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ABSTRACT: 
 
Today’s advanced LiDAR systems are able to record the entire laser echo pulse, provided that sufficient data storage is available on 
the airborne platform. The recorded echo pulses, frequently called waveform data or full-waveform, can then be used to analyze the 
properties of the reflecting surface, such as classifying objects based on their material signatures; for example, land classification. 
However, both the efficient storage of waveform data and the waveform-based classification still present formidable challenges. In 
this paper, solutions based on state-of-the-art numerical methods, including the Discrete Wavelet Transform and Kohonen’s Self-
Organizing Map, are proposed to carry out these tasks. Using the Discrete Wavelet Transform has two advantages: first, it is an 
efficient tool to compress waveform data, and second, the wavelet coefficients describe the shape of the echo pulse, and, therefore, 
they can also be used for classification. The performance of the proposed method is evaluated using actual waveform data. 
 
 

1. INTRODUCTION 

Recent technological developments in LiDAR systems, most 
importantly the introduction of full-waveform LiDAR systems, 
make it feasible to record the intensity of the return pulse as a 
function of time, and thus to acquire additional data about the 
reflecting surface (Shan and Toth, 2009). From the shape of this 
return pulse, additional properties of the reflecting surface can 
be extracted, such as land information, i.e., the classification of 
the reflecting objects into categories, such as trees, other 
vegetation, roofs, pavement, etc.; see typical waveform shapes 
in Figure 1. 

Though the general concern about recording the echo pulses is 
the need for massive storage space, there are other important 
aspects of the large volume of the recorded waveform data, 
including the required sensor data transfer speed and on-board 
storage capacity, the means and speed of transferring the 
waveform data to the end users, and finally the storage space 
and computing power needed to process the waveform data. 
Compressing the captured digital data at sensor level can 
benefit most of these processes and can make the use of full-
waveform data feasible in practice. 

There is a plethora of compression and classification methods, 
used in a large variety of applications.  In this paper, the 
Discrete Wavelet Transform (DWT) is used as the base of the 
proposed compression algorithm. In Section 2, the selected 
compression algorithm is discussed in detail, and a comparison 
to existing widely used lossless compression methods is 
presented. For classification, besides the LiDAR-derived 
geometry, the wavelet coefficients are used. It is shown that this 
data can be efficiently used to separate man-made and natural 
objects, without the need of inverse wavelet transform (i.e., 
decompression), thus reducing the needed computation power 
and time. A non-supervised machine learning approach is 

selected for our classification (clustering); the algorithm, based 
on Kohonen’s Self-Organizing Map, is discussed in Section 3. 

The performance of the developed compression and 
classification algorithms is validated on a test area in Toronto 
(Ontario, Canada). A smaller suburban area (Scarborough) of 
approximately 50 by 65 meters, containing about 6,000 
waveforms, and offering a great variety of land coverage, is 
used for the investigation. The data was acquired by an Optech 
ALTM 3100 full-waveform LiDAR system. The sampling 
interval of the digitizer is 1 nanosecond, and the captured signal 
is digitized by an 8-bit analog-to-digital (A/D) converter, giving 
a dynamic intensity range of 0-255. The digitizer can cover 
targets extending over a range of 66 meters (Optech, 2005). 

 
2. COMPRESSION USING DWT 

2.1 Proposed compression algorithm 

The usual steps of a transform-based lossy compression scheme 
are the following: 

1. Preprocessing of the signal or image to be compressed 
(e.g., partitioning an image into smaller blocks) 

2. Transformation (e.g., discrete cosine transformation, 
DWT, etc.) 

3. Quantization of the coefficients (dropping coefficients 
based on some criterion, such as the order of 
magnitude or other properties, and then storing the 
remaining coefficients in a more compact form) 

4. Further lossless compression of the coefficients 
 
In our investigation, a compression scheme following the 
above-mentioned steps is proposed. Other lossy compression 
schemes also exist, e.g., Compressive Sampling (CS) is one of 



 

the emerging methods that incorporates the compression 
mechanism into the sensing mechanism itself. An initial study 
of applying the CS to full-waveform LiDAR data is reported in 

(Laky et al., 2010). Our implementation of the proposed 
compression scheme is based on the GNU Octave (Eaton et al., 
2008) and the WaveLab toolbox (Buckheit and Donoho, 1995). 

