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ABSTRACT: 
 
Skeleton is an important 1-D descriptor of polygon and a useful tool for advanced geometric algorithms. However the skeleton that 
most existing algorithms investigated is the longest one, which is not intended in all circumstances. This paper proposes an 
algorithm for extracting hierarchically optimal skeleton network of polygons. The algorithm incorporates length, angularity and area 
of associated part of skeleton segment. The result is a hierarchical structure and each level corresponds to a specific detail of 
skeleton. The new algorithm has three steps. First the constrained Delaunay triangulation of polygons is constructed. Secondly 
skeleton segments are connected between neighbouring triangles and skeleton network is built. Thirdly, a dynamic pruning process 
considering the weights is employed to produce optimal skeletons at each level of detail. The weight in last step is determined by 
length, angularity and position of skeleton segment. 
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1. INTRODUCTION 

Skeleton is the locus of centers of maximal discs interior of a 
polygon and the primary component of polygon shape 
descriptors. It has many applications in pattern recognition and 
computer vision. In automatic cartography and Geographical 
Information Systems (GIS), skeleton of polygons is very useful 
for automatic label placement, collapse of area features of 
natural phenomena to linear features in generalization and map 
conflations. Skeletonization is the process of finding the centers 
of maximal circles and connecting them to form a line. 
 
There exist numerous implementations of skeletonization based 
on the original mathematical definitions. Ogniewicz and others 
(1995) gave four types of skeletonization algorithms: simulation 
of the grassfire, analytical computation of medial axis, 
topological thinning and ridges on the distance map. They also 
presented an algorithm for building hierarchic skeletons based 
on Voronoi analysis. Kimmel and others (1995) gave similar 
classifications of skeletonization algorithms. Practically the 
most three implementations are based on morphological 
thinning (as in Figure 1a), Voronoi diagram (as in Figure 1b) 
and Delaunay triangulation (as in Figure 1c). The latter two 
types produce straight line skeletons. 
 
When part of the skeleton of a polygon is needed, most 
previous algorithms are intended for longest ones, which 
however is not always appropriate. This paper introduces an 
algorithm which considers properties of skeleton segments and 
computes a weight for each of them. The optimal skeleton is 
determined by pruning process based on weight. 
 
 

2. PRIMARY SKELETON NETWORK 

As indicated above primary skeleton segments of polygons can 
be extracted using different implementations. Mathematical 
morphology can simulate the original definition closely. 

However in order to employ this kind of implementations, the 
vector polygons must be converted to raster data first. The 
dimension of polygons representing natural phenomena varies 
remarkably and the raster resolution can not be determined 
easily. Any given resolution cannot appropriate for all polygons 
of different sizes and further affects shape of skeletons. Every 
skeleton segment is associated with some part of polygon and 
this relation is very useful in GIS. But it is hard to build this 
relation in raster data. The algorithms based on vector data can 
satisfy this requirement. Delaunay triangulation, which is the 
dual of Voronoi diagram in 2-D Euclidean plane, is used to 
build primary skeleton network in this paper. 

 
Figure 1a.  Skeleton based on morphological thinning of area 

 

 
Figure 1b.  Skeleton based on Voronoi of vertices of polygon  
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Figure 1c.  Skeleton based on triangulation of polygon 

 
2.1 Delaunay Triangulation of Polygons 

Delaunay triangulation is one of most investigated geometric 
structures and has applications in many disciplines for its well-
shaped characters. Numerous algorithms have been appeared. 
For a polygon, the Delaunay triangulation can be revised to 
incorporate the edges of polygon and then a so-called 
constrained Delaunay triangulation is produced. 
 
In order to extract the skeleton network with enough topological 
information, edges and triangles in triangulation are classified 
first. There two types of edges in triangulation: object edges 
which are coincident with edges of polygon (as P1P2 in figure 2) 
and virtual edges which are bounded by two inconsecutive 
vertices of given polygon (as P1P3 in figure 2). They are 
denoted as EO and EV respectively. Triangles are classified into 
three types according to types of constituted edges. Triangles 
with one virtual edge and two object edges are ear-triangles 
(denoted as TE , as ΔP1P2P3 in figure 2). Those with two 
virtual edges and one object edge are middle triangles (denoted 
as TM, as ΔP1P8P9 in figure 2). Those with three virtual edges 
are interior triangles (denoted as TI, as ΔP1P3P8 in figure 2). 
Here we do not consider polygons which have three vertices.  

