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ABSTRACT: 
 
LIght Detection And Ranging (LIDAR) is a powerful remote sensing technology in the acquisition of the terrain surface information 
for object classification and extraction. Major benefits of this technique are its high level of automation during data capturing and its 
spatial resolution. Because of high complexities and difficulties in urban areas, many researchers focus on the using of LIDAR data 
in such area. Consequently, one of the challenging issues about LIDAR data is classification of these data in urban area for 
identification of different objects such as building, road and tree. Several urban classification methods have been proposed for 
classification of LIDAR data. Support Vector Machines (SVM), one of the new techniques for pattern classification; have been 
widely used in many application areas such as remote sensing. SVM is a binary classification method but in some researches like 
remote sensing or pattern recognition, we need more than two classes. One solution for this difficulty is to split the problem into a 
set of binary classification before combining them. Multi-class SVM is one solution for solving mentioned problem. The one-
against-one and the one-against-all are the two most popular strategies for Multi-class SVM. One problem that faces the user of an 
SVM is how to choose a kernel and the specific parameters for that kernel. Applications of an SVM therefore require a search for the 
optimum settings for a particular problem.  
This paper proposes a classification technique, which we call the Genetic Algorithm Multi-Class SVM (GASVM), that uses genetic 
algorithm as a method for kernel‘s parameter optimization for one of the Multi-class SVM classifiers. We have used genetic 
algorithm for optimizing γ and C parameters of RBF kernel in Multi-class SVM. The classification‘s results of LIDAR data by use 
of this presented technique clearly demonstrate higher classification accuracy. 
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1. INTRODUCTION 

Remotely sensed data has been widely used to land cover 
classification and object extraction (Wehr, Lohr, 1999; Haitao, 
2008). Light Detection And Ranging (LIDAR) is one of the 
recent remote sensing technologies that is widely used for 
Digital Terrain Model (DTM) data collection and also for other 
studies including 3D extraction, urban management, 
atmospheric studies, and so on (Clode, 2004; Alharthy, Bethel, 
2003). Comparing to other remote sensing data sources, LIDAR 
has its advantages such as acquisition of very dense data in a 
short period of time. LIDAR data contains plenty of scene 
information, from which most ground features such as roads, 
buildings and trees are discernible. More recently, 
advancements in LIDAR enabled the acquisition of dense point 
clouds. Major benefits of this technique are its high level of 
automation during data capturing and its spatial resolution. 
With point densities of up to several points per square meter, 
LIDAR data has become a valuable additional source for the 
reconstruction of different urban objects (Wehr, Lohr, 1999). 
Classification of LIDAR data into objects such as building, tree 
and road in complex area is a challenging research topic in 
pattern recognition and remote sensing studies (Bartels, Wei, 
2006; Brzank, Heipke, 2007).  

Several urban classification methods have been proposed for 
classification of LIDAR data (Kraus, Pfeifer, 1998; Zhang, 
2003). 
The Support Vector Machine (SVM) has emerged in recent 
years as a popular approach to the classification of data. (SVM) 
were first suggested by Vapnik (1995) and have recently been 
used in a range of problems including pattern recognition 
(Pontil and Verri, 1998), bioinformatics (Yu, Ostrouchov, 
Geist, & Samatova, 1999), and text categorization (Joachims, 
2000). SVM by itself is a binary classification but in some 
researches like remote sensing or pattern recognition, we 
usually have more than two classes. Multi-class SVM is the 
solution for this problem which is has been utilized in some 
researches (Wetson, Watkins, 1998; Naotosi, 2007). 
When using SVM, one problem is confronted: how to set the 
best kernel parameters. Proper parameters setting can improve 
the SVM classification accuracy. A GA-based regularization 
parameter can also be optimized using GAs in  (Frohlich and 
Chapelle,2003). 
The parameters that should be optimized include penalty 
parameter C and the kernel function parameters such as the γ 
for the radial basis function (RBF) kernel. Huang and Wang 
used Genetic algorithm as a method for parameter optimization 
of Support Vector Machine (Huang, Wang, 2006). The 
objective of this research is to simultaneously optimize the 
parameters and feature subset without degrading the SVM 



 

classification accuracy. Proposed GA-based approach 
significantly improves the classification accuracy. 
In this paper we proposed a GA-based method for optimization 
of RBF‘s kernel for one-against-one multi-class SVM. The key 
idea in this paper relies on optimization of C and γ parameter 
using genetic algorithm. 
 
