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ABSTRACT: 

 

Airborne laser scanning (ALS) of urban regions is commonly used as a basis for subsequent city modeling. In this process, data 

acquisition relies highly on the quality of GPS/INS positioning techniques. Typically, the use of differential GPS and high-precision 

GPS/INS postprocessing methods are essential to achieve the required accuracy that leads to a consistent database. Contrary to that 

approach, we aim at using an existing georeferenced city model to correct errors of the assumed sensor position, which is measured 

under non-differential GPS and/or INS drift conditions. Our approach accounts for guidance of helicopters or UAVs over known 

urban terrain even at night and during frequent loss of GPS signals. We discuss several possible sources of errors in airborne laser 

scanner systems and their influence on the measured data. A workflow of real-time capable methods for the segmentation of planar 

surfaces within ALS data is described. Matching planar objects, identified in both the on-line segmentation results and the existing 

city model, are used to correct absolute errors of the sensor position. 

 

 

1. INTRODUCTION 

1.1 Problem description 

Airborne laser scanning usually combines a LiDAR device 

(light detection and ranging) with high-precision navigational 

sensors (INS and differential GPS) mounted on an aircraft. 

Range values are derived from measuring the time-of-flight of 

single laser pulses, and scanning is performed by one or more 

deflection mirrors in combination with the forward moving 

sensor platform. The navigational sensors are used to obtain the 

3D point associated with each range measurement, resulting in a 

georeferenced point cloud of the terrain. Laser scanning delivers 

direct 3D measurements independently from natural lighting 

conditions, and it offers high accuracy and point density. 

 

A well-established application of laser point clouds acquired at 

urban areas is the generation of 3D city models. However, the 

overall precision of the derived city model highly depends on 

the accuracy of the data input, which is directly dependent on 

the exactitude of the navigational information. Great efforts are 

usually required during data acquisition and postprocessing in 

order to achieve high fitting accuracy of multiple ALS datasets 

(e.g. neighboring strips). While ALS data acquisition is 

commonly done to supply other fields of studies with the 

necessary data, few examples can be found where laser scanners 

are used directly for pilot assistance. One of these examples is 

the HELLAS obstacle warning system for helicopters (Schulz et 

al., 2002), which is designed to detect wires and other obstacles 

for increased safety during helicopter missions. 

 

Despite increasing performance of LiDAR systems, most remote 

sensing tasks that require on-line data processing are still 

accomplished by the use of conventional CCD or infrared 

cameras. Typical examples are airborne monitoring and 

observation devices that are used for automatic object 

recognition, situation analysis or real-time change detection. 

Utilization of these sensors can support law enforcement, 

disaster management, and medical or other emergency services. 

At the same time, it is often desirable to assist pilots with 

obstacle avoidance and aircraft guidance in case of poor 

visibility conditions, during landing operations, or in the event 

of GPS dropouts. Three-dimensional information as provided 

by the LiDAR sensor technology can ease these tasks, but the 

existence of differential GPS ground stations and the feasibility 

of comprehensive data analysis are not to be considered for 

these real-time operations. 

 

1.2 Overview 

The approach of using ALS information to provide on-line 

navigation support for aircraft guidance over urban terrain is 

opposite to the process of city model generation. In contrast to 

the demand for high-precision positioning techniques, it is 

assumed that a proper georeferenced city model is already 

available. ALS measurements and matching counterparts in the 

city model can be taken into consideration if additional 

navigational information is needed, for example in cases of 

degraded GPS positioning accuracy. 

 

This paper presents a workflow of methods for the segmentation 

of planar surfaces in ALS data that can be accomplished in line 

with the data acquisition process. Since most of currently used 

airborne laser scanners, like the RIEGL LMS-Q560, measure 

range values in a pattern of parallel scan lines, the analysis of 

geometric features is performed directly on this scan line data. 

Straight line segments are connected across consecutive scan 

lines to result in planar surfaces. In order to exploit the on-line 

segmentation results for aircraft navigation, a previously 

generated set of planar surfaces characterizing the urban terrain 

is needed for comparison (e.g. facades, rooftops). In our 

experiments, even this information originated from ALS data, 

which were recorded under optimal DGPS conditions, but it 

might as well be derived from any other existing 3D city model. 

