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ABSTRACT:  

 

Vision aiding of the navigation solution has become an integral component of low-cost IMU/GPS 

sub-systems providing direct georeferencing to remote sensing systems. The data workflow to 

recover the orientation parameters rigorously requires the simultaneous handling of large amount of 

imagery and navigation data. In some situations, with small unmanned aerial vehicles for example, 

a flight block of thousands of images is the norm. The normal matrix of the blended imagery and 

navigation data can be very large in size for regular computers to handle efficiently. We use a 

Kalman filtering approach to sequentially process the blended navigation and imagery data; 

georeferencing parameters are then computed for every exposure station. In overlapping areas of 

the imagery, the exposure stations and the overlapping object are coplanar; this forms the general 

update equation of the Kalman filter. To rigorously account for the simultaneous optimal solution 

of the state parameters, we backward smooth the filtered estimates using the stored covariance 

information. We solve the problem in a form of overlapping strips in two directions to account for 

the whole block of imagery.  We also account for the hybrid nature of the observation equation 

formulation which has mixed observations and parameters through creating equivalent condition 

equations and use the general least-squares approach. We use this technique on imagery collected 

by a small unmanned aerial vehicle used in environmental research. The small format of the 

imagery resulting from the low flying altitude produces large amount of images per flight mission. 

Because of the limitation on the vehicles payload, a lightweight MEMS-based inertial unit 

augmented by low-cost precise GPS is used to directly geo-reference the acquired imagery. The 

benchmarked accuracy of the attitude information from the inertial unit is in the order of half a 

degree root-mean-squared error. Simulation results show the possibility of improving the results by 

at least a factor of two through using image aiding. Besides, the condition of coplanar exposure 

stations and overlapped objects creates tighter relative models between the different images and 

between the different strips, resulting in a tighter adjustment of the whole block. The proposed 

technique should, not only improve the accuracy of the image block, but also improve the 

algorithm computational efficiency drastically. 
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1. INTRODUCTION 

 

1.1 Background 

 

Georeferencing is the process of acquiring 

knowledge concerning the origin of an event in 

space and time. Depending on the sensor type, 

this origin is defined by a number of 

parameters such as time, position/location, and 

attitude/orientation. When this origin 

information is determined directly by on-board 

vehicle sensors, the term direct georeferencing 

is utilized. This has been a rapidly developing 

area of concern for geospatial experts 

including navigation, remote sensing, and 

photogrammetry specialists. 

To properly direct geo-reference imagery, the 

position and orientation of the sensor at 

exposure times must be known. These 

elements are commonly referred to as exterior 

orientation parameters (EOP). The position of 

the sensor is often represented by the incident 

nodal point of the lens (𝑋𝐿, 𝑌𝐿, 𝑍𝐿) [Wolf and 

Dewitt 2000]. These parameters are commonly 

obtained by calculating offsets between an on-

board Global Positioning System (GPS) unit 

and the camera lens. The attitude parameters of 

the imaging sensor are often derived from an 

on-board inertial measurement unit (IMU) 

mounted rigidly to the same frame as the 

imaging sensor. The attitude angles can be 

represented by omega/phi/kappa (OPK), 

azimuth/tilt/swing (ATS), or heading/pitch/roll 

(HPR). The OPK convention will be 

implemented herein. OPK involves sequential 

rotations about the x, y, and z axes. 

Specifically, a positive omega (𝜔) rotation is a 

counterclockwise rotation about the x-axis; a 

positive phi (𝜑) rotation is a counterclockwise 

rotation about the once rotated y-axis; a 

positive kappa (𝜅) rotation is a 

counterclockwise rotation about the twice 

rotated z-axis. 
 

1.2 Aerial Triangulation (AT) 

 

In in-direct geo-referencing, aerial 

triangulation is used to obtain the exterior 

information parameters of individual exposure 

station using known ground point coordinates 

and its counterparts in the images. The other 

interest of AT is obtaining the object space 

coordinates of other points imaged in the aerial 

images.   

 

Bundle Adjustment (BA) is a technique used 

in analytical AT to obtain EOPs. BA uses a 

least squares approach to minimize the errors 

of a bundle of rays connecting the photo 

coordinate measurements with the control 

coordinates on the ground. This is usually 

done through incorporating either the co-

linearity equations to determine the EOPs 

through determining the object space 

coordinates of the imaged points or directly 

through the co-planarity condition [Kersten 

and Baltsavias 1994; Tommaselli and Tozzi 

1996; Haala et al 1998; Wolf and Dewitt 2000; 

Mikhail et al 2001; Wang and Clarke 2001].  

