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ABSTRACT:

This paper presents a spatiotemporal saliency visual attention model based on maximum entropy. A dynamic saliency map is created
by calculating entropies in every corresponding local region between the current and some previous frames in a short video. In the same
time, four low-level visual features including color contrast, intensity contrast, orientation and texture, are extracted and are combined
into a static saliency map for the last frame in the video. Our proposed model decides salient regions based on a final saliency map
which is generated by integration of the dynamic saliency map and the static saliency map. At last, the size of each salient region is
obtained by maximizing entropy of the final saliency map. The key contribution of this paper is that the entropy value method is used
to calculate dynamic saliency for some successive frames in a short video. Experimental results indicate that: when the moving objects
do not belong to the salient regions, our proposed model is excellent to Ban’s model.

1 INTRODUCTION

The human visual system can effortlessly detect an interesting
region or object in natural scenes through the selective attention
mechanism. Visual attention represents a fundamental mecha-
nism for computer vision where similar speed up of the process-
ing can be envisaged. The selective attention mechanism also
allows the human vision system to more effectively process input
visual scenes with a higher level of complexity. In a short video,
motion has to be included based on the fact that people’s attention
is more easily directed to a motive stimulus in a static scene. The
motion is clearly involved in visual attention, where rapid detec-
tion of moving objects is essential for adequate interaction with
the environment. Therefore, the human visual system sequen-
tially interprets not only a static input scene but also a dynamic
input scene with the selective attention mechanism.

Most computational models (Tsotsos et al., 1995, Le Meur et al.,
2006b)of visual attention are static and are inspired by the con-
cept of feature integration theory (Treisman and Gelade, 1980).
the most popular is the one proposed by L. Itti et al. (Itti et
al., 1998) and it has become a standard model of static visual
attention, in which salience according to primitive features such
as intensity, orientation and color are computed independently.
There are also many models (Ouerhani and Hugli, 2003, Veit
et al., 2004, López et al., 2006, Le Meur et al., 2006a, Shi and
Yang, 2007, Bur et al., 2007, Bogdanova et al., 2010) bringing
dynamic saliency to visual attention mechanism. Ban et al. (Ban
et al., 2008) propose a dynamic visual selective attention model.
Firstly, a static saliency map is obtained by a frame in a video.
Secondly, an optimal scale is calculated for each pixel location
and for each static saliency map. Thirdly, those optimal scales
and static saliency maps are used to calculate the entropy to form
static entropy maps, then a static entropy map is obtained for ev-
ery frame in the video. At last, all the entropy maps are used to
calculate a new entropy map, which is called dynamic saliency
map. However, when the moving objects do not belong to the
salient regions, Ban’s approach is very hard to find the moving
regions.

In order to address the above problem, we propose a spatiotem-
poral saliency visual attention model based on maximum entropy
in this paper. A dynamic saliency map is based on the succes-
sive frames including current and some previous frames in a short
video. In our work, the dynamic saliency map is created by cal-
culating entropies in every corresponding local region between
the current and previous frames in the video. In the same time,
four low-level visual features including color contrast, intensity
contrast, orientation and texture, are extracted and are combined
into a static saliency map for the last frame in the video. Our
proposed model decides salient regions based on a final saliency
map which is generated by integration of the dynamic saliency
map and the static saliency map. At last, the size of each salient
region is obtained by maximizing entropy of the final saliency
map. Experimental results indicate that: when the moving ob-
jects do not belong to the salient regions, our proposed model is
excellent to Ban’s model. Our proposed model is shown in Figure
1.

This paper is organized as follows. Section two presents dynamic
saliency map. Static saliency map is described in section three.
Section four introduces how to acquire final saliency map and the
size of salient region. Section five shows experimental results,
and section six concludes this paper.

2 DYNAMIC SALIENCY MAP

Our proposed model is inspired by the human visual system from
the retina cells to the complex cells of the primary visual cortex.
The visual information goes through the retina preprocessing to
the cortical-like filter decomposition (Massot and Hérault, 2008).
The retina extracts two signals from each frame that correspond
to the two main outputs of the retina (Beaudot, 1994). Each
signal is then decomposed into elementary features by a bank of
cortical-like filters. These filters are used to extract both dynamic
and static information, according to their frequency selectivity,
providing two saliency maps: a dynamic and a static one. Both



Figure 1: Our proposed model: Given four successive frames in
a short video. Firstly, a dynamic saliency map is created by cal-
culating entropies in every corresponding local region between
these four frames. Secondly, four low-level visual features are
extracted and are combined into a static saliency map for last
frame. Thirdly, dynamic and static saliency map are fused into
a final saliency map, which are guided human visual attention.

saliency maps are combined to obtain a final saliency map (Marat
et al., 2009).