 

Within our approach, we assume that INS navigation is 

continuously available and that we have an initial guess of the 

sensor position and orientation (±50 m, ±5°). If we have to 



 

navigate through GPS dropouts, the positioning accuracy will 

degrade because of INS drift effects, but we can assume that the 

measured ALS data are still roughly aligned to the stored 

information. In addition to their position in 3D space, features 

like size and normal direction are assigned to all segmented 

planar patches, thus it is comparatively easy to find 

corresponding objects in the database. We use this information 

to achieve precise alignment between the measured ALS data 

and the existing city model, which finally enables us to correct 

the presumed sensor position. 

 

1.3 Related work 

In recent years, airborne laser scanning systems have been 

explored by various scientists from different points of view. The 

complexity of ALS data acquisition leads to a number of 

potential error sources. Schenk (2001) and Filin (2003) address 

this problem and categorize different influences that should be 

considered. In addition to varying exactness of the navigational 

information sources, several systematic effects can lead to 

reduced point positioning accuracy. Exemplary limiting factors 

are scanning precision and range resolution of the specific laser 

scanning device. Other negative effects can be introduced by 

inaccurate synchronization of the system components. 

Considerable discrepancies are caused by mounting errors or 

disregarded lever arms (displacements between laser scanner, 

INS, and GPS antenna). Skaloud and Lichti (2006) approached 

this problem with a rigorous method to estimate the system 

calibration parameters such that 3D points representing a plane 

are conditioned to show best possible planarity. In order to use 

ALS within the scope of aircraft navigation, we suppose that the 

sensor system has been calibrated beforehand.  

 

Some procedures described in this paper are concerned with the 

segmentation of point clouds into planar surfaces. Many 

different methods regarding this topic can be found in literature. 

Some authors are interested in detecting even more kinds of 

objects like spheres, cylinders, or cones. Rabbani et al. (2007) 

describe two methods for registration of point clouds, in which 

they fit models to the data by analyzing least squares quality 

measures. Vosselman et al. (2004) use a 3D Hough transform to 

recognize structures in point clouds. Filin & Pfeifer (2006) 

propose a segmentation method that is based on cluster analysis 

in a feature space. The RANSAC algorithm (Fischler & Bolles, 

1981) has several advantages to utilize in the shape extraction 

problem (Schnabel et al., 2006). We apply a RANSAC-based 

robust estimation technique to fit straight line segments to the 

scan line data.  In a similar manner, a modified version of this 

method is used to identify locally planar patches in the model 

data. The amount of outliers lets us distinguish between 

buildings and irregularly shaped objects like trees. Fundamental 

ideas on fast segmentation of range data into planar regions 

based on scan line analysis have been published by Jiang and 

Bunke (1994). Their algorithm divides each row of a range 

image into straight line segments which are combined in a 

region growing process. Despite the fact that we are considering 

continuously recorded scan lines instead of range images, we 

basically follow this approach during the on-line data analysis. 

 

Several existing concepts of terrain-based navigation for aerial 

vehicles can be found, e.g. image based navigation (IBN), 

terrain-following radar (TFR), or terrain contour matching 

(TERCOM). Other than these methods, laser scanning is a 

comparatively new technique. Toth et al. (2008) propose the use 

of LiDAR for terrain navigation, as it provides distinct 3D 

measurements that can easily be used for exact comparison to 

previously recorded data. In their concept, the iterative-closest-

point algorithm (Besl & McKay, 1992) is chosen for surface 

matching. Instead of an ICP approach, we identify matching 

planar objects with regard to several geometric features (i.e. 

position, principal components, normal direction). Similar 

methods have demonstrated high performance for markerless 

TLS registration (Brenner et al., 2008). The problem of 

determining the transformation parameters is transferred to a 

system of linear equations that can be solved immediately.  

 

2. EXPERIMENTAL SETUP 

Data used for this study were collected during field campaigns 

in 2008 and 2009, using the equipment that is briefly described 

in this section. A more thorough description of the sensor 

system can be found in (Schatz, 2008). 

