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ABSTRACT:

This research presents methods for detecting and isolating faults in multiple Micro-Electro-Mechanical System (MEMS) Inertial Mea-
surement Unit (IMU) configurations. Traditionally, in the inertial technology, the task Fault Detection and Isolation (FDI) is realized
by the parity space method. However, this approach performs poorly with low-cost MEMS-IMUs, although, it provides satisfactory
results when applied to tactical or navigation grade IMUs. In this article, we propose a more complex approach to detect outliers that
takes into account the shape and size of multivariate data. The proposed method is based on Mahalanobis distances. Such approach has
already been successfully applied in other fields of applied multivariate statistics, however, it has never been tested with inertial sensors.
As Mahalanobis distances (as well as the parity space method) is very sensitive to the presence of the same outliers this method aims
to detect, we propose using its robust version. The performances of the proposed algorithm are evaluated using dynamical experiments
with several MEMS-IMUs and a reference signal provided by a tactical-grade IMU run in parallel. The conducted experiment shows
that, for example, the percentage of false alarms is approximately ten times lower when using a method based on Mahalanobis distances
as compared to that based on the parity space approach.

1 INTRODUCTION

The use of redundant Micro-Electro-Mechanical System (MEMS)
IMU sensors is an economically and ergonomically viable solu-
tion to improve navigation performance while enhancing moni-
toring of individual sensor performance. Therefore, these low-
cost inertial sensors are more and more employed in commer-
cial applications. As single MEMS IMUs do not provide suffi-
ciently accurate measurements for standalone inertial navigation,
the process of permanent sensor-error compensation during nav-
igation becomes mandatory. However, the precision of the nav-
igation parameters can be considerably improved when several
MEMS-IMU’s triads are used in parallel provided faulty mea-
surements are detected and isolated from the estimation process
(Guerrier, 2008; Waegli et al., 2008). The resulting cost and vol-
ume of such systems still remain very attractive.

FDI algorithms applied to inertial sensors were traditionally used
in safety critical operations such as in the control of military or
space aircrafts. However, multiple MEMS-IMUs systems are not
yet used for safety critical applications. In this context, FDI aims
at detecting and removing gross errors to enhance navigation per-
formances and to improve the stability of the filters used in the
GPS/INS integration. The most commonly used FDI approach
for inertial sensors is the parity space method (Gai et al., 1979a,b;
Sturza, 1988), but other approaches such as artificial neural net-
works have also been examined, e.g. Krogmann (1995). As pre-
viously mentioned, the parity space method gives satistifactory
results when applied to IMUs of higher accuracy, however it per-
forms poorly with low-cost sensors (Guerrier, 2008; Waegli et
al., 2008). Indeed, the complexity of implementation of an ef-
ficient FDI system is increased when using MEMS-type IMUs.
The error-characteristics of these sensors (i.e. noise density vari-
ations in time and among sensors, large systematic measurement

errors compared to the random errors) often create false alarms
and increase the possibility of misdetection of faulty measure-
ments. Additionally, it has been shown in Guerrier (2008, 2009)
that MEMS-IMUs error characteristics are strongly influenced by
variation of the environmental conditions (e.g. increase vibra-
tions or temperature variations).

On the contrary to the parity space method, other methods de-
veloped for FDI purpose allow taking into account the correla-
tion and the variance differences between residuals of the syn-
thetic IMU (Filzmoser et al., 2005; Gertler, 1990; Rousseeuw and
Van Zomeren, 1990; Beckman and Cook, 1983). These methods
are based on Mahalanobis distances and consider the shape of the
data cloud quantified by the covariance matrix. In this research,
we proposed a generalization of the parity space approach based
on Mahalanobis distances (and its robust version) to detect erro-
neous measurements.

In this article, the theoretical aspects of FDI algorithms are first
presented. Then, robustness issues in FDI are discussed. Finally,
experimental results are presented.

2 FAULT DETECTION AND ISOLATION WITH
MEMS-IMUS

In this section, we present two FDI approaches, namely the clas-
sical parity space method and a method based on Mahalanobis
distances. These two methods are based on statistical tests de-
signed to detect multivariate outliers. Indeed, the fault detection
can be viewed as a choice between two hypotheses concerning
the absence (i.e. the null hypothesis H0) or the presence (i.e. the
alternative hypothesis H1) of erroneous measurements. Further-
more, the test statistic of the two methods have an approximate



χ2 distribution under H0 when assuming multivariate normally
distributed residuals.