 

 
Figure 2.  Triangulation of polygon 

 
2.2 Primary Skeleton Network 

Primary skeleton network can be constructed by threading 
process in polygon triangulation or by connecting straight 
skeleton segments.  
 
Each triangle with type TE contributes one straight skeleton 
segment whose one node is the center of the only one virtual 
edge and another node is opposite vertex of virtual edge (as 
P4v1 in figure 2). Each triangle with type TM contributes one 
straight skeleton segment whose two nodes are the centers of 
the two virtual edges (as v1v2 in figure 2). Each triangle with 
type TI contributes three straight skeleton segments that share a 

common node at the barycentre and end at the centers of three 
edges respectively (as v3v2, v3v4 and v3v5 in figure 2). 
 
In order to reduce the zigzag of skeleton segment, a special 
modification of barycentre position is needed when a TI triangle 
is met. For a given triangle with type TI, three ratios of length 
of every two edges are calculated, as P3P6/P3P8, P3P6/P6P8 and 
P3P8/P6P8 in figure 2. If two of them are beyond given range, 
the barycentre is moved to the center of line segment which 
connects two center points of the two longer edges of triangle. 
Difference can be found by comparing figure 1c and figure 7, 
where the threshold range is from 0.7 to 1.4. 
 
If an end node of a straight skeleton segment is shared by two 
straight skeleton segments, the two segments are merged into an 
edge of skeleton topological network. The new graph edge may 
be further extended if one of its end nodes is shared by only one 
another straight skeleton segment. And if one end node of a 
graph edge is shared by three or one straight skeleton segments, 
a graph node is generated. Until all straight skeleton segments 
are converted to edges, primary skeleton network of a polygon 
is generated. For the convenience of programming, the process 
is started from ear-triangles.  

 
 

Figure 3.  Primary skeleton network of polygon and the 
corresponding binary tree 

 
As in figure 2, ΔP3P4P5 is the first triangle under consideration, 
the straight skeleton segment P4v1 is produced. The new 
segment shares v1 with only one segment v1v2 produced byΔ
P3P5P6. A new graph edge P4v1v2 is generated. v2 is shared by 
v2v3 and the graph edge is extended as P4v1v2v3. The process 
stops asΔP3P6P8 is a TI -type triangle. The other two straight 
skeleton segments v3v4 and v3v5 are taken as new starts 
respectively and the new threading process will stop at another 
straight skeleton segment produced by a triangle with type TE 
or TI. v3v4 is further connected with v4P7 and a new graph edge 
v3v4P7 is produced. Then v3v5 can be taken as a start for 
continuing. During the process, P4, v3, P7 are converted to graph 
nodes. The traverse is iterated until all triangles are visited. It 
may be breadth-first or depth-first, which produces equal 
skeleton network. 
 
Each graph edge is one part of skeleton associated with part of 
the polygon. The length of an edge can represent some 
characteristics of associated part of polygon. During the 
traverse of triangulation for building skeleton network, 
corresponding information is recorded. As in figure 2, graph 
edge P4v1v2v3 is associated with sub-polygon P3P4P5P6v3P3 and 
v3v5v6 is associated with P3v3P8v6P3. Obviously, the sub-
polygon is a union of triangles (or part of triangle with type TI) 
covering the associated edge. Vertices of all triangles are 
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organized in clockwise order, so the sub-polygon can be 
generated easily. 
 
Primary skeleton network (as in Figure 3) is un-directed graph 
within which each node is 1-degree or 3-degree. Each edge of 
this graph is a string of consecutive straight-segments that only 
shares common intersections at end nodes with other edges.  
 