 

 
 

Figure 1. Typical waveforms of different surfaces (Courtesy of Optech Incorporated) 
 

The details and the goals of the specific steps of the proposed 
compression scheme are the following: 

1. Preprocessing. The low value data is discarded when 
the intensity of the return pulse falls below a given 
threshold. In our case, this threshold is set to 10 
intensity units. This step removes the 0-10 unit range 
from the bottom of the waveform, essentially creating 
a seamless zero-padding of the data. Since a data 
record length of the power-of-two is needed by the 
implementation of the DWT in the WaveLab toolbox, 
the records are further zero-padded to meet this 
requirement, resulting in an increase of the data size 
compared to the original size. In addition, the 
unusually short waveforms are removed, as those 
waveforms are likely results of measurement errors.  

2. Discrete wavelet transformation (Figure 2). As the 
result of preliminary investigations, the CDF (Cohen-
Daubechies-Feauveau) wavelet family with 
parameters 3 and 9 was chosen for this task (Laky et 
al., 2010). The earlier research aimed at finding the 
wavelet family that produces the smallest average 
reconstruction error around the compression ratio of 
20%. Since the original waveform data is stored as 
unsigned 8-bit integers and transformation produces 
the resulting wavelet coefficients as 64-bit double-
precision floating point numbers, there is an eight-
time increase in the data storage space. 

3. Eliminating high-order wavelet coefficients. 
Experimental results indicated that keeping only the 
first 25% of the wavelet coefficients allows for a 

reasonable small reconstruction error. Obviously, this 
step also reduces the needed storage space to one 
fourth. 

4. Eliminating outliers. It has been observed that in 
some (rare) cases the intensity of the return pulse 
exceeds the maximum intensity of the D/A 
converters, in which case clipping occurs (the top of 
the return pulse is clipped). As the shape of these 
waveforms is different from the shape of the other 
(regular) waveforms, the resulting wavelet 
coefficients also have a different order of magnitude. 
Since the information content is low in these 
situations, the waveforms that have out-of-range 
wavelet coefficients are simply removed. 

5. Quantization of the wavelet coefficients. To 
efficiently store the wavelet coefficients, 
quantization, i.e., mapping of 64-bit double-precision 
floating point values to unsigned integer values, is 
needed; in other words, the distribution of the 
coefficient values does not require the high resolution 
of the 64-bit number representation. During 
quantization, the zeroing out the low magnitude 
wavelet coefficients also occurs (thresholding). In our 
experiments, a simple linear quantizer is used, which 
only requires storing the minimum and maximum 
wavelet coefficient values and the quantized values. 
Thus, the dequantized values can be calculated by a 
simple linear equation. To allow for near real-time 
compression of the waveforms, the quantization 
parameters, i.e., the abovementioned minimum and 



 

maximum values, are calculated for every 50 
waveforms. Consequently, a temporary storage for 
the wavelet coefficients of maximum 50 waveforms is 
needed. Another important aspect of the quantizer is 
that it must have the capability to store exactly zero 
values; otherwise, these exactly zero elements would 
be later dequantized to the nearest level, adding 
considerable noise to the reconstructed waveform. 
The last parameter of the quantization is the 
granularity of the quantizer, i.e., the number of 
integer levels, usually set to a power of two, so the 
maximum range is utilized for a given number of bits. 

6. Run length encoding of the quantized coefficients. 
After quantization, a high number of consecutive 
zeros remain in the quantized wavelet coefficients, 
thus run length encoding is used to replace these 
consecutive zeros with a short code. 