2.1 Parity space method

The parity space method is based on the statisticD which is com-
puted as follows (Sturza, 1988):

D = vT v (1)
v = Zy (2)
Z = Im −H(HT H)−1HT (3)

where m is the number of measurements, H the design matrix
which transforms the state space to the measurement space, y
represents the vector of measurements and v the vector of mea-
surement residuals after least squares adjustment.

This method is based on the assumption sometime irrealistic that
the residuals used in FDI are distributed as:

v ∼ Nm(0, σ2
xIm) (4)

where σ2
x is the variance of the measurements. Under this as-

sumption, the statistic D is the squared sum of independent iden-
tically normally distributed random variables. In consequence, it
implies that it follows the distribution:

D

σ2
x
∼ χ2

m−p (5)

where p is the number of independent parameters.

2.2 Mahalanobis distance

To generalize the parity space method, we propose applying a
method based on the Mahalanobis distances. This approach also
relies on the assumption that the residuals follow a multivariate
normal distribution while no assumptions are made about the cen-
ter or the form of the covariance matrix of this distribution.

The Mahalanobis distances are defined as:

MD =
√

wT w (6)

w = S?−1/2
(v? − v̄?) (7)

where v? arem−3 residuals taken from v and S? the covariance
matrix of v?.

The Mahalanobis transformation (i.e w in Eq. 7) eliminates the
correlation between the variables and standardizes the variance
of each variable (Mahalanobis, 1936; Kent and Bibby, 1979). By
definition, it is clear that: wT w (i.e. MD2 in Eq. 6) has a
χ2

m−p distribution under the assumption of multivariate normally
distributed residuals.

Like D (Eq. 1), the Mahalanobis distances (Eq. 6) estimate how
extreme a measurement is with respect to others. Indeed, by set-
ting the (squared) Mahalanobis distances equal to a certain con-
stant, i.e. to a certain quantile of a χ2

m−p distribution, it is pos-
sible to define an (hyper) ellipsoids with all the points having the

same Mahalanobis distances from the centroid. FIG. 1 illustrates
this concept with simulated bivariate-normally distributed data.
The ellipses represent the quantiles 0.50, 0.75 and 0.99 of a χ2

2

distribution. Hence, this approach takes into account the shape of
the data cloud. On the contrary, the parity space method assumes
uncorrelated errors. In such a case, all the points having the same
D values can be represented by circles (dashed line in FIG. 1).
For this reason, the parity space approach can produce unreliable
results when the residuals are correlated (or heteroscedastic).

Figure 1: Simulated standard bivariate-normally distributed data
with a correlation of 0.60. The ellipses represent the 0.50, 0.75
and 0.99 quantiles of the χ2

2 distribution. The dashed line cor-
responds to the 0.99 quantile of the χ2

2 distribution under the
assumption of uncorrelated data (as done in the parity space
method).

3 ROBUST APPROACH TO FDI

The FDI process corresponds to identifying the residuals lying
outside the circle (parity space) or the ellipse (Mahalanobis dis-
tance) of a pre-defined quantile of a χ2

m−p distribution.

However, the Mahalanobis distances (alike D) are very sensitive
to the presence of outliers (Rousseeuw and Van Zomeren, 1990).
A few extreme observations departing from the main data struc-
ture can have a severe influence on the applied distance measure
(FIG. 2) due to the non-robust estimation of the covariance matrix
S. Consequently, the Mahalanobis distances are heavily affected
by the outliers it aims to detect. This is called the “masking ef-
fect”, by which multiple outliers do not necessarily have large
Mahalanobis distances (Rousseeuw and Van Zomeren, 1990). To
mitigate such masking, we used a robust estimators for the lo-
cation and for the scatter of the multivariate distribution of the
residuals (Rousseeuw, 1985). The minimum covariance deter-
minant (MCD) estimator is often employed in practice although
many other more sophisticate robust estimators have been intro-
duced (for a review see Maronna and Yohai (1998)). When the
MCD estimator is used to compute Mahalanobis distances (as de-
fined in Eq. 6), it leads to the so-called robust distances defined
as:

RD =

√
(v? − µ̂MCD)T Σ̂−1

MCD(v? − µ̂MCD) (8)

where µ̂MCD and Σ̂MCD are the MCD location and scatter esti-
mates.