 

Co-linearity is the condition that the incident 

nodal point of the lens (exposure station), any 

object point, and its corresponding image point 

all lie on the same line in three-dimensional 

space [ibid].  Co-planarity, on the other hand, 

is the condition that two exposure stations of a 

stereo-pair, any object point, and the 

corresponding image points of the two photos 

all lie in the same plane [ibid]. Since no object 

coordinates are involved in the co-planarity 

condition, initial approximations of the object 

space coordinates are not necessary. This 

proves to be a valuable asset of the algorithm 

developed herein. 
 

Bundle adjustments can be performed either 

sequentially or simultaneously. Each method 

has three main components: relative 

orientation of each stereo-model, connection of 

adjacent models to form continuous strips 

and/or blocks, and simultaneous adjustment of 

the photos from the strip/block to ground 

control. Relative orientation is used to 

determine the relative angular attitude and 

positional difference between two photographs 

when the images were captured [ibid]. 

Absolute orientation takes the relatively 

oriented stereo-models and transforms them to 

the ground using three-dimensional conformal 

coordinate transformations. The unknown 



quantities of BA in either method are the 

object space coordinates (XYZ) of object 

points and the exterior orientation parameters 

(georeferencing parameters) of each 

photograph.  
 

Advantages and disadvantages are prevalent 

for the use of either sequential or simultaneous 

bundle adjustments. The greatest disadvantage 

for sequential bundle adjustments is the 

nonlinear accumulation of random error along 

an image strip as more stereo-models are 

added to the adjustment. Simultaneous BA 

avoids this error accumulation by processing 

all measurements at once; thus providing a 

more robust method for determining the 

optimal solution. Simultaneous BA, however, 

comes with a computational burden in the 

form of huge matrix operations imposed by the 

large amounts of imagery in the strips/blocks, 

specifically with small format imagery. If a 

method existed for reducing error 

accumulation in sequential BA, the 

computational time incurred by doing the 

adjustment sequentially as opposed to 

simultaneously could be a great advantage 

especially in near real-time applications. This 

has made sequential estimation an ongoing 

research topic of interest for many experts 

especially in the field of navigation.  
 

Many approaches to sequential estimation 

through bundle adjustments are in the field of 

robot vision or vision metrology [Kersten and 

Baltsavias 1994; Edmundson and Fraser 1998; 

Di et al 2008]. To accurately obtain the 

orientation and position of the robot, a 

simultaneous bundle adjustment of all the 

previous geospatial data would not be feasible 

as the robot/UAV needs the geospatial 

information in near-real time to continue 

navigation. Thus, sequential estimation theory 

is used. Almost all approaches incorporate 

image-matching techniques utilizing co-

linearity equations [Kersten and Baltsavias 

1994; Tommaselli and Tozzi 1996; Haala et al 

1998; Wang and Clarke 2001]. The algorithm 

developed in [Webb 2007], however, applies 

co-planarity as the observation model for 

Kalman filtering to the sequential aero-

triangulation problem with success. The 

premise of that research was navigation not 

georeferencing the acquired imagery. Thus, 

our research analyzes Kalman filtering with an 

optimal smoother in sequential BA as a 

method for reducing the sequential 

accumulation of error normally associated with 

AT to provide accurate and precise geo-

referencing parameters. 

  

1.3 Kalman Filtering 
  

The Kalman Filter (KF) is an algorithm that 

implements a predictor-corrector estimator to 

minimize the estimated error covariance of the 

state [Gelb 1974]. KF achieves that by 

utilizing: knowledge of system and 

measurement dynamics, assumed statistics 

noises and measurement errors, and initial 

condition information [ibid]. Kalman filtering 

is the most common technique for estimating 

the state of a linear system and is widely used 

in many applications such as navigation with 

INS-GPS systems [Nassar et al 2007; Webb 

2007], satellite orbit prediction [Xiong et al 

2009], and in many other fields. 