7. Creating a continuous stream of the compressed data. 
This is needed to avoid storing complex data types 
(matrices) in the output file. Additional header data, 
such as length of the quantized wavelet coefficient 
vector and length of the original waveform, is 
appended to the quantized wavelet coefficients of 
every waveform, making operations, such as seeking 

in the compressed file and reconstruction of the 
waveform, possible. Note this step increases the 
storage need of the data. 

8. Huffman coding of the data stream. Traditional 
representation of numerical integer data utilizes fixed-
length codes. E.g., when using an 8-bit quantizer, all 
the 256 possible values are stored as a group of 8 
binary digits. However, the frequency of these values 
are not even. Therefore, assigning shorter codes to 
more frequent values, and longer codes to less 
frequent values, lossless compression can be 
achieved, which is the basic idea of Huffman coding. 
Note the lookup table of these Huffman codes must 
also be stored. 

 
Table 1 summarizes the specific steps of the proposed 
compression scheme. The configuration parameters of the 
method that can be changed depending on the need for better 
compression rate or better reconstruction (decompression) 
quality are also outlined in the table. Furthermore, the ratio of 
the storage size of the compressed data versus the storage size 
of the original data, the compression rate, is also shown in the 
last column. 

    

Step # Description Parameters Compression rate 

1 Preprocessing: decreasing the intensity values by a 
given amount (the threshold of the digitizer), removing 
unusually short waveforms, and zero-padding to the 
length of the next power-of-two (required by WaveLab) 

Amount of decrease: 10 intensity units, 
minimum length: 16 nanoseconds 

100.9% 

2 Discrete wavelet transform Wavelet family: CDF/3/9 806.8% 

3 Eliminate high-level wavelet coefficients Coefficients to keep: first 25% 201.7% 

4 Eliminate outliers Valid range of wavelet coefficients: -360 .. 
+650 

n/a 

5 Quantization of wavelet coefficients Quantization threshold: 5.0, granularity of 
quantizer: 8 bits (256 levels), quantization 
parameters stored for every 50 waveform 

22.2% 

6 Run length encoding of the quantized coefficients n/a 18.5% 

7 Creating continuous stream of the compressed data n/a 21.3% 

8 Huffman coding of the data stream n/a 18.7% 

 
Table 1. Steps of the proposed compression scheme 

 

 
 

Figure 2. LiDAR waveform and its wavelet coefficients 

2.2 Reconstruction quality 

The reconstruction scheme consists of the inverse of every step 
in the compression scheme, applied in reverse order. The 
quality of the reconstruction is a function of four parameters: 

1. The chosen number of wavelet coefficients to store 
2. The number of quantization levels (bits) 
3. The quantization threshold 
4. How often we store the minimum and maximum 

values of the quantizer 
 
In Table 2, the performance of the compression and the quality 
of the reconstruction are examined as a function of the 
quantization threshold; see step (5) of the proposed 
compression algorithm. All the other parameters remain as 
fixed values. First, by subtracting the decompressed waveforms 
from the preprocessed waveforms, an error signal is calculated; 



 

waveforms deemed to be outliers in step (4) of Table 1 are 
excluded. Then, the standard deviation of the error and the 
maximum absolute error are calculated for all the ~6,000 

waveforms. In Table 2, the minimum, mean and maximum of 
these values are listed, along with the compression rate 
achieved. 

        

Threshold Minimum std. Mean std. Maximum std.
Minimum abs. 

max. 
Mean abs. 

max. 
Maximum abs. 

max. 
Comp. rate 

1.0 0.30 0.70 1.41 0.85 2.56 7.30 22.3% 

3.0 0.34 0.73 1.42 0.85 2.62 7.35 19.7% 

5.0 0.37 0.82 1.47 0.94 2.81 7.35 18.7% 

7.0 0.40 0.95 1.87 0.94 3.13 7.35 17.8% 

9.0 0.40 1.13 2.50 1.07 3.54 7.73 17.1% 

 
Table 2. Reconstruction error statistics as a function of the quantization threshold 

 
  