Figure 2: Simulated standard bivariate-normally distributed data
with a correlation of 0.60 and with 5% of pertubated data (out-
liers). The non-robust estimation of the covariance matrix is rep-
resented by the dashed ellipse (0.975 quantile of χ2

2) with an as-
sociated correlation coefficient of -0.416. The robust estimation
produces the solid ellipse (0.975 quantile of χ2

2) and estimates a
correlation of 0.597.

To isolate a fault we propose using a slightly modified version of
the isolation algorithm that is based on maximum likelihood pre-
sented in Sturza (1988). This algorithm considers (like the par-
ity space approach) that the covariance matrix of residuals is an
identity matrix which is not necessarily the case. Therefore, we
incorporated the estimated (robust) covariance matrix also into
the original formula (Eq. 3). Thus, the isolated erroneous mea-

surement correspond to the highest values of the ratio v2
i

Zii
where

Zii correspond to the diagonal elements of the matrix defined by:

Z = Im −H(HT Σ̂−1
MCDH)−1HT Σ̂−1

MCD (9)

4 EXPERIMENTAL RESULTS

The results presented here are based on an experiment realized
in a vehicle. A regular tetrahedron consisting of 4 Xsens MT-i
MEMS-IMUs was mounted on a rigid structure together with a
tactical grade IMU used for reference (LN200).

After computing the least squares residuals for the gyros as de-
fined in Eq. 2, we explore the structure of the associated covari-
ance matrix. FIG. 3 shows a partial representation of this matrix
(which is from <12×12). It illustrates that the assumptions of the
parity space method are not satisfied since the residuals are first
correlated (e.g. corr(Vx1 , Vx2) ≈ −0.60), second, have differ-
ent variances (e.g. σ2

Vx1
≈ 2σ2

Vz4
) and third, are not centered

in zero (e.g. Vx4 ). Hence, the assumption of strictly Gaussian
white noise errors in the parity space approach is unrealistic with
MEMS-IMUs.

The performances of the different detection and isolation algo-
rithm are summarized in Table 1.

The results of the robust method and the method based on Maha-
lanobis distances are very similar. This can be explained by the
small proportion of outliers in this experimental data set. Conse-
quently, the maximum likelihood estimation and the robust esti-
mation yield similar results, thus, Σ̂−1

MCD ≈ S−1 and µ̂MCD ≈
v̄. However, simulations with additional outliers have shown that

Figure 3: Partial representation of the covariance of the residuals.
The diagonal elements compares the histograms of the residuals
with distribution assumed in the parity space method. The up-
per elements show the scatter plots of the residuals and the lower
elements compare the scatter plots with the assumed bivariate dis-
tribution.

FA MD SDE IA MIA
Classic 4.99% 1.06% 0.06% 80% 80%

Mahalanobis 0.45% 0.89% 0.24% 78% 91%
Robust 1.01% 0.95% 0.17% 75% 92%

Table 1: Performance comparison for FDI between different ap-
proaches based on the quantile 0.999 of a χ2

9 (FA = False alarm,
MD = misdetections and SDE = successfully detected errors, IA
= performance of the classical isolation algorithm, MIA = per-
formance of the modified isolation algorithm)

the method based robust Mahalanobis distance is significantly
more reliable.

5 CONCLUSION

In this paper, we focused on three FDI algorithms. We have
shown that a FDI algorithm based on Mahalanobis distances or
robust distances give better results than the parity space method
when applied to MEMS-IMUs measurements. Hence, such FDI
approaches are considered valuable for detecting gross errors,
which elimination in turn enhances the navigation performances
and improves the stability of the filters used in the GPS/INS inte-
gration. We also demonstrated that the performance of the isola-
tion algorithm can be slightly improved by incorporating the (ro-
bustly estimated) covariance matrix. Nevertheless, the percent-
ages of undetected errors, as well as the level of false alarms, re-
mains relatively high and, consequently, shows the need for more
complex FDI models and/or improved modeling of MEMS-IMU
systematic errors.
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