The retina, which has been described in detail in (Schwartz,
2004), has two outputs formed by different ganglion cells: mag-
nocellular output and parvocellular output. Magnocellular output
responds rapidly and provides global information which can be
simulated by using lower spatial frequencies. Parvocellular out-
put provides detailed information which can be simulated by ex-
tracting the high spatial frequencies of an image. This output en-
hances frame contrast, which attracts human gaze in static frame
(Reinagel and Zador, 1999). Our proposed model decomposes
the input short video into different frequency bands: a lower spa-
tial frequency one to simulate the dynamic output and a high spa-
tial frequency one to provide a static output.

For a given short video, motion has to be included based on the
fact that people’s attention is more easily directed to a motive
stimulus in a static scene. The proposed dynamic saliency map
model is based on the successive frames including current and
some previous frames in the video. In our work, the dynamic
saliency map is created by calculating entropies in every corre-
sponding local region between the current and previous frames
in the video. This map includes information from not only the
current frame, but also the previous ones.

In order to understand better how the entropy is correlated with
dynamic saliency, we convert the color successive frames into
gray-scale successive frames. We work with 256 gray level suc-
cessive frames and transform them to a lower number of levels
n<256. Generally, good results are usually obtained with n = 8
levels in normal illumination indoor and outdoor scenes. A higher
value rarely gives better results, whilst lower values (say, 2 or 4)

may be used for night vision (Lópeza et al., 2006). In this paper,
we choose the number of the input frames in this short video as
the number of levels. Let the maximal pixel value of all frames
is M , for each coordinate (x, y) at successive k frames in the
video, we normal this pixel value divided by M to a fixed range
[0, 1] . After dividing the [0, 1] range into some k equal parts,
we let the values in different parts be different integers, whose
range is [0, k − 1]. Those integers are defined by Equation (2).
Figure 2 shows an example of transforming the input color frame
(a) into gray frame (b), eight gray level bands (c) and four gray
level bands (d).

f(x, y, k) = I(x, y, k)/M (1)

g(x, y, k) =





0 0 ≤ f(x, y, k) ≤ 1
k

1 1
k

< f(x, y, k) ≤ 2
k

· · ·
k − 1 k−1

k
< f(x, y, k) ≤ 1

(2)

Figure 2: (a) Input color frame; (b) Gray frame; (c) Eight gray
level bands; (d) Four gray level bands.

In order to be consistent with the size of static saliency map and to
detect the moving region effectively, we reduce the size of every
frame and calculate the dynamic saliency in a local region. Let
R(x, y) is a local region in coordinate (x, y). We calculate the
corresponding entropy by the probability mass function, which
is obtained by the histogram generated using this k integer val-
ues. The bigger of the entropy value, the more conspicuity of this
point. The time-varying entropy Md(.) is calculated by Equation
(3) and all the entropy values can form a dynamic saliency map.

Md(x, y) = −
∑

k∈{0,1,···,k−1}
pg(x′,y′,k)log2pg(x′,y′,k) (3)

where

(x′, y′) ∈ R(x, y) (4)

pg(x′,y′,k) is the probability mass function, which is obtained by
the histogram generated using those integer values at local region
R(x, y)in all the successive frames.



3 STATIC SALIENCY MAP

Retinal input is processed in parallel by multi-scale low-level fea-
ture maps for every frame in a video, which detect local spatial
discontinuities using simulated center-surround operations. Four
low-level visual features including color contrast, intensity con-
trast, orientation and texture, are extracted and are combined into
a static saliency map. Let r, g and b are three color channels
of input image, four broadly-tuned color channels are created:
R = r − (g + b)/2 for red, G = g − (r + b)/2 for green,
B = b− (r + g)/2 for blue and Y = (r + g)/2− |r− g|/2− b
for yellow (negative values are set to zero). RG = |R − G|
is red/green contrast; BY = |B − Y | is blue/yellow contrast.
Therefore, color features are divided into red/green contrast and
blue/yellow contrast two parties.We divided intensity into inten-
sity on (light-on-dark) and intensity off (dark-on-light). We con-
vert the color object image into gray-scale image to obtain an
intensity image and let center/surround contrast be intensity on,
surround/center contrast be intensity off. The reason is that the
ganglion cells in the visual receptive fields of the human visual
system are divided into two types: on-center cells respond exci-
tatory to light at the center and inhibitory to light at the surround,
whereas off-center cells respond inhibitory to light at the cen-
ter and excitatory to light at the surround (Palmer and E., 1999).
There are four orientations in our model: 0o, 45o, 90o, 135o. The
orientations are computed by Gabor filters detecting bar-like fea-
tures according to a specified orientation. Gabor filters, which are
the product of a symmetric Gaussian with an oriented sinusoid,
simulate the receptive field structure of orientation-selective neu-
rons in primary visual cortex (Palmer and E., 1999). A Gabor
filter centered at the 2-D frequency coordinates (U, V ) has the
general form of

