fusion, the registration employs the affine 
transformation technique by manually selecting several 
homologous points. Thus, the spectrum value can be extracted 
from matched image to lidar data, which is a sort of fusion 
method of lidar and aerial images.  
 
During the classification, before the improved mean-shift 
algorithm conducted to classify the fused LiDAR data into 
groups, the employed color space of spectrum needs to be 
transferred from RGB to L*a*b*. To obtain a meaningful 
classification, perceived color differences should correspond to 
Euclidean distances in the color space chosen to represent to 
the features. The space L*a*b* were especially designed to 
best approximate perceptually uniform color spaces. The 
dependence of all three coordinates on the traditional RGB 
color values is nonlinear. 
 
A computational module based on the mean shift procedure is 
an extremely versatile tool for feature space analysis and can 
provide reliable solutions for many task(Comaniciu and Meer 
2002). Thus, this algorithm is induced to classify the point 
clouds in the experiment. Besidse, the key issue of the 
mean-shift algorithm is appropriate kernel function setting and 
bandwidth selection.  
 
When an appropriate classification has applied to the point 
clouds, the ground feature can be extracted through an anylsis 
of the result of classification. In the end, 3D scene can be 
quickly modeling based on the extracted feature with the 
software”SketchUp”. 
 

Figure 2. Operation Flowchart 

3.1 Mean Shift Principle 
 
Let data be a finite set S embedded in the n-dimensional 
Euclidean Space, X. Let K be a flat kernel that is the 
characteristic function of the λ-ball in X. 
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The difference xxm −)(  is called mean shift in Fukunage 
and Hostetler(Fukunaga et al, 1975). The repeated movement 
of data points to the sample means is called the mean shift 
algorithm, as illustrated in figure3. In each iteration of the 
algorithm, )(sms ←  is performed for all Ss∈  
simultaneously. The mean shift algorithm has been proposed as 
a method for cluster analysis, classification, etc.  
 

Figure 3. Principle of Mean Shift 
 

3.2 Color Space Transfer Principle 
 
An Euclidean metric, however, is not guaranteed for a color 
space. The spaces L*u*v* and L*a*b* were especially 
designed to best approximate perceptually uniform color spaces. 
In both cases, L*,the lightness(relative brightness) coordinate, 
is defined the same way, the two spaces differ only through the 
chromaticity coordinates. In practice, there is no clear 
advantage between using L*u*v* or L*a*b*; in the proposed 
algorithms, we employed L*a*b* motivated by a linear 
mapping property.  
 
A readily accessible conversion formula is as follows: firstly, 
RGB coordinates should be transferred to CIE-XYZ 
coordinates using following metric. 
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The relationship between L*a*b* and CIE-XYZ is illustrated in 
the following. In the formula, Xn, Yn, Zn represent the value of  
lights stimulus under the CIE standard Lighting conditions. In 
general, Xn=95.05, Yn=100, Zn=108.89, when X/Xn>0.008856, 
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Y/Yn>0.008856, Z/Zn>0.008856.  
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Otherwise, when X/Xn<0.008856 Y/Yn<0.008856 or 
Z/Zn<0.008856, another expressions represent the relationship. 
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3.3 Kernel Function Setting 
 
The kernal function is a weighting function used in 
nonparametric function estimation. It gives the weights of the 
nearby data points in making an estimate. In practice kernel 
functions are piecewise continuous, bounded, symmetric 
around zero, concave at zero, real valued, and for convenience 
often integrate to one. They can be probability density 
functions. Often they have a bounded domain like [-1,1]. 
Usually, there are some kernel function used widely, as table 1 
illustrated. 
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Table 1.   Widely used kernel function  
 

In this paper, considering the rate of convergence and the 
sensitive of feature, Epanechnikov is chosen to be the kernel. 
Meanwhile, in the fused data(x, y, z, l, a, b, i), space coordinate 
(x, y, z), chromaticity coordinate (l,a,b) and reflectivity 
intensity (i) belong to separately independent Euclidean spaces, 
therefore, the multi-variate kernel is defined as the product of 
three radial symmetric kernels and the Euclidean metric allows 
a single bandwidth parameter for each domain. 
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Xs means space coordinate (x, y, z), Xc means chromaticity 
coordinate (l,a,b), Xr means reflectivity intensity (i); hs, hc, hr 
means corresponding bandwidth for each domain. C means 
constant. 
 
 

4 CASE STUDY  

4.1 Pre-processing 

4.1.1 Height smooth: Through establishing search window 
for the point, whether a point is gross error  is determined by 
the comparing the height difference with other points in the 
search area. The height difference threshold and the search 

window radius needs to be set, as figure 4 illustrated. 