 

2.1 Sensor carrier  

The sensors described below have been attached to a helicopter 

of type Bell UH-1D (Figure 1). Laser scanner and IMU are 

mounted on a common sensor platform at the side of the 

helicopter, which can be tilted to allow different perspectives, 

i.e. nadir or oblique view. In an operational system, the pilot 

must be able to react to upcoming dangers, e.g. during degraded 

visibility conditions. Therefore, an obliquely forward-looking 

sensor configuration was used in our experiments. The lever 

arms of the components in the system are known, and the 

correct bore-sight angles have been determined. Calibration of 

these parameters is not topic of this paper, suitable methods can 

be found in (Skaloud & Lichti, 2006).  
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Figure 1. Sensor carrier and sensor configuration. 

 

2.2 Laser Scanner 

The RIEGL LMS-Q560 (2006) laser scanner makes use of the 

time-of-flight distance measurement principle with a pulse 

repetition rate of 100 kHz. Opto-mechanical beam scanning 

provides single scan lines, where each measured distance can be 

georeferenced according to position and orientation of the 

sensor. Waveform analysis can contribute intensity and pulse-

width as additional features, but since we are mainly interested 

in fast acquisition and on-line processing of range 

measurements, we neglect full waveform analysis throughout 

this paper. Range d under scan angle α (Figure 1) is estimated 

corresponding to the first significant echo pulse as it can be 

found by constant fraction discrimination. Typically, each scan 

line covers a field of view of 60° with 1000 range measurements 

(d,α) that can be converted to 2D Cartesian coordinates 

(Figure 6). Navigational data are synchronously assigned to 

these range measurements for direct georeferencing. 

 



 

2.3 Navigational sensor system  

The Applanix POS AV 410 comprises a GPS receiver and a 

gyro-based inertial measurement unit (IMU), which is the core 

element of the inertial navigation system (INS). The GPS data 

are used for drift compensation and absolute georeferencing, 

whereas the IMU determines accelerations with high precision. 

These data are transferred to the position and orientation 

computing system (PCS), where they are fused by a Kalman 

filter, resulting in position and orientation estimates for the 

sensor platform. In addition to the real-time navigation solution, 

specialized software can be used for accurate postprocessing of 

the recorded navigational data. Applanix POSPac MMS 

incorporates the use of multiple DGPS reference stations and 

the import of precise GPS ephemeris information. We consider 

this corrected navigation solution while generating an optimal 

database of the urban terrain. 

 

3. USED METHODS AND DATA PROCESSING 

In this chapter, we distinguish two different operating modes of 

ALS data acquisition and processing. First, we assume that we 

have optimal settings for creation of an adequate database: the 

relevant urban area can be scanned several times from multiple 

aspects with a calibrated sensor, and data can be processed and 

optimized off-line. During this stage, we can resort to own 

differential GPS base stations or use according information, e.g. 

provided by the “Satellite Positioning Service of the German 

State Survey” (SAPOS). Under these conditions, the absolute 

measurement accuracy of an ALS system is typically in the 

order of one decimeter (Rieger, 2008). 
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Figure 2. Horizontal cross-section of a building in overlapping 

point clouds: (a) after INS/DGPS postprocessing, 

(b) using the real-time navigation solution. 

 

In the second mode of ALS operation, the data is used for on-

line navigation updates during helicopter missions. At this time, 

we expect non-differential GPS conditions, GPS dropouts, and 

loss of data points due to smoke, fog, or other negative 

influences. Figure 2 shows the accuracy that can be obtained in 

the different operating modes. ALS data in this example were 

acquired at a skew angle of 45 degree (forward-looking). The 

helicopter approached the same urban area from six different 

directions, and the resulting 3D points were combined into a 

single point cloud. Both illustrations depict the aggregated data 

within the horizontal cross-section of a building in the overlap 

area. Best accuracy as shown in Figure 2a results from a global 

optimization of the navigational data with the Applanix 

postprocessing software POSPac. In this example, the data of 

six DGPS ground stations were taken into account. Compared 

with this accuracy, discrepancies of several meters can occur if 

the real-time navigation solution is used (Figure 2b). This 

situation will even get worse in case of GPS dropouts, 

depending on the quality of the IMU. 

 

3.1 Automatic generation of an adequate database 

The intended utilization of LiDAR sensors for aircraft guidance 

does not require a highly detailed GIS. We limit the creation of 

a database to the extraction of planar patches in multi-aspect 

ALS point clouds of the relevant urban area. As mentioned 

before, these data should be collected under optimal conditions 

(Figure 2a). The combined complete 3D point cloud contains 

information concerning all facades and rooftops of buildings. A 

workflow of off-line processing methods is used to filter points 

and extract most of the planar objects. The respective flowchart 

is illustrated in Figure 3.  