 

The objective of the Kalman filter is to obtain 

the system state estimate 𝑥 𝑘  (a posteriori state 

estimate) as a linear combination of a 

predicted estimate 𝑥 𝑘
− (a priori estimate) and a 

weighted difference between an observation 𝑧𝑘  

and a measurement prediction (𝐻𝑥 𝑘
−). In 

equation form, 

 

𝑥 𝑘 = 𝑥 𝑘
− + 𝐾 𝑧𝑘 − 𝐻𝑥 𝑘

−  (1) 

 

Where  

𝐾 is the Kalman gain that minimizes 
the a posteriori error covariance 
and  

 𝑧𝑘 − 𝐻𝑥 𝑘
−  is the measurement innovation or 

residual. 

 

Interested readers are referred to Kalman 

Filtering text such as [Kalman 1960; Rauch et 

al 1965; Gelb, 1974; Welch and Bishop 2001] 

for details of the algorithm. 

 

  



1.4 Co-planarity Condition 

 

We use of the co-planarity condition (CC) as 

the observation model in the Kalman Filter 

algorithm. If two photographs are relatively 

oriented with respect to each other, then the 

object space rays defined by a pair of 

conjugate image points and their respective 

exposure stations will intersect at exactly one 

point [Wolf and Dewitt 2000; Mikhail et al 

2001]. The object space position of that point 

occurs at the intersection. The two object space 

rays in combination with the position vector 

connecting the two exposure stations form the 

three sides of a triangle. This triangle defines 

the plane for which this condition satisfies; see 

a depiction of the condition in figure (4-9) 

from [Mikhail et al 2001] below. 

 

 
 

The co-planarity condition is based on the fact 

that the volume (V) of the parallelepiped (a 

polyhedron consisting of all parallelogram 

faces) of three co-planar vectors will be 0 as 

shown in equation 2 below.  

 

𝑉 =  𝑏  ∙  𝑎 1 × 𝑎 2  =   
𝑏𝑥 𝑏𝑦 𝑏𝑧

𝑢1 𝑣1 𝑤1

𝑢2 𝑣2 𝑤2

  = 0 

 

(2) 

 

As illustrated in the figure, the base vector 

between the two exposure stations is (𝑏)     . 
Vectors, (𝑎 1) and (𝑎 2), are the object space 

rays from the exposure stations through their 

respective conjugate image points to the 

common object space point.  

 

To further develop the observation model, the 

co-planarity condition takes the observation 

equation form [Mikhail et al 2001] 

 

𝑍𝑒 =  𝑥1 𝑦1 𝑧1 𝐹  

𝑥2

𝑦2

𝑧2

 = 0 
(3) 

 

Where 

𝑍𝑒   is the equivalent observation, and 

 

𝐹 is the fundamental matrix that 

contains the exterior orientation 

parameters (EOPs) and the 

interior orientation parameters 

(IOPs) of both images in the 

stereo-model, which take the 

form 
 

𝐹 = 𝐶1
𝑇𝑀1𝐾𝑏𝑀2

𝑇𝐶2 (4) 

               

Where 

𝐶 is the calibration matrix that 

contains the interior orientation 

parameters in the form 

 

𝐶 =  

1 0 −𝑥0

0 1 −𝑦0

0 0 −𝑓
  

(5) 

 

And 

𝐾𝑏  is the skew-symmetric matrix 

that contains the base vector 

information between the two 

exposure stations 

 

𝐾𝑏 =  

0 −𝑏𝑧 𝑏𝑦

𝑏𝑧 0 −𝑏𝑥

−𝑏𝑦 𝑏𝑥 0
  

(6) 

 

And 

𝑀𝑖  is the rotation matrix of image i 

in the stereo-pair 

 

𝑀𝑖
𝑇 =  

𝑚11 𝑚21 𝑚31

𝑚12 𝑚22 𝑚32

𝑚13 𝑚23 𝑚33

 

𝑖

 
(7) 

 

The components of these matrices as well as 

the details of the co-planarity equations are 

discussed in photogrammetry books such as 

[Wolf and Dewitt; Mikhail et al 2001] and will 



not be repeated here.  