2.3 Comparison with common lossless compression 
schemes 

The performance of the proposed lossy compression scheme is 
compared to widely-used lossless compression schemes. To test 
these compression methods, a raw binary data file has been 
created from the waveform data, appending the length of each 
waveform data as header information to every waveform. The 
resulting file then is compressed using three different programs: 
Info-ZIP, GNU GZIP and BZIP2. Info-ZIP, a ZIP 
implementation compatible with the well-known PKZIP 
program, and GNU GZIP both utilize the Lempel-Ziv coding 
(LZ77) and Huffman coding. The LZ77 coding replaces 
repeating sequences in the file that occur at different places 
with references to their first appearance (within a given window 
size). These two methods applied after each other is also known 
as the Deflate algorithm. The BZIP2 uses the Burrows-Wheeler 
transform, which changes the order of the bytes so that the data 
can be compressed more efficiently later, followed by the 
move-to-front transform, which further increases the 
compressibility, and finally utilizes Huffman coding. Table 3 
summarizes the results obtained by these methods. All of these 
programs have options to choose between quick execution and 
higher compression rates. The tests were carried out using the 
two extreme settings (maximal speed or maximal compression). 
 

Program 
Compression rate 
(maximum speed) 

Compression rate 
(maximum compression)

Info-ZIP 46.7% 38.6% 

GNU GZIP 46.7% 38.6% 

BZIP2 26.2% 23.9% 

 
Table 3. Performance of various widespread lossless 

compression schemes 
 
Clearly, the performance of BZIP2 approaches the performance 
of our compression scheme. The significantly better 
performance of BZIP2 is due to using more advanced lossless 
transforms, compared to the competitors, before utilizing 
Huffman coding. Of course, this performance gain does not 
come without a price, as the computation requirement of the 
compression increases significantly; comparing BZIP2 and 
GZIP, there is a 3.5 times difference between the runtimes. 
 

Generally speaking, lossless compression methods do not have 
the choice between reconstruction quality and compression 
performance, as they always give perfect reconstruction, and 
offer only a trade-off between computation requirement and 
compression performance. Using the proposed lossy 
compression method, a choice to improve the compression rate 
is always given at the cost of decreasing the reconstruction 
quality. 
 
 

3. CLASSIFICATION USING WAVELET 
COEFFICIENTS 

3.1 LiDAR classification methods 

LiDAR measurements are widely used in digital elevation 
model generation and object extraction, though can also be used 
for land classification purposes. In particular, the full-waveform 
LiDAR technology provides the possibility of further analyzing 
the shape of the waveform and, thus, obtaining additional 
information about reflecting objects and their geometric and 
physical characteristics. 
 
There are a large number of studies addressing LiDAR data 
classification. The first classification algorithms used only 
LiDAR-derived geometric characteristics of a point relative to 
its neighborhood (Maas, 1999; Vögtle and Steinle, 2003). 
Beyond the geometry, Tóvári and Vögtle (2004) also used the 
intensity values to classify objects. Others used not only 
LiDAR-derived data, but aerial imagery or an independent 
digital elevation model to improve the classification 
performance (Brattberg and Tolt, 2008, Charaniya et al., 2004).  
 
Since the introduction of full-waveform LiDAR systems, there 
have been other possibilities to improve the efficiency of the 
classification of surface objects, as the entire waveform can be 
analyzed to derive additional information. Numerous studies are 
based on decomposing the waveform into a sum of components 
or echoes to generate a denser and more accurate 3D point 
cloud (Mallet and Bretar, 2009),  modeling the waveforms with 
Gaussian (Wagner et al., 2006), Generalized Gaussian or 
Lognormal function (Chauve et al., 2007). Ducic et al., (2006) 
decomposed the waveform into Gaussian components, and used 
this not only to improve the accuracy of the peak detection, but 
also to discriminate between vegetation and non-vegetation 
points using the parameters of the Gaussian functions, such as 
the amplitude and the standard deviation (pulse width). Mallet 



 

et al., (2008) used the Generalized Gaussian model for 
classifying urban areas with one more parameter, the shape 
parameter of the Generalized Gaussian model, which allows 
simulating Gaussian, flattened or peaked pulses too. Both Ducic 
and Mallet used supervised classification methods.  
 