h(x, y) = g(x′, y′)exp(2πi(Ux + V y)) (5)

where

(x′, y′) = (xcosφ + ysinφ,−xsinφ + ycosφ), (6)

g(x, y) =
1

2πσxσy
exp(− x2

2σ2
x
− y2

2σ2
y
). (7)

σx and σy are the scale parameter, and the major axis of the Gaus-
sian is oriented at angle φ relative to the axis and to the modulat-
ing sinewave gratings. In this paper, let the scale of Gabor filters
equal to the scale of training object and let φ equal to 0o, 45o, 90o

and 135o, respectively. For texture feature, we consider local bi-
nary pattern (LBP), which describes the local spatial structure of
an image and has been widely used in explaining human percep-
tion of textures. Ojala et al. (Ojala et al., 1996) first introduced
this operator and showed its high discriminative power for texture
classification. At a given pixel position (xc, yc), LBP is defined
as an ordered set of binary comparisons of pixel intensities be-
tween the center pixel and its eight surrounding pixels (Figure 3).
The decimal form of the resulting 8-bit word (LBP code) can be
expressed as follows:

LBP (xc, yc) =

7∑
n=0

s(in − ic)2
n (8)

where ic corresponds to the gray value of the center pixel (xc, yc),
in to the gray values of the 8 surrounding pixels, and function
s(x) is defined as:

s(x) =

{
1 x ≥ 0

0 x < 0
(9)

Two LBP operators are used in this paper, one is original LBP

Figure 3: The LBP operator.

operator and the other is extended LBP operator with a circular
neighborhood of different radius size. The extended LBP opera-
tor can keep size and rotation invariance and its pixel values are
interpolated for points which are not in the center of a pixel. The
two LBP operators are illustrated in Figure 4. Therefore, ten fea-
ture types are considered in this paper.

Figure 4: (a) The original LBP operator; (b) The extended LBP
operator.

Center and surround scales are obtained using dyadic pyramids
with nine scales (from scale 0, the original image, to scale 8, the
image reduced by a factor 256). Center-surround differences are
then computed as pointwise differences across pyramid scales,
for combinations of three center scales (c ∈ {2, 3, 4}) and two
center-surround scale differences (δ ∈ {3, 4}); thus, six feature
maps are computed for each of the ten features, yielding a total
of sixty feature maps. Each feature map is endowed with internal
dynamics that operate a strong spatial within-feature and within-
scale competition for activity, followed by within-feature, across-
scale competition. Resultingly, initially possibly very noisy fea-
ture maps are reduced to sparse representations of only those lo-
cations which strongly stand out from their surroundings.

A region is salient if it is different from its neighbors. Thus, to
strengthen the intermediate maps that have spatially distributed
maxima, the method proposed by literature (Itti et al., 1998) is
used. After being normalized in [0, 1], each feature map (mi i =
1, · · · , 60) was multiplied by (max(mi)−mi)

2where max(mi)
and mi are its maximum and average respectively. Then, all val-
ues in each map that were smaller than 20% of its maximum were
set to 0. All intermediate maps were added together to obtain a
static saliency map Ms .

4 FINAL SALIENCY MAP AND THE SIZE OF
SALIENT REGION

The dynamic saliency map and static saliency map are described
above. The final saliency map is their weighted sum. Both maps
compete for saliency: the dynamic saliency map emphasizing its
temporal saliency; the static salient map showing regions that are
salient because of its spatial conspicuities. To make the maps
comparable, Md is normalized in advance to the same range as
Ms . When fusing the maps, it is possible to determine the de-
gree to which each map contributes to the sum. This is done by
weighting the maps with a static salient map factor t ∈ [0, · · · , 1].

M = t×Md + (1− t)×Ms (10)



The entropy maximum is considered to analyze the sizes of salient
regions (Kadir and Brady, 2001).The most appropriate scale xs

for each salient region centered at location x in the final saliency
map is obtained by Equation (11) which aims to consider spatial
dynamics at this location:

xs = arg max
s
{HD(s, x)×WD(s, x)} (11)

where D is the set of all descriptor values which consist of the in-
tensity values corresponding the histogram distribution in a local
region with size s around an attended location x in final salience
map, HD(s, x) is the entropy defined by Equation (12) and WD(s, x)
is the inter-scale measure defined by Equation (13).