 

-30 -20 -10 0 10 20 30

-25

-20

-15

-10

-5

0

5

10

15

20

x

y

Point cloud n

Multi-aspect

ALS data sets

1
.
.
.

n

k-d tree data structure

Removal of

ground points

RANSAC-based

plane extraction

Database: Planar patches

Features: position, size, normal 

direction, principal components

45

INS/DGPS

postprocessing

 
 

Figure 3. Flowchart of the model creation. 

 

Merging of several multi-aspect ALS data sets results in an 

irregularly distributed 3D point cloud. We introduce a k-d tree 

data structure to handle automatic processing of these data. The 

search for nearest neighbors can be done very efficiently by 

using the tree properties to quickly eliminate large portions of 

the search space. 

 

The subsequent segmentation method is intended to keep only 

those points that are most promising to represent parts of 

buildings. At first, we remove all ground points by applying a 

region growing technique in combination with a local analysis 

of height values. We search for sections of the point cloud in 

which the histogram of height values clearly shows a 

multimodal distribution. There, laser points at ground level 

appear as the lowest distinct peak. Such positions are then used 

as seed points for the region growing procedure, which collects 

all points falling below a certain slope. The necessary search 

operations are accomplished by means of the k-d tree data 

structure. In general, this method may misclassify some points 

(e.g. inner courtyards), but this is negligible for our application. 

An overview of advanced methods for bare-earth extraction can 

be found in (Sithole & Vosselman, 2004). 

 



 

The main step of the model creation is the extraction of planar 

features from the remaining 3D points. Remarkably, the applied 

segmentation method is almost identical to the algorithm used 

for detection of straight line segments in the 2D scan line data, 

except for the terms line/plane and the different data structure. 

Similarly, geometric features of the extracted shapes have to be 

computed in both the model and the on-line results. These 

topics are described in sections 3.2 and 3.4, respectively. 

Figure 4 gives an impression of the derived model data. The 

underlying point cloud is composed of four partial scans of the 

terrain (different aspects). 

 

 
 

Figure 4. Partial view of the database with ground level (blue), 

vegetation (green) and planar patches (red). 

 

3.2 Scan line analysis of airborne LiDAR data 

During on-line processing, the analysis of geometric features is 

performed directly on the scan line data. Most parts of typical 

buildings will appear as local straight line segments in the 2D 

Cartesian representation, even if the airborne laser scanner is 

used in oblique configuration (Figure 1). The RANSAC 

technique is used to locally fit straight line segments to the scan 

line data. As mentioned in section 3.1, the algorithm described 

below can be modified to accomplish segmentation of planar 

surfaces in a 3D point cloud. This is simply done by replacing 

the scan line index with the k-d tree data structure, and by 

turning attention to 3D planes instead of 2D lines. 

 

An overview of the proposed method is shown in Figure 5. 

Within each new scan line, the 2D points (with range and scan 

angle converted to Cartesian coordinates) are first evaluated by 

a local principal component analysis. This step lets us 

distinguish between regularly or irregularly distributed point 

clusters. Within each following iteration step, we randomly 

select scan line positions of regularly distributed data points and 

try to fit a straight line segment to the neighboring data. The 

RANSAC technique provides a robust estimation of the line 

segment’s parameters. If the fitted straight line is of poor 

quality, the data associated with the current position is assessed 

as clutter. Otherwise, we try to optimize the line fitting by 

looking for all data points that support the previously obtained 

line, which is done in steps (10), (11), and (12). These steps 

actually represent a “line growing” algorithm. The local fitting 

of a straight line segment is repeated with the supporting points 

to get a more accurate result. The end points of each line 

segment can be found as the perpendicular feet of the two 

outermost inliers. Figure 6 shows detected straight lines for an 

exemplary scan line, depicted with a suitable color-coding 

according to the normal direction. 

 

 (1) Perform a local principal component analysis for the 2D data 

points in the new scan line A. The respective smallest 

eigenvalue indicates the local straightness of the data. 

(2) Choose an unprocessed position i among the available data 

in the array A where data points were found to be regularly 

distributed. 

(3) Check a sufficiently large interval around this position i for 

available data, resulting in a set S of 2D points. 