 

2. SUPPORT VECTOR MACHINE (SVM) 

One of the state-of-the-art classification methods which has 
been widely used in different applications is Support Vector 
Machine (SVM). In this section we will briefly describe the 
basic SVM concepts for classification problems. These 
concepts can also be found in (Kecman, 2001; Scho˝lkopf and 
Smola, 2000; Cristianini and Shawe-Taylor, 2000). 
Consider a set of training examples 
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space Z , which divides the set of examples in the feature space 
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input space nR  to a high-dimensional feature space Z and to 
find an “optimal” hyper-plane 0=+ bzwT  in Z such that the 
separation margin between the positive and negative examples 
is maximized. A decision function of the classifier is then given 
by  
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where w is a weight vector and b is a threshold. Without loss of 
generality, we consider the case when the training set is not 
linearly separable. The SVM classification amounts to finding 
w and b satisfying 
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Where c > 0 is a regularization parameter for the trade off 
between model complexity and training error, and iε  measures 

the (absolute) difference between bzwT +  and iy  . Solving 
(1) directly is more complex because of a number of variables 
and unknown )(xϕ  (Cortes, Vapnik, 1995). Thus, solving (1) 
is converted into solving a dual problem 
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Let a kernel function K(x, y) satisfying 
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Moreover, the decision function of the classifier can 
be represented as 
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For convenient computation here, let iii ya α=  . Then 
(3) can be equivalently written as 
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Where for i= 1,...,l 
, ))1(sgn()),1(sgn( 21

iiii yccycc +=−−= . Therefore, the 
learning problem in SVM is equivalent to the quadratic 
programming problem in (5) with N bounded variables. 
One key aspect of the SVM model is that the data enters the 
above expressions (3 and 4) only in the form of the dot product 
of pairs. This leads to the resolution of the second problem 
mentioned above, namely that of non-linearly separable data. 
The basic idea with SVMs is to map the training data into a 
higher dimensional feature space via some mapping )(xϕ  and 
construct a separating hyperplane with maximum margin there. 
This yields a non-linear decision boundary in the original input 
space. 
Typical choices for kernels are: 
- Polynomial d)z .1(),( 〉〈+= xzxk                                      (7) 

- RBF )
2

exp(),(
2

2

σ

zx
zxk

−−
=                                          (8) 

- Sigmoid  ),tanh(),( θ−〉〈= zxzxk                                    (9) 
 
2.1 MULTI-CLASS SVM 

SVMs are an example of a linear two-class classifier and it can 
only take two values: ±1 . For a remote sensing application, 
several classes are usually of interest. One solution for this 
difficulty is to split the problem into a set of binary 
classification before combining them (Hsu, Lin, 2001). The one 
against- one and the one-against-all are the two most popular 
strategies in this category. 
One-against-one is the method that calculates each possible pair 
of classes of a binary classifier. Each classifier is trained on a 
subset of training examples of the two involved classes. In this 



 

method, all N (N-1)/2 binary classifications are combined to 
estimate the final output. Final output is then created by a 
majority voting scheme. This approach is suitable for problem 
with large amount of data (Hsu, Lin, 2001). 
The most important problem caused by this method is the 
existence of unclassifiable regions which is able to be solved 
using one-against-all technique. For an N-class problem, the 
one-against-all method constructs N SVM models (one SVM 
per class), which is trained to distinguish the samples of one 
class from samples of all remaining classes. In this method, the 
ith SVM is trained using all the learning examples in the ith 
class with positive labels and the others with negative labels 
and finally, N hyperplanes are obtained. 
 