 

 

2. METHODOLOGY  

 

2.1 Observation Equation 

 

The objective of this development is to test the 

impact the co-planarity condition can have as 

the observation model for a Kalman filtering 

approach to solving for the georeferencing 

parameters (EOPs). Simplification of the 

dynamics model was desired to isolate the 

impact that this particular observation model 

had. Thus, certain assumptions were made that 

affected the time update equations in the 

Kalman filter algorithm. First, it was assumed 

that the a priori state estimate (𝑥 𝑘
−)  is equal to 

the a posteriori state estimate from the 

previous epoch (𝑥 𝑘−1). Thus, the original 

linear discrete-time controlled process Kalman 

filter equation mentioned earlier is simplified 

from 

 

𝑥 𝑘
− = 𝑥 𝑘−1 (8) 

 

In a similar fashion,  

 

𝑃𝑘
− = 𝑃𝑘−1 (9) 

 

Furthermore, the measurement update equation 

for the Kalman gain is rewritten below as  

 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅𝑒)−1 (10) 

 

Where 

𝑅𝑒  is the equivalent measurement 

noise covariance matrix formed 

by the measurement noise 

covariance matrix 𝑅 and the 

Jacobian matrix of the co-

planarity equation with respect to 

the image point observations 𝐵 
 

𝑅𝑒 = 𝐵𝑅𝐵𝑇 (11) 

 

Likewise, the observation 𝑧𝑘  is the equivalent 

to 𝑍𝑒  from the linearized form of the co-

planarity equation. Substituting into the second 

discrete Kalman filter measurement update 

equation to find the a posteriori state estimate 

 

𝑥 𝑘 = 𝑥 𝑘
− + 𝐾 𝑍𝑒 − 𝐻𝑥 𝑘

− . (12) 

 

By integrating these assumptions with the 

observation model modifications, the Kalman 

filtering process can be investigated via 

simulation. To make the exterior orientation 

parameter solution more robust than a simple 

forward filtering process, an optimal 

smoothing technique is also implemented.  
 

2.2 Optimal Smoothing 
 

Optimal Smoothing (OS) does not require 

observation model; thus, reimplementation of 

the co-planarity condition observation 

equation is not necessary. Smoothing is a 

function of stochastic weighting only. It is a 

post-mission processing scheme that uses all 

measurements from the initial epoch to a time 

𝑁 to estimate a system state 𝑥𝑘
𝑠  at epoch 𝑘 

such that 0 ≤ 𝑘 ≤ 𝑁. In the case of this 

algorithm, the a priori and a posteriori system 

state estimates as well as the a priori and a 

posteriori covariance estimates from the 

forward Kalman filtering process for each 

epoch between 0 and 𝑁are stored. These 

estimates form the basis of the backwards 

smoothing operation. In theory, backward OS 

accounts for the shortcoming of the forward 

filtering algorithm to achieve optimal solution 

equivalent to the simultaneous batch 

processing of all the data. 
 

While near real-time processing is desired, the 

initial implementation of this algorithm is to 

simplify the model as much as possible 

without sacrificing optimization. There are 

three main types of optimal smoothers: fixed-

interval, fixed-point, and fixed-lag. This model 

implements a fixed-interval smoothing 

algorithm called the Rauch-Tung-Striebel 

(RTS) backward smoother.  The RTS 

smoother is the least complex fixed-interval 

optimal backward smoother [Gelb 1974; 

Nassar et al 2007].  
 

The backward sweep of the RTS commences 

at the culmination of the forward Kalman filter 



sweep. At this point, the initial smoothed 

system state estimate 𝑥𝐾+1
𝑠  is equal to the a 

posteriori system state estimate 𝑥 𝑁 . Likewise, 

the initial smoothed covariance estimate 𝑃𝐾+1
𝑠  

is equal to the a posteriori system state 

estimate 𝑃𝑁 . The smoothed system state 

estimate 𝑥𝐾
𝑠  at time k in the RTS algorithm 

[Rauch et al 1965] 

 

𝑥𝑘
𝑠 = 𝑥 𝑘 + 𝐷𝑘 𝑥𝑘+1

𝑠 − 𝑥 𝑘+1
−   (13) 

 
Where 

𝐷𝑘  is the smoothing gain matrix 

(similar to the Kalman gain 

matrix from the forward filtering 

process) 
 

 
𝐷𝑘 = 𝑃𝑘𝐼 𝑃𝑘+1

−  −1 (14) 

 
Note that the covariance matrix of the 

smoothed estimates 𝑃𝑘
𝑠  is not necessary for 

computing the smoothed system state estimate 

in our case. However, analysis of that 

covariance matrix was deemed necessary for 

determining the relative precision of the 

algorithm. 