(4) Set the counter k to zero. 

 (5) If S contains more than a specific number of points, go to 

(6). Otherwise mark this position i as discarded and go to 

step (15). 

(6) Increase the counter k by one. 

(7) Perform a RANSAC-based straight line fitting with the 2D 

points in the specified set S. 

(8) If the number of inliers is low, mark the current position i 

as discarded and go to step (15). 

(9) Obtain the Hessian normal form L: (x-p)·n0 = 0 and push 

the current position i on a stack (LIFO). 
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(10) Pop the first element j off the stack. 

(11) Check each position in an interval around j, which has 

not already been looked at, whether the respective 

point lies sufficiently near to the straight line L. If so, 

include the 2D point in a new set S‘. Additionally 
push its position on the stack if indicated by (1). 

(12) While the stack is not empty, go to (10). Otherwise 

continue with step (13). 

(13) If the counter k has reached its predefined maximum (e.g. 

two cycles), mark all positions of points in S‘ as processed 

and determine the regression line to S‘. Store the 

perpendicular feet of the two outermost points to define 

the straight line segment and go to step (15). Otherwise 

continue with (14). 

(14) Go to step (5) with the new set of points S:=S‘. 

(15) Repeat from (2) until all points are classified. 

 

Figure 5. Procedure for RANSAC-based shape extraction 

(example: detection of lines in a set of 2D points).  
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Figure 6. Detected straight line segments in a typical scan line. 

 

3.3 Grouping of line segments 

The end points of each line segment are georeferenced to result 

in correct positioned straight 3D lines. In this section, we 

describe a procedure to connect coplanar line segments of 

consecutive scan lines. Let Pi, Pj, and Pk be three of the four 

end points of two line segments in different scan lines. The 

distance of the fourth end point Pm to the plane defined by the 

three others is a measure of coplanarity. We define a distance dp 

as the sum of all four possible combinations: 
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The algorithm to find corresponding line segments in a 

sequence of scan lines can be summarized as follows: 



 

(1) Select the next line segment a in the current scan line. 

(2) Set the label of a to a new and increasing labeling 

number. 

(3) Successively compare line segment a to each line 

segment b of several previous scan lines. If Euclidean 

distances, disparity of normal direction, and the measure 

of coplanarity dp are found to be smaller than predefined 

thresholds, go to step (4). Otherwise go to step (5). 

(4) Set the label of a to that of b. 

(5) Continue with (1) until all line segments a are processed. 
 

The above steps summarize the main ideas of our method. In 

fact, we apply an extended two-pass approach to improve 

detection of connected components. More details on this topic 

can be found in (Hebel & Stilla, 2008). Figure 7 illustrates the 

procedure. First, each line segment is initialized with a unique 

label. Coplanar line segments that are found to lie near to each 

other are linked together by labeling them with a common 

labeling number. This process is repeated until all new line 

segments are labeled. Surfaces are represented by the emerging 

clusters of line segments with the same label (Figure 8). 

 

 
 

Figure 7. Illustration of scan line grouping. 

 

 
 

Figure 8. Result of scan line grouping for ALS data (5 seconds). 

 

3.4 Feature extraction 

Each cluster of connected straight line segments can be 

characterized by a set of features which are described in this 

section. For a given cluster of connected line segments, let C 

denote the set of associated 3D data points. The centroid of C 

can be computed as the sum of all points divided by their 

number, and C can be translated towards the origin: 
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The eigenvectors of the covariance matrix C0
tC0 are the 

principal components of C. The normal direction n0 is given as 

the normalized eigenvector that corresponds to the smallest 

eigenvalue. The value of the smallest eigenvalue λ0 of the 

covariance matrix, divided by the number of points, is 

influenced by the curvature and the scatter of C. If it is near 

zero, this indicates a planar surface. The features used to 

identify matching surfaces in the model data and the results of 

scan line analysis are: centroid, normal direction, and the 

normalized eigenvalues of the covariance matrix. These features 

can even be used to classify and remove irregularly shaped 

surfaces, e.g. the ground level in Figure 8. 