3. PARAMETER OPTIMIZATION 

One of the most important design choices for SVMs is the 
kernel-parameter, which implicitly defines the structure of the 
high dimensional feature space where a maximal margin 
hyperplane will be found. Too rich a feature space would cause 
the system to overfit the data, and conversely the system might 
not be capable of separating the data if the kernels are too poor. 
Support vector classification with Gaussian RBF kernel is 
sensitive to the γ parameter. How to select γ of RBF kernel in 
SVM literature has been discussed in (Cristianini, 1998; 
Chapelle, Vapnik, 2002; Huang, suang, 2006). 
Usually, practitioners select these parameters empirically by 
trying a finite number of values and keeping those that provide 
the least test error. However, for a large number of parameters, 
this approach is not feasible. 
 
3.1 GENETIC ALGORITHM 
 
A genetic algorithm (GA) is a search technique used in 
computing to find exact or approximate solutions to 
optimization and search problems. GA work with a set of 
candidate solutions called a population. Based on the Darwinian 
principle of ‘survival of the fittest’, the GA obtains the optimal 
solution after a series of iterative computations. GA generates 
successive populations of alternate solutions that are 
represented by a chromosome, i.e. a solution to the problem, 
until acceptable results are obtained. Associated with the 
characteristics of exploitation and exploration search, GA can 
deal with large search spaces efficiently, and hence has less 
chance to get local optimal solution than other algorithms. 
A fitness function assesses the quality of a solution in the 
evaluation step. The crossover and mutation functions are the 
main operators that randomly impact the fitness value. 
Chromosomes are selected for reproduction by evaluating the 
fitness value. The fitter chromosomes have higher probability to 
be selected into the recombination pool using the roulette wheel 
or the tournament selection methods (Tang, et al, 1996). 
The evolutionary process operates many generations until 
termination condition satisfy. 
 

4. THE PROPOSED METHOD 

 
In our proposed methodology, we have used one-against-one 
multi-class SVM with RBF kernel. To implement our proposed 
approach, this research used the RBF kernel function for the 
SVM classifier because the RBF kernel function can analysis 
higher-dimensional data and requires that only two parameters, 
C and γ be defined. We used genetic algorithm as optimization 
method for selecting the best parameter of RBF kernel. Fig 2, 

illustrates the general structure of proposed methodology which 
contains three main steps. 
 
a. Feature Extraction 
The first step in every classification process is to extract proper 
features from data set. These features must contain useful 
information to discriminate between different regions of the 
surface. In our experiment, we have used different features 
extracted from two types of LIDAR data (Range data and 
Intensity data).  All types of features used in this research are 
introduced in Table 1. 
 

Table 1. Features vector for classification 
Name Formulation 

First Pulse Intensity FPI 

Last Pulse Intensity LPI 

First Pulse Range FPR 

Last Pulse Range LPR 
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b.Parameter Optimization Using GA.  
The chromosome design, fitness function, and system 
architecture for the proposed GA-based parameter optimization 
are described as follows. 
Chromosome design. When the RBF kernel is selected, the 
parameters (C and γ) used as input attributes must be optimized 
using our proposed GA-based system. Therefore, the 
chromosome comprises two parts, C, γ. However, these 
chromosomes have different parameters when other types of 
kernel functions are selected. The binary coding system was 
used to represent the chromosome. Fig. 1 shows the binary 
chromosome representation of our design. 
 
 
 
 
 
 
 

In Fig. 1 Cn
CC gg ~1 represents the value of parameter C, 

γ
γγ
ngg ~1 represents the parameter value γ. Cn  is the number 

of bits representing parameter C, γn  is the number of bits 

representing parameter σ. we can choose Cn and  γn according 
to the calculation precision required, and the minimum and 
maximum value of the parameter is determined by the user 
(Huang, Wang, 2006). 
 