 

𝑃𝑘
𝑠 = 𝑃𝑘 − 𝐷𝑘 𝑃𝑘+1

− − 𝑃𝑘+1
𝑠  𝐷𝑘

𝑇  (15) 

 

3. EXPERIMENTAL RESULTS 
  

To test the functionality of this algorithm, a 

simulation model was created to mimic 

imagery acquisition over a predetermined 

flight path. While the end goal is the utilization 

of this algorithm with thousands of images per 

flight, the initial simulation model was a strip 

of 25 photographs. Over this minimal period, 

both the forward filter and the backwards 

optimal smoother could be seen converging on 

a steady-state solution. Thus, enlarging the test 

strip at this point would only contribute 

additional redundancy to the steady-state 

solution. 
 

Standardization of the simulations was 

necessary for comparison across trials. To do 

this, a seeded random number generator was 

utilized to perturb the original inputs by 

altering their respective observation standard 

deviations (precision). A simple structure was 

designed to simulate and standardize an image 

matching algorithm based upon the desired 

number of tie points between the overlapping 

images. Recall that tie points are crucial for the 

proper implementation of the co-planarity 

condition as the observation model. 
 

The focal point of this research is to determine 

how well this Kalman filtering and optimal 

smoothing algorithm can handle different 

parameters that affect the accuracy and 

precision of georeferencing simulated UAV 

imagery. Numerous trials were run altering the 

number of tie points and the initial GPS 

positional precision. The trials standardized 

the input standard deviation of the exterior 

orientation parameters to 1
o
. This is an overly 

pessimistic estimate as a MEMS-based IMU 

typically found on a UAV can achieve a RMS 

of half a degree or better. The following is a 

discussion of the initial findings from 

implementing this filtering and smoothing 

algorithm to sequential aero-triangulation.  
 

In this set of simulations, the flying height was 

set to 200m and four conjugate tie point pairs 

were used to satisfy the co-planarity condition 

in each stereo-pair. The positional precision 

was evaluated with horizontal precision twice 

as good as vertical precision. For example, the 

trial with a horizontal precision of 10m was 

given an initial vertical precision of 20m. Five 

separate trials were investigated for the given 

input parameters. This was done to see the 

effect input GPS position precision had on the 

output orientation angle precision. The 

following graph shows the convergence of the 

forward filter to a steady state solution for the 

precision of the exterior orientation angles; 

similar results are obtained for the remaining 

angles. 

 

 



 
Fig. (1): Improved orientation precision 

due to improved position 

precision – Forward Kalman 

Filtering 
 

It is apparent from Figure 1 that the filter is 

increasing the precision of the orientation 

angles as the sequential orientation proceeds 

down the strip of photos. It should be noted 

that although the GPS position precision is 

improving by a factor of ten for each of the 

five trials, the improvement in the orientation 

precision does not improve by a factor of ten. 

The initial findings suggest that improving 

GPS positional precision from consumer grade 

(±10m σ) to survey grade (±0.1m σ) result in 

substantial orientation precision gains. Return 

on investment for advanced geodetic grade 

receivers with positional accuracies of ±0.01m 

σ to ±0.001m σ do not offer results that 

substantially increase orientation precision. 

Therefore, investment in these expensive 

receivers may be unnecessary for the desired 

georeferencing precision. 
 

Figure 2 is from the same set of data showing 

the results from the backward smoothing 

algorithm.  The orientation precision results 

illustrate that the smoother is further refining 

the forward filter output. This marked 

improvement in orientation precision from ±1° 

σ to ±0.15° σ offers encouraging initial results 

for the implementation of this algorithm.  

Figure 2 also shows that there is a rebound 

effect at the end of the steady state; the reason 

is not yet known and believed to be 

programming error. 

 

 
 

Fig. (2): Improved orientation precision 

due to improved position 

precision – Backward Optimal 

Smoothing  
 

In the simulation model, the actual or ‘true’ 

values are known. This allowed us to analyze 

the algorithm accuracy by comparing the true 

values with the filtered/smoothed results. The 

term ‘residual’ will be used to define the 

difference between the true value and the 

estimated (filtered/smoothed) value, whilst the 

term ‘error’ will be used to define the injected 

simulation error. Using the data from the 

previous set of trials, Figure 3 shows the errors 

in the orientation angles. 

 

 

Fig. (3): Orientation accuracy at different 

position precision – Forward 

Kalman Filtering 
 

Ideally, the residuals should be converging to 

0° with oscillations of ±0.2° based on 
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algorithm design and the precision results. 

Noticeably the orientation angles, omega and 

phi, are not converging to the optimal residual. 