HD(s, x) = −
∑
d∈D

pd,s,xlog2pd,s,x (12)

WD(s, x) =
s2

2s− 1

∑
d∈D

|pd,s,x − pd,s−1,x| (13)

where pd,s,x is the probability mass function, which is obtained
by normalizing the histogram generated using all the pixel values
in a local region with a scale s at position x in the final salience
map, and the descriptor value d is an element in a set of all de-
scriptor values D, which is the same set of all the pixel values in
a local region.

5 EXPERIMENTAL RESULTS

Ban et al. (Ban et al., 2008) also proposed a dynamic visual se-
lective attention model. The dynamic saliency map model part
is described as follows. Firstly, a static saliency map is obtained
by a frame in a video. Secondly, an optimal scale is calculated
for each pixel location and for each static saliency map. Thirdly,
those optimal scales and static saliency maps are used to calculate
the entropy to form static entropy maps, then a static entropy map
is obtained for every frame in the video. At last, all the entropy
maps are used to calculate a new entropy map, which is called
dynamic saliency map.

However, when the moving objects do not belong to the salient
regions, Ban’s approach is very hard to find the moving regions.
Therefore, our proposed approach uses the information of every
frame, instead of using the information of its saliency map to
obtain a dynamic saliency map.

We choose five successive frames in a short video. The static
saliency maps and scan paths for the first frame and the last frame
are shown in Figure 5. Figure 6 (a) and (b) show Ban’s dynamic
saliency map obtained from the five successive static saliency
maps and scan path generated by the dynamic saliency map, re-
spectively. Figure 6 (c) and (d) show Ban’s final saliency map
and scan path, respectively. Figure 7 (a) and (b) show our pro-
posed dynamic saliency map obtained from the successive frames
and the scan path generated by the dynamic saliency map, re-
spectively. Figure 7 (c) and (d) show our proposed final saliency
map and scan path, respectively. In experiment, we take t = 0.5
which expresses that the dynamic map is as important as the static
map for the final map. Figure 7 (d) includes scale information in
salient region is represented by a scaled box on the corresponding
salient region; other scan paths do not include any scale informa-
tion and the boxs just express the location of salient region.

Comparing to the scan path of Figure 6 (b) and Figure 7 (b),
we can find that our proposed approach is excellent to Ban’s ap-
proach to detect the moving regions. The primary reason is that
some moving objects do not belong to the static salient regions.

Our proposed approach uses the information of every frame, in-
stead of using the information of its saliency map. So our final
scan path contains more dynamic regions. Our approach accords
with the habit of human vision system.

Figure 5: (a) and (b) are static saliency map and scan path for the
1st frame, respectively; (c) and (d) are static saliency map and
scan path for the 5th frame, respectively.

Figure 6: (a) and (b) are dynamic saliency map and scan path of
Ban’s model, respectively; (c) and (d) are final saliency map and
scan path of Ban’s model, respectively.

6 CONCLUSION

We have proposed a spatiotemporal saliency visual attention model
based on maximum entropy in this paper. The main process
is described as following. Firstly, a dynamic saliency map is
based on the successive frames including current and some pre-
vious frames in a short video. In our work, the dynamic saliency
map is created by calculating entropies in every corresponding lo-
cal region between the current and previous frames in the video.
Secondly, four low-level visual features including color contrast,
intensity contrast, orientation and texture, are extracted and are
combined into a static saliency map for the last frame in the



Figure 7: (a) and (b) are dynamic saliency map and scan path of
our proposed model, respectively; (c) and (d) are final saliency
map and scan path of our proposed model, respectively.

video. Our proposed model decides salient regions based on a
final saliency map which is generated by integration of the dy-
namic saliency map and the static saliency map. Thirdly, the size
of each salient region is obtained by maximizing entropy of the
final saliency map. Experimental results indicate that: when the
moving objects do not belong to the salient regions, our proposed
model is excellent to Ban’s model.

The key contribution of this paper is that the entropy value method
is used to calculate dynamic saliency for some successive frames
in a short video. The proposed selective attention model for a
dynamic scene can play an important role as an initial vision pro-
cess for a more human-like robot system. This method presents
a new model for predicting the position of human gaze. In our
future works, we will extend our spatiotemporal visual attention
model to work in top-down environment by adding some prior
knowledge.
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López, M., Fernández-Caballero, A., Fernández, M., Mira, J. and
Delgado, A., 2006. Motion features to enhance scene segmenta-
tion in active visual attention. Pattern Recognition Letters 27(5),
pp. 469–478.
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