 
Figure 4. Principle of Height smooth 
 

4.1.2 Registration: Point clouds have three-dimensional 
position information of high accuracy, while aerial images do 
not contain coordinates. Before the two types of data can be 
joined for feature extraction, registering to a single coordinate 
system should be completed in advance. Fourteen homologous 
points were selected in the aerial image and the point clouds. 
The affine transformation based on six parameters of the Plane 
Coordinate Transformation Model was applied to complete 
registration and adjustment. The model is given in equation(7). 
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The Least squares solution of six parameters are obtained in 
table2, through the fourteen homologous points. (x',  y') 
represents the pixel position of the homologous point in the 
aerial image, while (x, y) represents the point position from 
lidar data. 

Parameter Value 
A 0.6676065 
B 0.000883 
C -0.000711 
D -0.669068 
E 620313.6 
F 4166486.8 

Table 2.   Coordinate transfer parameter 
 

4.1.3 Data fusion: The spectral information are extracted 
from the aerial images to the lidar data through overlay 
operation based on the results of registration. As shown in 
figure 5, the density of the points is much lower than that of 
pixels, therefore, the mistake that one point obtains more than 
one pixel value can not be produced. 

 

Figure 5. Overlay Details 
 

4.2 Classification 
 
When the location, intensity and spectral vectors are 
concatenated in the joint domain of dimension, their different 
nature has to be compensated by proper normalization. Then, 
by several trials of bandwidth selection, the buildings, the trees 

Search radius

Centre point of search window 

    point 

Height threshold 
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and the land points are well separated, when hs is 0.4, hc is 0.3, 
and hr is 0.3. The result of classification is shown in figure 6b.   

 
a. Aerial image data            b. Classified point clouds

Figure 6. Result of classification 
 

4.3 3D Scene Modelling 
 
With a small amount of manual check of the classification, the 
misclassification mainly caused by the cars (figure 6a) can be 
corrected (figure 6b). Then, the accurate classified points 
representing the ground feature can be the foundation of 3D 
modelling.  
 
Firstly, the DEM of study area can be extracted from the land 
point cluster (see figure 7a) in ArcGIS. Then with the ESRI 
plug-in of SketchUp, the DEM can be imported to the 3D scene 
of SketchUp (see figure 7b). The aerial images can be the 
“texture” of the DEM surface (see figure 7c), for the next step 
of modelling 3D buildings and trees. 
 

 

b. DEM in SketchUp

a. DEM in ArcGIS  c. DEM surface
Figure 7. Procedure of DEM modelling 

 
Secondly, the building point cluster is imported to the 
SketchUp as a layer( see figure 8a), therefore, the 3D buildings 
can be modelling, with help of the points and the aerial images 
information. 

a. Imported building points 

b.3D buildings modelling 
Figure 8. Procedure of buildings modelling 

 
Similarly, the trees point cluster is used to establish the 3D 
trees, as figure 9 shown. The single tree model can be found in 
SketchUp Material Database from Internet. 

a. Imported trees points 

b. 3D trees modelling 
Figure 9. Procedure of trees modelling 

 
 

5 RESULT AND CONCLUSION  
 
In the end, all the layers are displayed at the same time, and 
then the ground feature can be reconstructed in figure 10.  

 
Figure 10. Final result of ground feature extraction 

 
On the other hand, the assessment of classification accuracy 
can be finished by a confusion metric, shown in table 3. The 
general accuracy of classification can achieve 85.64%, which is 
a good result of classification. 

Number of points 
Reference cluster 

Total User 
accuracybuilding trees land 

Practical 
cluster 

building 5582 28 36 5646 98.87% 
trees 288 21524 862 22674 95.06% 
land 1988 5710 26833 34531 77.63% 

Total  7858 27262 27731 62708  

Mapping accuracy 71.04% 78.95% 96.86%   

Omission errors 28.96% 21.05% 3.14%   
Commission errors 0.81% 4.22% 28.31%   
General accuracy    85.64%  

Table 3.   Confusion metric of classification 
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C  

         D 

C      D 

A     B 

cars
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This paper proposes a novel method of 3D feature 
reconstruction, which has been proved feasible in the 
experiment. Therefore, another thought of efficient feature 
extraction different from tradition is provided. 
The key issues in this paper are: 1) LIDAR data registration 
with aerial images; 2) classification using mean shift algorithm; 
3) reconstruction of ground feature. 
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