 

3.5 Registration of ALS and model data 

Even without considering terrain-based navigation, we assume 

that the sensor position is known approximately e.g. up to 50 

meter. In case of GPS dropouts, the IMU drift will not distort 

the positioning exactness dramatically. The relative accuracy 

provided by the INS measurements still ensures consistent ALS 

measurements over limited periods of time, depending on the 

quality of the INS system. In some situations, the absolute 

navigational accuracy needs to be improved. Examples are low-

altitude flights of helicopters at night or preparation of landing 

approaches during rescue missions at urban areas. 

 

If the helicopter is equipped with a LiDAR sensor, ALS data 

can be collected for several seconds in order to scan the urban 

area in front of the helicopter (Figure 8). Surfaces that are 

instantaneously detected in these data can be compared and 

matched to the existing database of the terrain (Figure 4). The 

features that are used to establish links have been described in 

section 3.4. First, the displacement of the centroids has to fall 

below a maximum distance. Second, the angle between the 

normal directions should be small (e.g. <10°). Third, the 

normalized eigenvalues of the covariance matrix C0
tC0 should 

be similar. Nevertheless, wrong assignments may occur 

especially when considering a large search radius. In order to be 

robust against these perturbations, the procedure described in 

this section is complemented by a RANSAC scheme. Figure 9 

illustrates an exemplary pair of associated surfaces. The offset 

in position and orientation indicates the inaccuracy of the 

navigational data. 
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Figure 9. A pair of corresponding planes in model M and 

currently acquired ALS data D. 

 

In this section, we determine a rigid transformation (R,t) to 

correct these discrepancies. Let EM denote the planar surface of 

the model M that is associated with the plane ED in the currently 

collected ALS data D. The respective Hessian normal form of 

these planes is given by the centroids and the normal directions 

nM, nD (Figure 9). Since both planes should be identical after 

registration, the centroid of ED should have zero distance to EM. 

Moreover, the two normal vectors should be equivalent if they 

are normalized to the same half space. In addition to these 

conditions, we can assume that errors of orientation will not 

exceed the range of ±5°. That enables us to linearize the 

equations: 
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The rotation angles (α1, α2, α3) and the translation components 

(t1, t2, t3) are the six variables to be determined. Each 

corresponding pair of planes ED, EM yields two linear equations 

(3.3), therefore at least three pairs have to be identified in the 

data to compute the rigid transformation (R,t). In general, more 

correspondences can be found at urban areas. The resulting 

overdetermined system can be solved approximately by 

inverting the normal equations. In addition, the area of the 

planar patches can be used as a weighting factor. Finally, the 

corrected position of the sensor in the model coordinate system 

is given as R·pGPS+t and the orientation is corrected to R·RIMU. 

 

4. EXPERIMENTS 

We tested the proposed methods on the basis of real sensor data 

which were recorded 300 meters above Abenberg, Germany. 

Data available from four flights over this urban terrain in 2008 

led to the database shown in Figure 4. Data collected in 2009 

were considered to prove the concept of terrain based 

navigation (Figure 8). For this purpose, 8000 randomly chosen 

displacement vectors in the range [5 m, 50 m] were added to the 

exact sensor position and it has been checked if these offsets are 

corrected automatically. Figure 10 shows the average 

displacement between calculated and exact sensor position 

against the number of matching pairs of planes. With our data, 

we were able to reduce the average offset in sensor position to 

0.6 m if at least 10 pairs of associated surfaces can be found 

(standard deviation: 0.2 m).  When considering a larger number 

of matching planes (50), this result was even improved to 0.4 m. 

These numbers most likely depend on additional conditions, 

e.g. aircraft altitude, aircraft speed, number and orientation of 

facades and rooftops. 

 

 
 

Figure 10. Average displacement against number of planes. 

 

5. CONCLUSION AND FUTURE WORK 

The examples presented in this paper were obtained with an 

experimental sensor system, for which data analysis can only be 

done offline to show the feasibility of the proposed approach. 

Nevertheless, we guess that all computations can be 

accomplished in real-time, with an efficient implementation and 

appropriate hardware. In our experiments, we were able to align 

the model and the ALS data such that matching objects show an 

average distance of 8 cm after the registration. This absolute 

exactness is not necessarily transferable to the sensor position 

(see Section 4). With a larger distance between helicopter and 

the terrain, impreciseness of the sensor orientation has a 

considerably higher impact on the overall displacement. For 

example, an angular error of 0.1° would lead to a shift of 1 m in 

a distance of 600 m. The absolute exactness of the estimated 

sensor position improves significantly when considering larger 

areas and/or shorter ranges, e.g. when approaching the terrain at 

low altitude. In future work, we will analyze these influences in 

more detail, and we will focus on on-line change detection. 