In our earlier studies, we used a non-supervised classification 
method, the Kohonen’s Self-Organizing Map (SOM) (Kohonen, 
1990), based on various statistical parameters describing the 
shape of the waveform, such as the maximum value of the 
intensity (amplitude), standard deviation (pulse width), 
skewness and the kurtosis (Zaletnyik et al., 2010). In this paper 
a new set of input parameters is proposed for the SOM-based 
classification. 
 
3.2 Proposed classification algorithm 

A SOM is formed of neurons located on a regular, usually one- 
or two-dimensional grid, and represents the result of a vector 
quantization and projection algorithm defining a nonlinear 
projection from the input space to a lower-dimensional output 
space. A typical application of SOM is in the analysis of 
complex vector data where the data elements may be related to 
each other even in a highly nonlinear fashion. The process, in 
which the SOM is formed, is an unsupervised learning process 
(Kohonen et al., 1996). In the proposed algorithm, apart from 
the basic LiDAR dataset and the geometry derived from the 
dataset, the first 16 wavelet coefficients are used. 
 
The SOM defines a mapping from the input data space Rn onto 
a regular two-dimensional array of neurons.  Each neuron i in 
the grid has an associated d-dimensional code vector mi = [mi1 
mi2 ... mid], where d is equal to the dimension of the input 
vectors. The lattice type of the array can be defined as 
rectangular or hexagonal. An input vector x ϵ Rn is compared 
with each mi code vector and the best match is defined as a 
response to the input, and thus, is mapped onto this location. 
During the training the code vectors change so that they follow 
the probability density of the input data. 
 
To implement the classification scheme, GNU Octave and the 
SOM_PAK software (Kohonen et al., 1996) were used. The 
steps of the proposed algorithm are the following: 

1. The first 16 wavelet coefficients of the preprocessed 
waveforms (see step (2) Table 1) are fed to the SOM. 
In our implementation, the size of SOM is 2×2, the 
nodes are rectangular, the neighborhood function is 
“bubble” type (SOM terminology for rectangular 
neighborhood function), and the learning rate function 
is linear. After this step, the points are categorized 
into 4 types, coded as 0-3 (see Figure 3b). 

2. The number of return pulses is extracted from the 
basic LiDAR data. 

3. The range of the first return pulse is extracted from 
the basic LiDAR data. Using these ranges, the local 
range differences are then calculated. That is the 
difference of a given range from the maximal range of 
the points in a given radius. This local range 
difference roughly corresponds to the local height 
difference, i.e., how much the given point protrudes 
from or extends beyond its surrounding area. Using 
this value, the points are classified into two 
categories: “surface” points with a local range 
difference less than 3 meters, and “protruding” points, 
(see Figure 3a). 

4. Using the information collected in steps (1-3), a 
decision is made for every point (see Figure 5a). 

a. If the SOM class is 2, or the number of 
peaks is not one, then the classification of 
the point is tree1.  

b. If the SOM class is 3, then the classification 
of the point is grass. 

c. If the SOM class is 0 or 1, and the point is a 
“protruding” point, then the classification of 
the point is roof. 

d. If the SOM class is 0 or 1, and the point is a 
“surface” point, then the classification of 
the point is pavement. 

5. To enhance the classification, a mode filter is applied 
to the result2. Basically, for every point, the class that 
occurs most frequently in a given radius is applied to 
it. In our implementation, the radius to be considered 
is 1 meter (see Figure 5b). 

 

 
 
Figure 3. Classification (a) using local range differences and (b) 

using SOM 
 
3.3 Evaluation of the proposed algorithm 

For evaluation purposes, 700 randomly-picked points were 
manually classified on the test area (see Figure 4). To facilitate 
the manual classification, a Google Maps API-based application 
has been developed. The LiDAR data has been stored in a 
PostgreSQL database, and the server-side components have 
been written in Perl. 
 