There are two types of graph edges in skeleton network 
according to characteristics of end nodes. If two end nodes of a 
graph edge are 3-degree, the edge is an interior edge (as v3v6 in 
figure 3, denoted as GEI). If only one end node is 3-degree and 
another is 1-degree, the edge is an ear edge (as P4v3 in figure 3, 
denoted as GEE). If both nodes are not 3-degree, the edge is a 
single edge (denoted as GES), which appears at last step of 
pruning process in section 4. 
 
The set of all ear edges is denoted as: 

Oe={o1，o2，…，on} 
 

And all interior edges are denoted as: 
Ie={i1，i2，…，im} 

 
 

3. EVALUATION OF SKELETON SEGMENTS 

As indicated above, skeleton network is an un-directed graph. If 
any 1-degree node is taken as root, the network becomes a 
binary tree. Except for root and leaf nodes, all tree nodes are 
complete (as in figure 3). Considering a compact description of 
polygon, the importance of each edge which locates at different 
position of polygon is different. The importance is a function of 
its length, area of associated sub-polygon and angularity with 
neighboring edges. For an edge with vertices string:  

{P1(x1,y1), P2(x2,y2),...,Pn(xn,yn)} 
 

its weight W(oi) can denoted as : 
 
 

                 W(oi)=λLL(oi) + λAA(oi)+ λSS(oi)              (1) 
 
 
Where L(oi), A(oi) and S(oi) are factors related with its length, 
area of associate sub-polygon and angularity and λL, λA and λS 
are weights of respective factors. Because the three factors are 
in different measurement, they must be normalised first. 
Specially, when λA=λS=0, equation (1) becomes: 

W(oi)=λLL(oi) 
 
3.1 Length 

The length of all ear edge (with type GEE) is computed in 
Euclidean space as: 
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Then we get a set of all ear edges’ length: 

L’={L’(o1 )，L’(o2 )，…，L’(on)} 
 

The maxima and minima values are denoted as Lmax、Lmin. All 
values are then normalised using (1). 
 
 
                      L(oi)=(L’(oi)−Lmin)/(Lmax−Lm                              (2) 

3.2  Area 

In vector data model, every interior part of a polygon are 
regarded as homogeneous. So the area weight value of an edge 
is determined by the size of sub-polygon associated. 
 
First we get a set of all ear edges’ associated area in Euclidean 
space: 

A’={A’(o1)，A’(o2)，…，A’(on)} 
 

The maxima and minima values are denoted as Amax, Amin. All 
values are then normalised using following equation: 
 

                        A(oi)=(A’(oi)−Amin)/(Amax−Amin)      
(3) 

 
3.3 Angularity 

For three edges sharing one node, the two with similar 
angularities are visually connected as one according to Gestalt 
rules. All edges in skeleton network are simulated using linear 
least square equation. The straight line is defined as: 

l：y=a0+a1x 
 

We can get the slope of simulated line as: 
 
 

a1=(n× ∑
i=1

n
(xiyi)－ ∑

i=1

n
xi × ∑

i=1

n
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n
xi
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xi)2)            (4) 

 
 
All edges are processed to get simulated slopes using above 
equation. All vertices of the polygon are used to process to get a 
general slope ag using linear least square equation. The 
angularities of all GEE type edges are computed using following 
equation: 
 
 

                     Si’=|arctan(a1)− arctan(a1i’)|          
(5) 

 
 

And if Si’>π/2, then Si’=π−Si’. Then we get a set of all ear 
edges’ angularities: 

S’={S’(o1)，S’(o2)，…，S’(on)} 
 

Si’ denotes the sharp angle between the simulated line of 
polygon and the one of skeleton segments. The smaller of this 
value the more important of this ear edge. The maxima and 
minima values are denoted as Smax、Smin. All values are then 
normalised using following equation: 
 
  
                      S(oi)=( Smax−S’(oi))/(Smax−Smin)                  (6) 

 
 

3.4 Weights of the factors 

The values of weights of the three factors, λL, λA and λS, can be 
determined subjectively. The length is the most important factor 
as previous research used length as the only one factor. In label 
positioning in automatic cartography, larger space is preferred. 
So at this context, the area of sub-polygons associated with 
edges in skeleton network is more important than angularity. 
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When a polygon is collapsed in cartographic generalisation, the 
resulted medial axes may be preferred to have similar 
angularity with original polygon. And then the angularity 
becomes more important. 
 