 

6. REFERENCES 

Besl, P.J., McKay, N.D., 1992. A method for registration of 3-D shapes. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 

14, No. 2, pp. 239-256. 

Brenner, C., Dold, C., Ripperda, N., 2008. Coarse orientation of 

terrestrial laser scans in urban environments. ISPRS Journal of 

Photogrammetry and Remote Sensing 63 (1), pp. 4-18. 

Filin, S., 2003. Recovery of Systematic Biases in Laser Altimetry Data 

Using Natural Surfaces. Photogrammetric Engineering & Remote 

Sensing 69 (11), pp. 1235-1242. 

Filin, S., Pfeifer, N., 2006. Segmentation of airborne laser scanning 

data using a slope adaptive neighborhood. ISPRS Journal of 

Photogrammetry and Remote Sensing 60 (2), pp. 71-80. 

Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a 

paradigm for model fitting with applications to image analysis and 

automated cartography. CACM 24 (6), pp. 381-395. 

Hebel, M., Stilla, U., 2008. Pre-classification of points and 

segmentation of urban objects by scan line analysis of airborne LiDAR 

data. International Archives of Photogrammetry, Remote Sensing and 

Spatial Information Sciences, Vol. 37, Part B3a, pp. 105-110. 

Jiang, X., Bunke, H., 1994. Fast Segmentation of Range Images into 

Planar Regions by Scan Line Grouping. Machine Vision and 

Applications 7 (2), pp. 115-122. 

Rabbani, T., Dijkmann, S., van den Heuvel, F., Vosselman, G., 2007. 

An integrated approach for modelling and global registration of point 

clouds. ISPRS Journal of Photogrammetry and Remote Sensing 61 (6), 

pp. 355-370. 

Rieger, P., 2008. The Vienna laser scanning survey. GEOconnexion 

International Magazine, May 2008, pp. 40-41. 

Schatz, V., 2008. Synchronised data acquisition for sensor data fusion 

in airborne surveying. Proceedings of the 11th International Conference 

on Information Fusion, 1-6. 

Schenk, T., 2001. Modeling and Analyzing Systematic Errors in 

Airborne Laser Scanners. Technical Notes in Photogrammetry 19. The 

Ohio State University, Columbus, USA. 42 p. 

Schnabel, R., Wahl, R., Klein, R., 2006. Shape Detection in Point 

Clouds. Technical report No. CG-2006-2, Universitaet Bonn, ISSN 

1610-8892. 

Schulz, K.R., Scherbarth, S., Fabry, U., 2002. HELLAS: Obstacle 

warning system for helicopters. Laser Radar Technology and 

Applications VII, Proceedings of the International Society for Optical 

Engineering 4723, pp. 1-8. 

Sithole, G., Vosselman, G., 2004. Experimental comparison of filter 

algorithms for bare-earth extraction from airborne laser scanning point 

clouds. ISPRS Journal of Photogrammetry and Remote Sensing 59 (1-

2), pp. 85-101. 

Skaloud, J., Lichti, D., 2006. Rigorous approach to bore-sight self-

calibration in airborne laser scanning. ISPRS Journal of 

Photogrammetry & Remote Sensing 61 (1), pp. 47-59. 

Toth, C.K., Grejner-Brzezinska, D.A., Lee, Y.-J., 2008. Recovery of 

sensor platform trajectory from LiDAR data using reference surfaces. 

Proceedings of the 13th FIG Symposium and the 4th IAG Symposium, 

Lisbon, Portugal, 10 p. 

Vosselman, G., Gorte, B.G.H., Sithole, G., Rabbani, T., 2004. 

Recognising structure in laser scanner point clouds. International 

Archives of Photogrammetry, Remote Sensing and Spatial Information 

Sciences 46 (8), pp. 33-38. 


	Introduction
	Problem description
	Overview
	Related work

	Experimental setup
	Sensor carrier
	Laser Scanner
	Navigational sensor system

	Used methods and data processing
	Automatic generation of an adequate database
	Scan line analysis of airborne LiDAR data
	Grouping of line segments
	Feature extraction
	Registration of ALS and model data

	Experiments
	Conclusion and future work
	References