 

Figure 1. The choromosom representation 
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In Fig.1 the bit strings representing the genotype of parameter C 
and γ should be transformed into phenotype by this equation: 
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P            Phenotype of bit string 

pmin      Minimum value of the parameter 

pmax     Maximum value of the parameter 
D           Decimal value of bit string 
L            Length of bit string 
 
Fitness Function. We used overall classification accuracy as 
fitness function. We have used error matrices of classification 
results as main evaluation method of interpretation the quality 
of each classification method. Each column in this matrix 
indicates the instances in a predicted class and each row 
represents the instances in an actual class. All the diagonal 
variants refer to the correct interpreted numbers of different 
classes found in reality. Overall accuracy yields one number of 
the whole error matrix. It‘s the sum of correctly classified 
samples divided by the total sample number from user set and 
reference set 
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Where 

jiN , : (i, j)th entry in confusion matrix 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

..iN : the sum of all columns for row i 

jN . : the sum of all rows for column i 

For each chromosome representing C and σ training dataset is 
used to train the SVM classifier, while the testing dataset is 
used to calculate classification accuracy. When the 
classification accuracy is obtained, each chromosome is 
evaluated by fitness function. 
 

5. EXPERIMENT AND RESULT 

5.1 Data Set 

As mentioned above, a subset of LIDAR remote sensing data 
with four popular bands, first pulse intensity, last pulse 
intensity, first pulse range and last pulse range is classified by 
our proposed method based on SVMs. This sample of LIDAR 
data is an urban area recorded from city of Castrop-Rauxel 
which is located in the west of Germany. This dataset has 
enough complexity in urban area for evaluating our proposed 
method. The LIDAR data is classified into three main classes: 
building, tree and ground. Table.2 shows number of training 
and test samples selected for each class. 
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Figure 2. GA-based proposed method 
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      Figure 3. Data set consist of a) First pulse intensity, b) Last 
pulse intensity, c) First pulse range, d) Last Pulse range, e) 
Aerial Image, f) Train and test data from selected area for Tree 
(green), Building (red) and Ground (yellow). Dashed lines show 
test data and continuous ones demonstrate training data. 
 
 
Table 2. Information of training and test sample of each class 
 

Class Number of training 
samples 

Number of test 
samples 

Tree 510 420 
Building 1426 672 

Ground 672 564 
 
 
5.2 Experiment and results 

To assess the capabilities of proposed method, we applied this 
method for classification of LIDAR data. Table 3 shows the 
results of optimization for C and γ. 
 

Table 3. Results of GA based optimization 
 

Optimized C Optimized γ Overall classification 
Accuracy (%) 

94.432125 0.043678 OA=90.1283 
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     Building Tree Ground 
Building 1124 48 13 
Tree 294 829 7 

Ground 75 9 2119 
OA=90.1283 

 
 
 
 

 
 
 
 
Table 4 and figure 3 show results of classification using 
optimized C and γ. These results shows that proposed method 
produced high overall classification accuracy. 
In this step, we compare results of proposed method by other 
classifiers such as minimum distance and maximum likelihood. 
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  Building   Tree  Ground  

Building  1075 81 16 
Tree   343 783 9 

Ground   76 22 2114 
OA= 85.9150 
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Building  1061 81 11 

Tree   326 771 2120 
Ground   106 34 2120 

OA= 87.4772 

 
 
Comparison of proposed method with another classifiers 
showed that this method improved overall accuracy in 
classification process. These results demonstrate that optimized 
SVM produced better classification results than Minimum 
Distance and Maximum Likelihood classifiers. 
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Figure 4. Result of optimized RBF SVM  

Table 4. Confusion matrix of optimized SVM 

Figure 5. Result of a)minimum distance and 
b)maximum likelihood 

Table 5. Result of confusion matrix for minimum distance 
and maximum likelihood classifiers 



 

6. CONCLUSION 

In this paper we have proposed optimization of RBF Multi-class 
SVM by use of genetic algorithm for classification of LIDAR 
data in an urban area. We have extracted some standard features 
from this dataset. In this paper we have used genetic algorithm 
based method for optimizations of two essential parameters of 
RBF SVM classifier contain C and γ. 
Our GA based optimization method used overall classification 
accuracy as fitness function. We choose the best values for C 
and  γ and used these parameters for classification of LIDAR 
data. Based on the mentioned results, optimized SVM produced 
better classification accuracy than other classifiers such as 
minimum distance and maximum likelihood. 
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