This bias is definitely of concern. Before 

reaching a definitive conclusion, an analysis of 

the results from the smoothing operation is 

shown in Figure 4. 
 

 
 

Fig. (4): Orientation accuracy at different 

position precision – Backward 

Optimal Smoothing 
 

Figure 4 shows that the angular accuracy 

improves only for decent to high accuracy 

GPS positional precision; the optimal solution 

converged to the optimal solution of 0° 

towards the second half of the strip. The kappa 

angle residual (not shown), however, did not 

show the same behavior. More analysis of the 

algorithm is necessary to troubleshoot this 

problem. It should be noted that the difference 

in orientation angular accuracy between very 

fine GPS position precision (±0.001m σ) and 

decent GPS position precision (±0.1m σ) is 

negligible.  This further reinforces the notion 

that a less expensive geodetic GPS unit may be 

just as suitable for georeferencing accuracy 

and precision as a top of the line geodetic GPS 

unit when this algorithm is implemented. 
 

While some uncertainty exists as to the overall 

accuracy of this sequential orientation 

algorithm, we are quite confident in the 

improvement of the angular orientation 

precision as a result of algorithm 

implementation. Therefore, further simulation 

trials were run to analyze the impact of 

increasing the number of tie points between 

the images. More tie points would lead to 

improved geometric stereo-model strength. 

This leads to the expectation that even greater 

gains in orientation angular precision can be 

expected with an increase in the number of tie 

points used. The results of increasing the 

number of tie points to nine supported the 

hypothesis that increasing the number of tie 

points leads to a subsequent increase in the 

angular precision. Relative to the four tie point 

session of simulation trials, the increase in 

orientation angle precision was significant. For 

higher orders of GPS positional precision 

(±10m σ), the relative increase in the smoothed 

angular precision between the two sessions 

was more than 100%. For smaller orders of 

GPS positional precision (±0.1m σ), the 

relative increase in the smoothed angular 

precision between the two sessions was still 

significant at approximately 30%. The 

orientation angle kappa had the most to gain 

from using more tie points. With four tie 

points, kappa had the weakest precision of the 

three angles. After using nine tie points, the 

three orientation angles had greater angular 

precision of equal magnitude.  
 

A session of simulations was run using sixteen 

tie points to see if the trend continued. While 

improvements in angular precision were made, 

the difference in steady state precision was not 

significant.  The significant change was a 

quicker convergence for 16 tie points relative 

to 9 tie points. Quicker convergence would 

seem to be the primary motive for utilizing this 

greater number of tie points. The improvement 

in angular precision is subtle and insignificant 

relative to using 9 tie points. 

 

4. SUMARY AND CONCLUSION 
 

We presented a method to process aerial 

imagery sequentially using an algorithm based 

on Forward Kalman Filtering and Backward 

RTS Optimal Smoothing.  The approximately 

90% increase in angular precision achieved 

with this algorithm relative to the original 

input data is a testament to the gains that can 

be made utilizing this algorithm for 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 5 9 13 17 21 25

A
cc

u
ra

cy
 (

D
eg

re
e

s)

Observations

Effect of Position Precision on Angular Accuracy
4 Tiepoints at a Flying Height of 200m

Original Error O - Pos0.001 resid O - Pos0.001
Original Error O - Pos0.01 resid O - Pos0.01
Original Error O - Pos0.1 resid O  - Pos0.1
Original Error O - Pos1 resid O - Pos1
Original Error O - Pos10 resid O - Pos10



extrapolating quality georeferencing 

parameters from sequential aero-triangulation. 

However, further investigation into the 

accuracy anomalies is necessary before an all 

inclusive endorsement is given to the full 

blown implementation of this algorithm.  
 

When utilizing this algorithm, it is suggested 

that images be taken prior to the subject area to 

allow the system to initialize and reach steady 

state. Likewise, obtaining a few images 

beyond the subject area is advised to avoid end 

of the strip errors from affecting the beginning 

of the smoothing algorithm.  
 

Further development of the simulation model 

to incorporate different flying heights is in 

progress. After the accuracy anomalies have 

been addressed, analysis of this algorithm with 

block sequential aero-triangulation will be the 

primary focus for further development. This is 

a natural progression since imagery acquisition 

in the real world is commonly collected in 

overlapping strips that form blocks of aerial 

photographs. Real data is available and will be 

utilized once the algorithm is tuned. 
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