In Tables 4 and 5, the manual and the SOM-based 
classifications are compared before and after mode filtering. As 
the sum of the percentages in the diagonal shows, 88.9% of the 
points have been correctly classified after mode filtering; before 
mode filtering, this was 82.6%. After mode filtering, the worst 
case of the misclassification is 6.1% of the points, which have 
                                                                 
1 Most of the multiple-echo waveforms were backscattered from 

trees, only a few from the edges of the buildings. In this step, 
every multiple-echo waveform point is assumed to be tree. 
The edge points are sparsely located, and, therefore, in the 
following step, mode filtering, are eliminated. 

2 Mode (or modal) filters are used in thematic map post 
processing to reduce class speckle. The mode filter replaces 
isolated, single classified pixels with the mode class found 
within a small area around the point.  It has been shown to 
increase classification accuracy and reduce noise (Bradley et 
al., 1994). 



 

been manually classified as tree, but classified as grass in the 
SOM approach. Note that this can also be due to changes in the 

canopy between the time of taking the image used for manual 
classification and the time of the LiDAR measurement. 
 

 
 

Figure 4. Google Maps-based application for manual classification 
 

 Grass Tree Roof Pavement 

Grass 17.0% 3.7% 0.1% 1.9% 

Tree 4.9%  5.6% 2.9% 0.3% 

Roof 0.3% 0.6% 25.3% 0.1% 

Pavement 0.3% 2.3% 0.1% 34.7% 

 
Table 4. Comparison of the manual and the SOM-based classification before mode filtering. Rows: manual classification, columns: 

SOM-based classification. Numbers are the percentages of the manually-classified points in the respective categories 
 

 Grass Tree Roof Pavement 

Grass 20.4% 0.3% 0.1% 1.9% 

Tree 6.1% 7.0% 0.4% 0.0% 

Roof 0.4% 0.0% 25.9% 0.0% 

Pavement 0.6% 1.3% 0.0% 35.6% 

 
Table 5. Comparison of the manual and the SOM-based classification after mode filtering. Rows: manual classification, columns: 

SOM-based classification. Numbers are the percentages of the manually-classified points in the respective categories 
 



 

 
(a)        (b) 

 
Figure 5. Classification results, (a) before and (b) after mode filter 

 
 
 

4. SUMMARY 

In this study, we have examined the compression and 
classification of full-waveform LiDAR data. A DWT-based 
compression algorithm has been developed and the resulting 
wavelet coefficients have also been used for classification 
purposes. Our compression method has been compared with 
commonly used lossless compression schemes. For 
classification, an unsupervised method (SOM) has been used 
that requires no training set, though for evaluation purposes 
randomly-picked points have been manually classified in the 
test area.  
 
The proposed DWT-based compression scheme consists of the 
following steps: preprocessing, discrete wavelet transform, 
lossy compression (elimination of small wavelet coefficients, 
elimination of outliers, quantization) and lossless compression 
(run length encoding and Huffman coding). With this method 
an 18.7% compression rate has been achieved (i.e., the data was 
compressed to less than one-fifth of its original size) with only 
a 0.8 intensity value standard deviation of the reconstruction 
error (difference between the original and the reconstructed 
signal). Widespread lossless compression schemes, such as ZIP, 
GZIP and BZIP2, have also been applied to the test waveform 
data for comparison. With ZIP and GZIP a 39% compression 
rate can be achieved, while BZIP2 with 24% approaches the 
performance of our compression scheme. Using the proposed 
lossy compression method, the compression rate can be further 
improved at the cost of decreasing the reconstruction quality. 
 

For classification, the first 16 wavelet coefficients have been 
used apart from the geometry derived from the basic LiDAR 
dataset. The chosen clustering algorithm is the Kohonen Self-
Organizing Map, with 2×2 neurons in a rectangular lattice. To 
enhance the classification, a mode filter is applied to the result. 
In our investigation, the points are categorized into 4 types: 
tree, grass, roof, and pavement. Using 700 (12% of the full data 
set) manually classified reference points, the performance of the 
unsupervised classification has been validated at a success rate 
of 88.9%. 
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