4. HIERARCHICAL STRUCTURE OF SKELETON 
NETWORK 

In order to get optimal hierarchical structure of skeleton, a 
bottom-up pruning strategy is employed. Firstly a set of 
processed edges is initialized and denoted as Oe’={oi | i=m，m 
+1，…，n}. Initially m is 1 and Oe’= Oe. 
 
(1) Compute and Normalise three factors (L’, A’ and S’) of each 
ear edge in Oe’={ oi | i=m，m +1，…，n} to get L, A and S. 
 
(2) Compute the weight of each ear edge W={W(oi) | 
W(oi)=λLL(oi) + λAA(oi)+ λSS(oi)，i=m，m +1，…，n}. 
 
(3) Find the ear edge with minimized weight ok, and exchange 
the position of ok and oM. And then m=m+1. The step prunes the 
edge with minimized weight. 
 
(4) Maintenance of topological information of skeleton network. 
If both nodes of edge ok with minimized weight are 1-degree, 
go to next step. Assume the node with 3-degree of edge ok is vp, 
because ok is moved, the other two edges will be connected to 
produce a new edge whose length and associated area are the 
sum of the original two. The new edge’s angularity will be re-
calculated. If both of the two original edges are GEI type, the 
new one is marked as GEI type. Otherwise it is marked as GEE 
type. 
 
5) If m<n−1, go back to first step. Otherwise the process is 
finished. 
 
 

 
                       Figure 4.  Ear edge v3P7 is prunedas with minimized weight 

 

 
                   Figure 5.  Ear edge v6P2 is pruned as with minimized weight 

 
The processing of primary skeleton network in figure 3 is 
showed in figure 4 and 5. First, ear edge v3P7 is pruned and 
interior edge v3v6 and ear edge P4v3 are merged into an ear edge 
P4v6. Then ear edge v6 P2 is pruned and interior edge P4 v6 and 
ear edge v6 P11 are merged into a single edge P4P11. For only 
one edge left in skeleton network, the process is finished. 
 

 
Figure 6.  Hierarchical structure of skeleton network 
 
As indicated above the skeleton network can be regarded as a 
binary tree. If there are n ear edges in Oe, there are n−1 leaves, 
2n−2 graph nodes, 2n−3 graph edges and n−3 interior edges. 
During pruning, one edge is marked and moved out of 
candidate set Oe’ once a time. When m ≤ n−3, one interior 
edge is eliminated in each interation. When m = n−2, there is 
only one edge left in Oe’ which can be taken as the optimal 
skeleton for whole polygon. The elements in Oe’ are in 
importance-ascending order after pruning. For the skeleton 
network in figure 3, the result of Oe is { v3P7，v6P2，P4P11}, 
which is a hierarchical structure as showed in figure 6. 
Inversely, an incremental skeleton network can be acquired by 
inserting an edge to next neighbouring edge. 
 
The polygons representing natural phenomena should always be 
regarded as fuzzy objects. When part of skeleton network is 
needed, the result can be extracted from the hierarchical 
structure of skeleton network. Figure 7 shows two levels of 
skeleton for given polygon 
 
 

 
                 Figure 7.  Two levels of hierarchical structure of skeleton 

network 
 
 

5. RESULT AND DISCUSSION 

The new algorithm for extracting optimal skeleton which 
considers more factors is a general model of existing ones 
which consider only length. When λA=λS=0, the result is the 
longest skeleton as left image showed in figure 8. The right one 
is acquired by setting λL, λA and λS with 4, 2 and 1 respectively. 
The right one agrees more with human being’s visually 
cognition and is desired in many contexts. 
 
 

 
Figure 8.  Longest and optimal skeleton of polygon 

Further research needs consider polygons with holes. As an 
abstraction of polygon, the skeleton should be simplified to 
eliminate more details. 
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