TELE-EPIDEMIOLOGY

URBAN MALARIA MAPPING

Vanessa Machault Advances in Geospatial Technologies for Health 12-13/09/2011

To develop a robust pre-operational methodology to draw <u>dynamic</u> <u>high resolution</u> malaria <u>entomological</u> risk maps in urban settings at two levels:

- risk maps of the Anopheles breeding sites with larval productivity
- risk maps of the Anopheles adult densities

Based on:

Ground : large data collection

Remote sensing : appropriate data and images

Malaria transmission cycle

Human host

- Distribution and Vulnerability

Urban malaria – Dakar, Senegal

- 60% of the world population will live in cities (2030)
- Epidemics of malaria (low parasite transmission, delayed acquired immunity)
 - -> emerging disease

2.5 millions inhabitants in 2007

Sahelian climate Rainfall: 150-550 mm (July - October)

Ground entomological data collection

Spatial heterogeneity in Dakar

Temporal heterogeneity in Dakar

Intra-annual heterogeneity

Peak of *Anopheles* in the rainy season

Dynamic pre-operational mapping methodology

Remotely sensed earth observation data

SPOT-5 images (2,5 m + 10 m)

Meteorological data

MODIS images (1km – 8 days)

* Land Surface Temperature (LST)

* Daily ground rainfall measurement

Preliminary step: water detection

Geographic Information System

Probability of presence of water in 10m pixels is related to:

- Humidity (SPOT-5 Modified NDWI of the rainy season)
- Persistent vegetation (SPOT-5 NDVI of the dry season)
- Absence of buildings (SPOT-5 classification)
- Low altitude = water table (SRTM)

Preliminary step: map of water bodies

Inversion and extrapolation of the model to Dakar

Step 1: prediction of the presence of larvae

Geographic Information System

Probability of presence of larvae in water bodies is related to:

- Temporary collection, muddy bottom (SPOT-5 NDWI MCFeeters and Soil Brightness of the dry season)

- Outside of market garden (SPOT-5 NDWI MCFeeters of the dry season)
- Night LST (MODIS)
- 13/19 Total rainfall in the preceding 30 days (ground)

Step 1: map of presence of Anopheles larvae

Inversion and extrapolation of the model to Dakar using the preliminary step

Step 2: prediction of Anopheles adult densities

- Predicted surface of water (preliminary step) in the surroundings, weighted by rainfall
- Larval productivity (step 1) in the surroundings, summed for the preceding 30 days
- Mosquito survival rate 82% (literature)
- Urbanization = dilution of bites (SPOT-5 classification)

Step 2: map of Anopheles adult densities

Inversion and extrapolation of the model to Dakar

20 September 2009

Remotely-sensed environmental + meteorological data = robust pre-operational methodology to draw different levels of malaria entomological dynamic maps

The models predict the entomological features for any year -> can predict future risk (EWS)

Guiding, planning and focusing malaria control (national hygiene services)

Peters and Pasvol: Atlas of Tropical Medicine and Parasitology 6th edition @ 2006 Elsevier Lt

Validation and adaptation of the methodology in Bamako (Mali) et N'Djamena (Chad) IRBA, MRTC (Bamako), CNES, OMP

Industrialization of the mapping methodology -> operational tools CNES, SIRS, SERTIT, IRBA, OMP

Adaptation of the methodology in rural settings (Burkina Faso) Univ. Heidelberg, CRSN, CNES, OMP

Research of added value of Very High Resolution imagery CNES, SERTIT, SIRS, OMP

vanessamachault@yahoo.com.br

jean-pierre.lacaux@aero.obs-mip.fr